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Dengue is emerging as one of the most prevalent mosquito-borne viral diseases of
humans. The 11kb RNA genome of the dengue virus encodes three structural proteins
(envelope, pre-membrane, capsid) and seven non-structural proteins (NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5), all of which are translated as a single polyprotein that is
subsequently cleaved by viral and host cellular proteases at specific sites. Non-structural
protein 5 (NS5) is the largest of the non-structural proteins, functioning as both an RNA-
dependent RNA polymerase (RdRp) that replicates the viral RNA and an RNA
methyltransferase enzyme (MTase) that protects the viral genome by RNA capping,
facilitating polyprotein translation. Within the human host, NS5 interacts with several
proteins such as those in the JAK-STAT pathway, thereby interfering with anti-viral
interferon signalling. This mini-review presents annotated, consolidated lists of known
and potential NS5 interactors in the human host as determined by experimental and
computational approaches respectively. The most significant protein interactors and the
biological pathways they participate in are also highlighted and their implications discussed,
along with the specific serotype of dengue virus as appropriate. This information can
potentially stimulate and inform further research efforts towards providing an integrative
understanding of the mechanisms by which NS5 manipulates the human-virus interface in
general and the innate and adaptive immune responses in particular.

Keywords: Flavivirus, NS5, moonlighting proteins, signaling pathways, protein–protein interactions (PPIs), antiviral
immunity, apoptosis, spliceosome
INTRODUCTION

Dengue is a global epidemic resulting in over 100 million clinical cases globally each year with
symptoms ranging from fever to hemorrhage and/or shock that can be fatal, especially among
children (Guzman et al., 2010; Bhatt et al., 2013). The disease is caused by four distinct dengue virus
(DENV) serotypes (DENV-1, 2, 3, 4). DENV is a positive-strand RNA virus that belongs to the
genus Flavivirus, family Flaviviridae. The genome encodes three structural (Env, PreM, Capsid) and
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seven non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and
NS5) proteins. Of these NS1 interacts with NS4A/B and
promotes viral replication (Chen et al., 2018; Płaszczyca et al.,
2019), NS3 performs helicase and protease functions (Swarbrick
et al., 2017), NS4A induces autophagy (McLean et al., 2011), and
NS4B facilitates dissociation of NS3 helicase from viral RNA
(Umareddy et al., 2006).

NS5 is the largest and the most conserved DENV protein. It
serves two important functions: one is the RNA-dependent RNA
polymerase (RdRp) activity that is required for viral replication
(Iglesias et al., 2011). The second is RNA methyltransferase
(MTase) activity important for RNA capping during
polyprotein translation (Liu et al., 2010; Klema et al., 2016).
Additionally, NS5 forms an RNA replicase complex with NS3 in
the endoplasmic reticulum during viral replication. After
replication, NS5 dissociates from NS3 and translocates to the
nucleus (Kapoor et al., 1995). So far, nuclear translocation has
been reported for DENV-2 and -3 serotypes (Brooks et al., 2002;
Hannemann et al., 2013). Yeast two-hybrid (Y2H) studies
suggest that nuclear translocation may occur because the
nuclear import receptor importin-b competes with DENV-NS3
for binding with NS5 (Johansson et al., 2001). While the nuclear
accumulation of NS5 does not seem to be essential for viral
replication (Kumar et al., 2013), it appears to be linked to an
increase in the production of the cytokine IL-8 that has been
historically correlated with severe dengue (Medin et al., 2005).

Given that NS5 is important for viral replication and serves as
a major target for cytotoxic T cell responses (Duangchinda et al.,
2010; Alves et al., 2016), there has been much interest to target it
for vaccine development and anti-viral interventions. Mutational
studies on the NS5-MTase domain identified several residues
that are likely to be critical in viral replication (Kroschewski et al.,
2008). 2′-O-methylation of the viral RNA is crucial for the
dampening of host immune responses at the early stages of the
viral life cycle. Abrogation of the 2′-O-MTase by changing a
single amino-acid (E216A) results in an earlier activation of anti-
viral responses exemplified by RIG-I (a sensor of foreign RNA),
IL-8 (a pro-inflammatory cytokine), and IFIT2 (an interferon-
induced protein that inhibits translation) leading to viral
attenuation (Chang et al., 2016). Several inhibitors of MTase
and RdRp activities have been identified by large-scale in vitro
screening (reviewed by (Lim et al., 2015)). Additionally, NS5
interacts with host proteins such as STAT2 that are critical for
type 1 interferon (IFN-I) signaling and innate responses and
inhibits host anti-viral responses (reviewed recently by (Ashour
et al., 2009; El Sahili and Lescar, 2017). In addition to such well-
studied instances, recent high-throughput studies in a variety of
experimental systems, as well as bioinformatic analyses, suggest
that NS5 interacts with a diverse spectrum of host proteins
(Rawlinson et al., 2006; El Sahili and Lescar, 2017; Amemiya
et al., 2019). The goal of this review is to provide the interested
researcher with a consolidated, annotated list of known and
potential NS5-interacting human proteins obtained from
multiple studies, highlight significant candidate interactors and
situate them in specific biological contexts wherever possible.
Additionally, information on the serotype of the viral strain
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(DENV1–4) used in the cited studies have been retained and
highlighted wherever appropriate.
COMPILATION OF NS5-INTERACTING
HOST PROTEINS FROM THE LITERATURE

While some of the NS5 interacting host proteins such as STAT2
are well-known, and extensively reviewed (Ashour et al., 2009;
El Sahili and Lescar, 2017) the goal of our efforts here is to
compile a comprehensive list of NS5 interacting host proteins.
We approached this by compilation of NS5 interacting
human proteins a) discovered by experimental pull-down
studies reported in the literature; b) curated in databases
(bioinformatics and Y2H studies). We briefly elaborate on each
of these approaches followed by a list of NS5 interacting proteins
compiled through these approaches. Finally, we comment on the
gaps in our understanding of the role of these interactions and
directions that future research in the field could take.

Pull-Down Studies
Typically, pull-down studies have used cell lines that are infected
with defined DENV serotypes and/or strains or transfected by
DENV-NS5 protein. While this approach has the advantage of
direct evaluation of protein-protein interactions (PPIs) the result
may be influenced by the cell line used, and the serotype/strain
used for infection/transfection. One study infected HEK 293T
and Huh7 cells with strep-tagged full-length DENV-2 (strain
16681) and determined 53 binding partners (De Maio et al.,
2016). Another study transfected HEK 293T cells with NS5 of
DENV-2 (strain 16681) followed by affinity purification-mass
spectroscopy (AP-MS) (Shah et al., 2018), and the data so
generated were analysed using MiST (mass spectrometry
interaction statistics (Verschueren et al., 2015) and CompPASS
(Comparison of Multiple Protein Alignments with Assessment
of Statistical Significance (Sadreyev and Grishin, 2003). This
resulted in the identification of 26 NS5-interacting host proteins.
Another study by Carpp et al. (2014) identified 53 interactors of
NS5 using HEK293-T cell line. As the addition of affinity tags to
the coding sequences of NS5 and NS3 prevented the production
of recombinant virions, they used the I-DIRT (isotopic
differentiation of interactions as random or targeted)
immunoaffinity purification method (Tackett et al., 2005). Cell
lines grown in the normal medium were transfected with GFP-
tagged NS3/NS5 followed by DENV-2 infection. Cell lines
growing in media containing isotopically labeled arginine and
lysine (13C6,

15N4) were mock-transfected followed by DENV2
infection. After lysis of both samples, equal amounts of the
extracts were mixed. This approach distinguishes between pre-
lysis and post-lysis interactions by identifying non-specific post-
lysis interactions due to the increased proportion of heavy
relative to light isotopes (Carpp et al., 2014). In a fourth pull-
down study (Poyomtip et al., 2016), a full-length DENV-2
construct (strain 16681) with tandem affinity purification
(TAP)-tagged NS5 containing a poly-histidine and FLAG tags
(inserted following N173 in MTase domain of NS5) was
March 2021 | Volume 11 | Article 574067
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propagated in BHK21 cells followed by infection in Huh-7 cells.
The NS5 complexes were isolated via FLAG-IP and analyzed by
mass spectroscopy. This study revealed 97 NS5 interactors,
prominent among them being heterogeneous nuclear
ribonucleoproteins (hnRNPs) and proteins involved in lipid
metabolism (Poyomtip et al., 2016).
Information From Databases and Yeast
Two-Hybrid Studies
We used P-HIPSTer (pathogen-host interactome prediction
using structure similarity; http://phipster.org) which is a
database of computationally predicted PPIs compiled for a set
of 1,001 fully sequenced human-infecting viruses. The
predictions are based on protein structural similarity and
homology modeling, exploiting both sequence and structure-
based information to infer interactions between pathogen and
human proteins (Lasso et al., 2019). This database employs the
extensively validated Pre-PPI (predicting protein-protein
interactions) algorithm for its predictions. Additionally, we
also used DenvInt (https://denvint.000webhostapp.com/) which
is a dengue-specific database of serotype-related experimental
evidence of PPIs based entirely on experimental evidence (Dey
and Mukhopadhyay, 2017). It curates data from Y2H, bacterial
two-hybrid, pull-down, and co-localization experiments
(Khadka et al., 2011; Le Breton et al., 2011; Mairiang et al.,
2013). This database indicates that of all DENV proteins, NS5
interacts with the largest number of human proteins (152).

Based on databases and published studies, we have compiled a
total of 377 proteins that are known/predicted to interact with
DENV-NS5 protein. Figure 1A depicts the number of
interacting proteins identified by each of the above-stated
methods of discovery. Supplementary Table 1 provides an
extensive annotated list of these different NS5 interactors along
with the serotype and method by which these are deduced. The
minimal overlap of the NS5 interactors deduced by these
different approaches may be due to the differences in overall
methodologies. Pull-down studies use specific cell lines, viruses,
or viral strains as explained above. Overexpression of target proteins
in cell lines through transfection does not mimic the actual viral
infection scenario, pull-down studies can lead to the precipitation of
protein complexes, whose components may not all directly interact
with the target protein. Extensive washing steps involved in this
protocol may lead to dissociation of weak or transitory interactors.
Yeast two-hybrid, though a rapid technique for large scale screening
of PPIs, does not truly reflect the sub-cellular localization of the
expressed protein or the abundance of the interacting proteins
inside the cell. However, though bioinformatics analysis has the
advantage of taking into consideration many viral variants and the
conserved amino acids among them, which is usually not feasible in
experimental systems that rely on a limited set of viral strains, it can
produce potentially false-positive results.

Using the available data from the combination of approaches
described above, we determined the biological pathways that
these interactors are potentially involved with using the KEGG
database, Gene Ontology (GO) analysis, and WEB-based GEne
SeT AnaLysis Toolkit (Liao et al., 2019) available at http://www.
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webgestalt.org/. Supplementary Figure 1 provides top biological
processes, cellular components, and functions of these NS5
interactors. Supplementary Table 2 provides an extensive list
of the top pathways with a false discovery rate < 0.05. Figure 1B
outlines some of the major pathways that are enriched for NS5
interacting host proteins pertaining to JAK-STAT signaling
pathway, spliceosome, cell cycle, protein processing in ER,
necroptosis, and protein synthesis. These are further elaborated
in the section below.
CRITICAL COMMENTS ON THE GROWING
LIST OF NS5-INTERACTING HUMAN
PROTEINS

The most studied NS5 interactor is STAT2. Su et al. reported
that SUMOylation of DENV-NS5 is vital for suppressing
STAT2-mediated IFN responses (Su et al., 2016). Excellent
reviews are available on this subject and thus we are not
elaborating on this aspect further (El Sahili and Lescar, 2017).
Interestingly, the expanding list of NS5 interactors started
revealing several other proteins that are involved in JAK-STAT
signaling as outlined in Figure 1B, some of which are deduced by
pull-down studies (STAT2, MTOR), some by Y2H studies
(PIAS1, PIAS3, IFNAR2, TYK2 IFNGR1, IFNGR2), and the
others by bioinformatics approaches (STAT1, STAT3, GRB2,
EP300) (See Figure 1B). It is interesting to note that dengue NS5
not only interacts with IFN-a/b Receptor Subunit 2 (IFNAR2)
but also interacts with interferon-gamma receptors 1 and 2
(IFNGR1, IFNGR2). This raises the possibility that NS5, in
addition to interfering with the JAK-STAT signaling pathway
(Best, 2017), may also interfere with the action of Type I IFN’s or
IFNg, which are the key innate and adaptive anti-viral cytokine
respectively. Notably, a case-control study that sequenced the
DENV-1 NS5 gene in 31 patients of varying disease severity
found that polymorphisms corresponding to amino-acids 124
and 166 (I124M and G166S respectively) correlated with
increased disease severity in what was designated as viral
“clade 2” relative to “clade1” by the researchers. Computational
analysis of these amino acid variants indicated that this effect was
probably due to the stronger interaction of clade 2 NS5 with the
type-I interferon receptor and Janus kinase-1 (JAK-1), eventually
suppressing JAK-STAT signaling (Delgado-Enciso et al., 2018)
thereby dampening key pathways of the innate immune
response. Further studies are needed to understand which
domain of NS5 interacts with these different proteins, and
what the direct and indirect effects of these interactions are.

It is interesting to note that the list of NS5 interactors
constitutes a large number of proteins involved in the
spliceosome machinery. Pre-mRNA splicing is a critical
mechanism of gene regulation in eukaryotic cells since a
majority of protein-encoding transcripts are alternatively
spliced (Lee and Rio, 2015). As mRNA splicing is altered in
various pathological conditions, it is a potential target for
therapeutic intervention using small molecules (Effenberger
et al., 2017). De Maio et al. (2016) showed NS5 binds to
March 2021 | Volume 11 | Article 574067
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spliceosome complexes and reduces the efficiency of pre-mRNA
processing. Using proteomic analysis and functional
experiments, this study demonstrated that NS5 interacts with
CD2BP2 and DDX23 from the U5 sma l l nuc lear
ribonucleoprotein (snRNP) particle to modify the inclusion/
exclusion ratio of alternative splicing events, altering the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
mRNA isoform abundance of known antiviral factors such as
CFTR, EDI, and Bclx (De Maio et al., 2016). DENV-NS5 targets
nuclear RNA-binding protein 10 (RBM10) for proteasomal
degradation. RBM10 regulates alternative splicing, favoring
anti-viral mRNA isoforms of proteins such as spermidine/
spermine-N1-acetyltransferase (SAT1) (Pozzi et al., 2020). Its
A

B

FIGURE 1 | Human interacting partners of DENV-NS5 curated from various experimental studies and databases. (A) The Venn diagram indicates the number of
DENV-NS5 interacting proteins that are shared with and/or unique to PPI studies in the literature viz., yeast-two-hybrid studies, pull-down studies, and
bioinformatics. Yeast-two-hybrid data were curated from the DenvInt database, bioinformatics-based data was obtained from P-HIPSTer, and pull-down data has
been derived from published data sources. All cited sources and extended data are compiled and listed in Supplementary Table 1. (B) Some of the NS5
interactors involvement in key KEGG pathways as obtained using the WEB-based GEne SeT AnaLysis Toolkit. The interactors are grouped in boxes based on the
key pathways that they are involved in as obtained from KEGG. The proteins are color-coded according to the method used for their identification. A list of all
significant pathways with a false discovery rate (FDR) < 0.05 is given in Supplementary Table 2. The complete results of the GO filtering are shown in
Supplementary Figure 1. SPTAN1 is the only protein detected by both bioinformatics and yeast two-hybrid experiments but has not been shown here because it
was associated with a false discovery rate > 0.05 which is the threshold for our compilation.
March 2021 | Volume 11 | Article 574067
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degradation favors pro-viral isoforms, aiding viral replication;
however, it is unknown whether this is a direct interaction or not.
Interestingly, in this regard, it is interesting to note that NS5
reduces the splicing efficiency of endogenous RIG-I mRNA, and
also increases the expression of dominant-negative forms of
IKKϵ during DENV infection, all leading to maintenance of
the pro-viral conditions in the cell (De Maio et al., 2016). The
NS5 protein of ZIKA and JEV has also been shown to interact
with spliceosome-associated proteins (Kovanich et al., 2019).
Considering these, it is proposed that NS5 interaction with the
spliceosome machinery could be an immune suppression
strategy (De Maio et al., 2016). Some recent studies have shed
new light on other NS5-interacting human proteins. For
example, a ChIP assay study of DENV-2 NS5-transfected
HEK293 cells found increased binding of NF-kB on the
RANTES promoter than in cells mock-transfected with the
empty vector (Khunchai et al., 2015). Elevated RANTES
expression in NS5 transfected HEK-293 was validated at both
mRNA and protein levels using real-time PCR and ELISA
respectively (Khunchai et al., 2015).

NS5 interacts with a host protein, death domain associated protein
6 (Daxx) competitively, which dissociates the Daxx-NF-kB complex.
This leads to an increased availability of NF-kB to bindwith RANTES
promotor and increases RANTES expression (Khunchai et al., 2012).
This is very interesting given the observation that NS5 upregulates
RANTES which is a key cytokine produced in severe dengue cases
(Khunchai et al., 2015; Soo et al., 2017). However, a different study
showed that NS5 transfection of HEK293 cells led to upregulation of
IL-8 via activation of CAAT/enhancer-binding protein (c/EBP)
(Medin et al., 2005). Further studies are needed to understand how
NS5 transfection influences NF-kB given that NF-kB is a pleiotropic
factor that can affect multiple biological processes such as cytokine
production, transcription, translation, and apoptosis. In this regard, it
is interesting to note that many of the apoptosis-related proteins (e.g.,
BIRC2; SPTAN1; TUBAL3, etc.) are also shown to interact with
dengue NS5 (Supplementary Table 1).

Interestingly, NS5 interacts with several proteins that are
typically associated with lipid metabolism (fatty acid synthase,
hydroxysteroid (17b) dehydrogenase 12, pyruvate carboxylase,
ATP citrate lyase). This indicates that NS5 may have a direct
role in influencing lipid metabolism (Heaton and Randall, 2010;
Carpp et al., 2014; Poyomtip et al., 2016). Further understanding
of the role of NS5 in these pathways is important given that lipid
metabolism is necessary for viral replication (Melo et al., 2018).

Some of the recent emerging studies are beginning to indicate
that NS5 has a causal link in autophagy via influencing a host
deubiquitinase protein, USP42 expression via increased
microRNA, miR-590 (Mishra et al., 2019) and TRAF-6 (Pu
et al., 2017). However, the interacting partners of NS5 involved
in these processes are yet to be identified.

An interesting line of studies in the recent past suggests that
NS5 also interacts with promyelocytic leukemia-nuclear bodies
(PML-NBs) that are typically involved in several cellular
processes including antiviral response (Lallemand-Breitenbach
and de Thé, 2010; Khunchai et al., 2012; Giovannoni et al., 2015).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
These various lines of evidence indicate that besides the well-
known dampening of the initial anti-viral response, NS5 can interact
with several other host proteins to influence other aspects of host cell
physiology as well. The precise effect of these NS5-host protein
interactions on the overall survival and propagation of the virus as
well as on the host innate and adaptive immune responses remains to
be determined.
FUTURE PROSPECTS

DENV-NS5 interactors participate in a variety of biological processes,
most importantly JAK-STAT signalling, RNA processing, cell cycle
progression, necroptosis, protein synthesis, and protein processing in
the ER among others. DENV-NS5 is an attractive target for drugs and
small molecules to inhibit viral replication (Rawlinson et al., 2006;
Lim et al., 2015; Shimizu et al., 2019; Troost and Smit, 2020). RNA
interference (RNAi)-based approaches have been explored for
therapeutic potential against a variety of viral infections, including
dengue [reviewed in (Stein and Shi, 2008; Arbuthnot, 2010; Levanova
and Poranen, 2018)]. Validating the top hits among the listed NS5-
interactors by RNAi in human cell lines and observing the effect of
such inhibition of specific host proteins on viral viability or
pathogenesis could rapidly identify promising host proteins for
disease management. Stepwise investigation of the utility of
knocking down interactor-protein levels via RNAi and/or
deploying interactor decoys to hamper the NS5-interaction with
specific host proteins suggest themselves as potential avenues for
further clinical research. Some of the NS5-interactors that modulate
immune functions or lipid metabolism may serve as potential targets
(Canard, 2011). The choice of host protein(s) would be critical, and
those involved in more specialized pathways like necroptosis or
cytokine production may be preferred over those involved in
essential processes like protein synthesis or RNA processing to
minimize collateral damage to the host. In case of dengue, RNAi
approaches have obtained promising results by targeting TNF-a in
cell culture and mice (Subramanya et al., 2010). Furthermore, cell
line-based RNAi studies targeting Hsp60 (Padwad et al., 2009),
proteins involved in membrane trafficking (Ang et al., 2010) and
protein processing in the ER (Savidis et al., 2016), and the IFN-l
receptor 1 (Hsu et al., 2016) indicate that an appropriate choice of
host protein, can favorably influence the course of viral infection and
disease pathogenesis. Since most of the experimental data on NS5-
interacting host proteins available to date are for DENV-2, it would
help to learn about serotype-specific differences to fine-tune drug
usage. Further investigation of NS5-host protein interactions and
their outcomes vis-à-vis viral infection and disease pathogenesis can
potentially open novel avenues for effective viral therapy and/or
clinical management.
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