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Clustered regularly interspaced short palindromic repeats (CRISPR) systems are a set of
versatile gene-editing toolkit that perform diverse revolutionary functions in various fields of
application such as agricultural practices, food industry, biotechnology, biomedicine, and
clinical research. Specially, as a novel antiviral method of choice, CRISPR/Cas9 system
has been extensively and effectively exploited to fight against human infectious viruses.
Infectious diseases including human immunodeficiency virus (HIV), hepatitis B virus (HBV),
human papillomavirus (HPV), and other viruses are still global threats with persistent
potential to probably cause pandemics. To facilitate virus removals, the CRISPR/Cas9
system has already been customized to confer new antiviral capabilities into host animals
either by modifying host genome or by directly targeting viral inherent factors in the form of
DNA. Although several limitations and difficulties still need to be conquered, this
technology holds great promises in the treatment of human viral infectious diseases. In
this review, we will first present a brief biological feature of CRISPR/Cas9 systems, which
includes a description of CRISPR/Cas9 structure and composition; thereafter, we will
focus on the investigations and applications that employ CRISPR/Cas9 system to combat
several human infectious viruses and discuss challenges and future perspectives of using
this new platform in the preclinical and clinical settings as an antiviral strategy.

Keywords: CRISPR/Cas9, delivery mode, HIV, HBV, HPV, infectious viruses, off-target effects
INTRODUCTION

Viruses are the deep cause for numerous acute and chronic diseases, some of which lead to severe
situations, like the recent coronavirus disease 2019 (COVID-19) pandemic. However, some of them
just produce minor diseases, like herpes simplex viruses. Currently, serious viral infectious illnesses
such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), and human papillomavirus
(HPV) are potentially threating the human health and global stability (Morens and Fauci, 2013).
They undoubtedly increase the socioeconomic burden on the public health systems throughout the
world (Doerflinger et al., 2017). Compared to other health-relevant infectious viruses including
herpes simplex virus, the three abovementioned viruses are more dangerous to human; once
infected, it is difficult to cure, as the success rates with medical therapy are relatively lower. The
therapy for fighting against viral infections is a challenging project, due to the overconsumption of
cellular resources by viruses and the formation of latent viral reservoirs in the hosts (White et al., 2015).
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Moreover, many human viruses are capable of generating mutant
strains to escape and even jump between different species resulting
in pandemics (Parrish et al., 2008). Therefore, a series of antiviral
strategies, such as synthesis drugs (Villa et al., 2017), herbal
medicines (Castilla et al., 2010), animal-based medicines (Costa-
Neto, 2005), antibody-based drugs (Kuprash et al., 2017), and
genetically engineered drugs (Zündorf and Dingermann, 2000),
have entered the preclinical and clinical fields one after another.
Among the strategies, clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas genome editing technique, as
a landmark discovery, has entered the field of biomedical research
and gene therapy research, which holds great promise for tackling
serious human infectious viruses.

Since 2013, the success of genome modifications via CRISPR/
Cas9 apparatus in cultured human cells (Cho et al., 2013; Jinek
et al., 2013; Mali et al., 2013) has opened up a new route for gene
therapy in biomedical research. Gene editing is a combinational
process of introducing site-specific DNA cleavages by nucleases
and wielding the natural cellular pathways to repair the DNA
breaks. Exogenous DNA double-strand breaks can be created in
the genomes by means of various genome engineering platforms
such as meganuclease (Maeder and Gersbach, 2016), zinc-finger
nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs), and CRISPR/Cas nuclease systems (Ran et al., 2013;
Hryhorowicz et al., 2017). Then, cell DNA repairs initiated by
DNA lesions are completed through the homology-directed
repair (HDR) pathway with repair templates or the
nonhomologous end joining (NHEJ) pathway without repair
templates (Mao et al., 2008). To date, CRISPR/Cas genome
editing system has been developed as a robust instrument for
targeted gene modifications in a broad range of animal species,
gut microbiota (Citorik et al., 2014; Cresci et al., 2020), and their
invading viruses (Ashfaq and Khalid, 2020), which cause changes
in relationships between host and viruses. With the expansion of
science interests in gene editing research, a new class of medicine
based on CRISPR/Cas9 editing technology is entering clinical era
for the treatment of viral infections (Hirakawa et al., 2020).

In this review, we will first outline a basic biological feature of
CRISPR/Cas9 that focused on its structure and composition;
then, we will prominently present the application investigations
that employed CRISPR/Cas9 system to combat several human
infectious viruses. Lastly, we will also discuss the known and
potential limitations of CRISPR/Cas9 gene editing platform
including off-target effects, delivery challenges, Cas9 cleavage
activity, resistance to CRISPR/Cas9, viral escape problems, and
ethical concerns.
BASIC BIOLOGICAL FEATURES OF
CRISPR/CAS9 MACHINERY

First described by Ishino et al. in 1987, CRISPR is a range of
DNA repeat sequences with uncertain origin and unknown
function in the Esherichia coli genome (Ishino et al., 1987).
The CRISPR/Cas complexes existing in the prokaryotic
organisms confer resistance to new incoming genetic elements
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
such as plasmids, phages, and viruses (Jinek et al., 2012).
According to the Cas protein contents and its amino acid
sequences, the CRISPR/Cas systems have been initially
artificially divided into three major types, namely, type I, type
II, and type III (Wiedenheft et al., 2012; Chylinski et al., 2014).
Until recently, three additional types of CRISPR/Cas system
(types IV–VI) have been identified across bacterial genomes
(Bayat et al., 2018), of which both type II and type V CRISPR/
Cas systems are the similar apparatuses that consist of only single
subunit RNA effector (Cas9 and Cas12, respectively)
(Khadempar et al., 2019). The type II CRISPR/Cas system that
is commonly known as CRISPR/Cas9 is a binary complex of
endonuclease Cas9 and two small guide RNAs (gRNAs)
[CRISPR RNA (crRNA) and transactivating CRISPR RNA
(tracrRNA) (Gebre et al., 2018)] (Saayman et al., 2015),
extensively used for RNA-programmable genome manipulating
purpose in most cases. It just needs the optimization of Cas9
expression (Wright et al., 2015) and the matched design of gRNA
to successfully function in its editing roles in cell genomes (Jiang
et al., 2015). In such type of nuclease systems, the gRNA
recognized by Cas9 proteins in a sequence independent
manner (Nishimasu et al., 2014) directs Cas9 to recognize and
cleave target specific DNA sequences with a short protospacer
adjacent motif (PAM) of 17–20 nucleotides via the Watson–
Crick base-pairing interactions (Garneau et al., 2010). The
natural CRISPR/Cas9 systems possess a variety of structural
variants and orthologues (Figure 1) (Ran et al., 2013; Lin
et al., 2019), of which Streptococcus pyogenes Cas9 (SpCas9)
and Staphylococcus aureus (SaCas9) are the two types that are
widely used for research purposes. Furthermore, Cas9 nucleases
from different bacterial species recognize different PAM
sequences for seeking targets (Lino et al., 2018), with SpCas9
using “NGG” PAM as a binding target while SaCas9 employing
“NNGRRT” PAM (Xie et al., 2018).

In the last few years, the simple-designed CRISPR/Cas9
system has greatly expanded its application scopes in life
science, and now, it is still in its rapidly developing stage. As
an effective, highly specific and robust tool, CRISPR/Cas9
machinery holds great promise for targeting infectious viruses
and removing their reservoirs to enhance human health.
APPLICATIONS OF CRISPR/CAS9 TO
SPECIFICALLY TARGET INFECTIOUS
VIRUSES

Theoretically, the CRISPR/Cas9 technology can be used not only
to target any special nucleotide sequences in human genome but
also to edit the double-stranded DNA (dsDNA) of viral invaders
in in vivo and in vitro system (Figure 2) (Soppe and Lebbink,
2017). Moreover, the technologies of Cas9 equipped with
multiple single guide RNAs (sgRNAs) have enabled the Cas9
endonucleases to target several different genomic loci in a single
cell (Ota et al., 2014; Zhou et al., 2014). Besides, the Cas9 variants
and orthologs also give the CRISPR/Cas system many more
novel functions including targeted gene mutat ion,
August 2021 | Volume 11 | Article 590989
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FIGURE 2 | The illustration showing HIV’s invasion paths in cells and the therapeutic targets of CRISPR/Cas9.
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FIGURE 1 | Diagram illustrating several structural variants and orthologues of natural Cas9 nuclease. (A) Streptococcus pyogenes Cas9; (B) Staphylococcus aureus
Cas9; (C) Neisseria meningitidis Cas9; (D) Sterptococcus thermophilus Cas9; (E) Campylobacter jejuni Cas9; (F) Francisella novicida Cas9; (G) nuclease-dead Cas9;
(H) SpCas9 nickase; (I) SpCas9 nickase.
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transcriptional activation and inhibition, epigenetic
modification, imaging of DNA loci, and single base mutation
(Cong et al., 2013; Barrangou and Doudna, 2016; Mohanraju
et al., 2016; Hu et al., 2018; Miller et al., 2020). Furthermore, viral
eradications from cells via CRISPR/Cas9 machinery could be
theoretically applicable to any DNA or RNA virus with a DNA
intermediate in its life cycle (Doudna and Charpentier, 2014;
Khalili et al., 2015; Mohammadzadeh et al., 2020). Therefore, the
CRISPR/Cas9 methodology with functional diversities holds
huge potential promise for targeting different developmental
phases of the viral life cycle and possess the ability to mediate
an effective and sustained genetic therapy against human viruses.
Herein, CRISPR/Cas9-based antiviral approach to manipulate
major human infectious viruses including HIV, HBV, HPV, and
other viruses will be discussed.

Human Immunodeficiency Virus
Acquired immunodeficiency syndrome (AIDS) caused by HIV
infection is a kind of viral infectious disease. HIV, which mainly
consists of HIV-1 and HIV-2, is an important global epidemic
that requires advanced clinical remedies. According to the new
report of United Nations Programme on HIV/AIDS (UNAIDS),
more than 36.7 million people are infected with HIV in the whole
world, and the new infection number is over 5,000 per day (Dash
et al., 2019). Compared to HIV-2, HIV-1 is characterized by
having higher transmissibility and pathogenicity in the human
host (Campbell-Yesufu and Gandhi, 2011). Active HIV-1
reproduction in vivo causes severe CD4+ T-cell depletion,
which ultimately results in the formation of the so-called
chronic disease of AIDS (Alimonti et al., 2003; Doitsh et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
2014). Great success has been achieved with the use of
antiretroviral therapy (ART) and high active antiretroviral
therapy (HAART) for the control of the deadly AIDS and even
for lifesaving (Deng et al., 2018; Lu et al., 2018). However, these
types of HIV therapeutics, designed to suppress various steps of
the viral life cycle (Arribas and Eron, 2013), are still unable to
cure the disease owing to the existence of permanent integration
of HIV-1 into the host genome. In view of these facts, researchers
have focused on the treatment of AIDS via CRISPR/Cas9-based
gene editing systems, aiming to unlock many new possibilities for
HIV-1 prevention and cure (Dampier et al., 2014). Since the first
two CRISPR/Cas9-based applications in the prevention of HIV-1
have been reported by Cho and Ebina, respectively, in 2013 (Cho
et al., 2013; Ebina et al., 2013), numerous studies that employ
CRISPR/Cas9 technology as a method for the treatment of HIV-
1/AIDS have been developed rapidly (Khalili et al., 2015). Up to
now, targeting host genes and targeting viral genomes are two
essential approaches for combating HIV-1 infection (Xiao et al.,
2019). The attractive editing targets of CRISPR/Cas9 therapy
mainly include C–C chemokine receptor 5 (CCR5) gene, C–C–C
chemokine receptor 4 (CXCR4) gene, proviral DNA-encoding
viral proteins, and the HIV 5′ and 3′ long terminal repeat (LTR)
(Figure 2) (Manjunath et al., 2013; Bialek et al., 2016; Liu et al.,
2017). Although Cas9/multiplexed-sgRNA technology has
emerged, the use of CRISPR/Cas9 molecular scissor to
precisely and jointly target two coreceptor genes, CCR5 and
CXCR4, has not yet been seen in relevant reports. Here, Table 1
lists the research studies of HIV-1 infection via CRISPR/Cas9
techniques for editing the aforementioned gene sites (Cho et al.,
2013; Ebina et al., 2013; Hu et al., 2014; Hou et al., 2015;
TABLE 1 | Applications of CRISPR/Cas9 system for gene therapy of HIV infection.

Virus
Type

Target Gene Editing System Number of gRNA Cell Model/Animal Model Delivery Methods Reference

CCR5 Cas9/gRNA Single gRNA HEK293T cells Plasmid transfection Cho et al.,
2013

HIV-1 LTR CRISPR/Cas9 Two gRNAs Jurkat cells, HeLa cells, T cells Plasmid transfection Ebina et al.,
2013

HIV-1 LTR U3 region Cas9/gRNA Single gRNA,
Multiple gRNAs

Microglial, promonocytic, and T cells Plasmid transfection Hu et al.,
2014

HIV-1 CCR5 CRISPR/Cas9 Multiple gRNAs 293T cells, TZM.bl cells, CEMss-CCR5 cells Lentiviral transduction Wang et al.,
2014

HIV-1 CCR5 (exon 4) TALENs;
CRISPR/Cas9

Multiple gRNAs iPSCs The piggyBac transposon
vectors, cotransfection

Ye et al.,
2014

HIV-1 CXCR4 CRISPR/Cas9 Multiple gRNAs Ghost-CXCR4 cells, Jurkat cells and primary
human CD4+ T cells

Lentivirus-mediated delivery Hou et al.,
2015

HIV-1 LTR U3, T and R
region

Multiplex
CRISPR/Cas9

Single gRNA,
Multiple gRNAs

HEK293T cells, hPSCs Plasmid transfection, lentiviral
transduction

Liao et al.,
2015

HIV-1 LTR, pol gene,
and tat/rev

CRISPR/Cas9 Ten gRNAs Jurkat cell lines Nucleo transfection Zhu et al.,
2015

HIV LTR U3 region saCas9/
multiplex gRNAs

Multiple gRNAs MEFs, transgenic mice, rats Lentiviral delivery Kaminski
et al., 2016

HIV-1 LTR CRISPR/Cas9 Single gRNA,
Multiple gRNAs

HEK293T cells, J.Lat FL cells, human T
lymphoblast cells

Lentiviral transduction Lebbink et al.,
2017

HIV-1 CXCR4 CRISPR/Cas9 Multiple gRNAs TZM-bl cells Lipofectamine 2000 Liu et al.,
2018

HIV-1 LTR CRISPR/Cas9 Multiple gRNAs Latent microglial cells Magnetic delivery Kaushik et al.,
2019

HIV-1 Proviral DNA CRISPR/Cas9 Two gRNAs HEK 293T cells Lentiviral transfection Binda et al.,
2020
August 2021 | Volume 11 |
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Wang et al., 2014; Ye et al., 2014; Liao et al., 2015; Zhu et al.,
2015; Kaminski et al., 2016; Soppe and Lebbink, 2017; Liu et al.,
2018; Kaushik et al., 2019; Binda et al., 2020).

At present, purging of the latent viral reservoirs is the biggest
hurdle for the effective management of HIV infection. As
observed in HIV patients who are receiving ART therapy,
latent viral reservoirs that mostly attach within resting memory
CD4+ T cells, are able to stay for as long as 60 years (Siliciano
et al., 2003).

It has been about 30 years since the discovery of HIV, but
there is still no effective anti-HIV vaccine available (Haynes,
2015). The “Berlin patient” has been generally recognized as the
only one case cured for HIV-1 for a decade (Hutter et al., 2009;
Gupta et al., 2019), and now the “London patient” would
probably be the second (Gupta et al., 2020). Stem cell
transplantation (SCT) is scientifically not a standard treatment
method for HIV/AIDS. Viewed from these two case reports, SCT
used in the two patients is originally intended for treating cancer
rather than HIV-1/AIDS. Fortunately, the accidental cures
indeed brings hope for the future use of personalized gene
therapy for AIDS.

Hepatitis B Virus
The population figure of chronic HBV carriers in the world
(350–400 million people (Seo and Yano, 2014) suggests that
hepatitis B is still an important health problem (Trépo et al.,
2014). Hepatitis B virus (HBV), of the family Hepadnaviridae
(Locarnini et al., 2013), is a hepatotropic DNA virus that
replicates by reverse transcription in host hepatocytes at the
stage of RNA intermediates and can lead to relatively high
frequent occurrences of liver cirrhosis and liver cancer in
chronic HBV infectors (Lee, 1997; El-Serag, 2012).
Taxonomically, eight genotypes (A–H) of the HBV genome
have been identified, in which over 8% of the nucleotides
differences are present between any two (Sunbul, 2014). Given
that the chances of HBV-infected persons acquiring sustained
viral response (SVR) or cure are small, novel and more effective
regimens against HBV need to be develop (Nassal, 2015). The
rapid growth of the CRISPR/Cas9 technology provides
opportunities for new approaches in the prevention and
treatment of HBV infectious diseases. As we know, the
persistence of covalently closed cyclic DNA (cccDNA) of HBV
is the major obstacle hindering the eradication of chronic
hepatitis B (CHB) under current antiviral treatments such as
nucleoside analogues (NAs) and interferon-alpha (IFN-a)
(Emery and Feld, 2017). So far, gene therapies have become
the promising potential treatment for HBV infections especially
in targeting of cccDNA effectively and hold high promise for
entering clinical applications after overcoming some technical
barriers (Maepa et al., 2015; Bloom et al., 2018). Suppression of
HBV infection in preclinical applications through gene editing
platform ZFNs or TALENs have been reported by two research
groups independently (Weber et al., 2014; Dreyer et al., 2016). In
2014, the ground-breaking work to use CRISPR/Cas9 system in
countering HBV infection in vitro and in vivo was first
investigated by Lin et al. (2014). Thereafter, several studies
have utilized designed Cas9/sgRNA (or Cas9/multiplex gRNA)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
combinations to edit only one locus (which is usually in the
conserved region of HBV genome) for inhibiting the viral
replication and production successfully (Dong et al., 2015;
Karimova et al., 2015; Liu et al., 2015; Seeger and Sohn, 2016;
Zhu et al., 2016; Li et al., 2017; Scott et al., 2017; Schiwon et al.,
2018; Kostyusheva. et al., 2019b). In order to enhance the silence
effects for targeted genes, multiple research teams have worked
on the applications of CRISPR/Cas9 for the simultaneous
targeting and cleavage of several functional loci [e.g., surface
antigen region, X gene, reverse transcriptase (RT) gene, and
episomal cccDNA] in HBV genomes via cell cultures or mouse
models (Figure 3) (Seeger and Sohn, 2014; Kennedy et al., 2015;
Ramanan et al., 2015; Wang et al., 2015; Zhen et al., 2015;
Sakuma et al., 2016). In addition to the CRISPR/Cas9 system
itself, several other studies associated with the combination of
CRISPR/Cas9 and other methods (e.g., different molecules or
inhibitory systems) have also been developed for the purpose of
eradicating HBV genomes (Wang et al., 2017; Zheng et al., 2017;
Kostyusheva et al., 2019a).

Interestingly, a Cas9 variant called dead Cas9 (dCas9) has also
been demonstrated to inhibit replication of HBV without
dissection of HBV genome (Kurihara et al., 2017). It is
noteworthy that one study was conducted recently to
investigate a potent inhibitor of NHEJ named “NU7026,”
which prevented the degradation of cccDNA mediated
cleavages by CRISPR/Cas9 (Kostyushev et al., 2019). This
study provides a verification methodology for the activity of
CRISPR/Cas9 in destroying HBV genome.

Similarly to ZFNs and TALENs, there also exists a concern of
viral escape mutants when there is therapeutic application of
CRISPR/Cas9 systems in HBV-infected cells (Schinazi et al.,
2018); despite of all these, nucleic acid editing tools could
generate desired mutations on the target DNA (Pattanayak
et al., 2013).

In summary, these artificial models (cell models or animal
models) are only the simulations of persistent HBV infection in
human hepatocytes and do not completely represent the actual
HBV infection in vivo. These related studies do highlight the
potentials of cccDNA disruption by endonuclease Cas9 protein
in in vitro cells and in vivo mouse models. Nevertheless,
additional studies are needed to ameliorate the CRISPR/Cas9
system so as to further destroy viral reproduction in vivo and to
eradicate multiple HBV cccDNA copies residing in infected
hepatocytes (Figure 3).

Human Papilloma Virus
HPVs are small double-stranded DNA viruses belonging to the
Papovaviridae family, with approximately 150 identified types
already described (Nguyen et al., 2014; McBride, 2017). The HPV
genome is roughly 8 kbp in length, encodes 9 or 10 open reading
frames (ORFs) and includes eight early viral regulatory proteins
(E1−E8) and two late capsid proteins (L1 and L2) (Ebrahimi
et al., 2019). Since HPVs present epithelia tissue tropism
(Harden and Munger, 2017), sexual transmission (Ryndock
and Meyers, 2014), and oncogenic property (Moens, 2018),
their important status between human diseases and public
health must be emphasized. Continued high-risk type HPV
August 2021 | Volume 11 | Article 590989
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(e.g., HPV-16 and HPV-18) infection is highly associated with
the development of cervical cancers in women (Gupta and
Mania-Pramanik, 2019). HPV can also initiate other kinds of
anogenital cancer, head and neck cancers, and genital warts in
men and women (Chen et al., 2018). Currently, there is no
clinical cure for HPV infection that can achieve a satisfactory
effect due to the ability of the virus to reduce their activity in a
host cell to circumvent a host immune surveillance, which makes
it extremely difficult to remove a viral genome from an infected
host cell in a latency state (Lee, 2019). Based on the existing
literatures, HPV-driven tumor formations have been mostly
attributed to the HPV E6 and E7 oncoproteins, whose
corresponding genes are regarded as two prime therapeutic
targets in gene therapy (Moody and Laimins, 2010; Hoppe-
Seyler et al., 2018). Theoretically, HPV E6 and E7 genes serve
the function of suppressing cellular tumor suppressors p53 and
retinoblastoma protein (pRB), respectively (Kennedy and Cullen,
2017). Therefore, overexpression of E6 or E7 induced by HPVs
can cause malignant transformation of human cells with high
probability through the activation of cellular oncogenes (e.g., ras
or fos) (McLaughlin-Drubin and Munger, 2009).

There is still an urgent need to develop novel effective
therapies for HPV-associated carcinogenesis, although many
progresses have been made in different treatments for HPV.
Now, the technology of CRISPR/Cas9-based gene therapy for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
HPV infection has come into being in recent years. So far, several
articles have reported anti-HPV applications of CRISPR/Cas9
system for the purpose of disruption of the HPV genome (Hu
et al., 2014; Kennedy et al., 2014; Yu et al., 2014; Zhen et al., 2014;
Liu et al., 2016; Yu et al., 2017; Cheng et al., 2018; Hsu et al., 2018;
Lao et al., 2018; Jubair et al., 2019; Yoshiba et al., 2019; Gao et al.,
2020; Inturi and Jemth, 2021; Zhen et al., 2016; Zhen et al., 2020)
(Table 2). Based on the investigations, the CRISPR/Cas9
approach has much development potential to act as an
effective therapy for HPV-associated diseases in clinical
settings. Herein, several editing targets of CRISPR/Cas
(CRISPR/Cas9) in HPV life cycle are shown in Figure 4. Both
for HBV and HPV, CRISPR technology is a novel method for the
treatment of such viral diseases because it can fill in the technical
gaps in drug therapy when a vaccine has already existed.
However, CRISPR-associated technologies still need to be
developed to improve the therapeutic effects.
OBSTACLES OF CRISPR/CAS9 IN THE
TREATMENT OF HUMAN INFECTIOUS
VIRUSES

CRISPR/Cas9 system holds considerable potential for
therapeutic applications of human infectious viruses in vivo,
FIGURE 3 | The life cycle of HBV with editing targets. HBV binds to surface receptors and enters the hepatocytes. Virus particle complete its process of growth and
proliferation in host’s hepatocytes. CRISPR/Cas (or CRISPR/Cas9)-mediated disruption of the HBV life cycle can target several loci, which is necessary for the HBV
life cycle.
August 2021 | Volume 11 | Article 590989
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FIGURE 4 | The illustration shows the potential editing and therapeutic targets in HPV life cycle by the use of CRISPR/Cas and CRISPR/Cas9.
TABLE 2 | List of CRISPR/Cas9-based antiviral studies on targeting HPV.

Gene Editing
Platform

Target Virus Delivery Pattern gRNA
Target

Cell or Animal Reference

CRISPR/Cas9
system

HPV-16 Transfection E7 SiHa, Caski, C33A, and HEK293 cells Hu et al., 2014

CRISPR/Cas9
system

HPV-18 LV transduction E6, E7 HeLa cells, SiHa cells, 293 T cells Kennedy et al.,
2014

CRISPR/Cas9
system

HPV-16 Plasmids transfection E6 SiHa and CaSki cells Yu et al., 2014

CRISPR/Cas9
system

HPV-16 Plasmids and lipofectamine
transfection

E6, E7 SiHa and C33-A cells, BALB/C nude mice Zhen et al., 2014

CRISPR/Cas9
system

HPV-6, HPV-11 Plasmids transfection E7 Human keratinocytes Liu et al., 2016

CRISPR/Cas9
system

HPV-16 Plasmids and lipofectamine
transfection

E6, E7 Siha and C33-A cells Zhen et al., 2016

CRISPR/Cas9
system

HPV-18 Plasmids transfection E6, E7 HeLa cells Yu et al., 2017

CRISPR/SaCas9
system

HPV-16 AAV delivery E6, E7 293 T cells Hsu et al., 2018

CRISPR/hCas9
system

HPV Pseudotype
Virus

Plasmids transfection E6 SiHa cells, 293FT cells Cheng et al., 2018

CRISPR/SpCas9
system

HPV-18 Micelle delivery; lipofectamine E7 Hela cells Lao et al., 2018

WT Cas9, FokI-
dCas9

HPV-16, HPV-18 Liposomes E6, E7 Mouse model, CasKi cells, HeLa cells, HEK293T,
Jurkat cells

Jubair et al., 2019

CRISPR/Cas9
system

HPV-18 Plasmids; AAV delivery E6 HeLa, HCS-2, and SKG-I cell lines Yoshiba et al.,
2019

CRISPR/Cas9
system

HPV-16 Plasmids transfection E7 SiHa cells, Hela cells, nude mice Gao et al., 2020

CRISPR/Cas9
system

HPV-18 Plasmids transfection E6, E7 HeLa (CCL-2) cell lines Inturi and Jemth,
2020

CRISPR/Cas9
system

HPV-16 Lipofectamine delivery E6/E7 SiHa cell Zhen et al., 2020
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but certain questions have to be addressed before its use in
clinical aspects. Generally, the off-target effect is the major
concern associated with the use of this system. Other crucial
challenges including delivery methods and strategies, Cas9
cleavage activity, resistance to Cas9/sgRNA system, viral escape
problem, and ethical concerns still lie ahead (Figure 5).

CRISPR/Cas9 Off-Target Effects
The CRISPR/Cas9 off-target concerns pose challenges for
research advancements and therapeutic utilizations. Therefore,
researchers have developed methods such as advanced versions
or Cas9 nickases to minimize off-target activities (Bellizzi et al.,
2019) and cytotoxicity (Wang et al., 2016). The two parts of
CRISPR/Cas9 system, the optimizations of Cas9 proteins or the
upgradations of gRNA, have equally contributed to the
reductions in CRISPR/Cas9 off-target effects. On the one hand,
many investigations have focused on reducing the unwanted off-
target activities of CRISPR/Cas9 system (Eid andMahfouz, 2016)
through the amelioration of Cas9 nucleases. Recently, two
versions of Cas9 variants termed “eSpCas9” (Slaymaker et al.,
2016) and “SpCas9-HF1” (Kleinstiver et al., 2016) significantly
optimize the CRISPR/Cas9 genome-editing toolbox with their
own higher specificity and exceptional precision. On the other
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
hand, it is very important to design special and compatible gRNA
for the CRISPR/Cas9 systems. Nowadays, multiple website
platforms are available for the optimal design of CRISPR
gRNA (e.g., https://www.genscript.com/gRNA-design-tool.html
and https://www.atum.bio/eCommerce/cas9/input). Besides,
there are also other approaches whereby incorporation of
chemical modifications into its structure improve gRNA
stability and activity in the cell. Additionally, most
CRISPR/Cas spacers that exist in bacterium naturally
correspond to foreign nucleic acids (Hille et al., 2018), which
precisely confer the bacterial immunity, but when this system
works in animal cells, artificially designed CRISPR/Cas9 systems
usually neglect this “implied condition” that can result in off-
target effects, cytotoxicity, and cellular resistances. For example,
Kim et al. reported that cytotoxicity caused by the tailored
CRISPR gRNAs (5′-ppp gRNAs) triggers RNA-mediated
innate immune responses in human and murine cells (Kim
et al., 2018).

Delivery Modalities of CRISPR/Cas9
Delivery mode perhaps remains the biggest bottleneck to gene
therapy. To enhance gene editing efficiency, in addition to the
improvements of CRISPR/Cas9 reagents itself, another key factor
FIGURE 5 | The schematic diagram showing several challenges of CRISPR/Cas9 in the treatment of human infectious viruses.
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is the delivery methods of this gene editing system. More
importantly, delivery methods that maximize efficacy and
minimize immune responses still need to be developed
(Schinazi et al., 2018). For CRISPR/Cas system, Cas9 nucleases
can be delivered to gain access to the genome of the target cells in
the form of DNA, mRNA, or protein, while the gRNA could be
transferred in the form of DNA or RNA (Yin et al., 2017).
Therefore, Cas9 protein and gRNA can be transported either
together or separately, which provides much more options for
choosing the vehicles. For example, a single adeno-associated
virus (AAV) vector (AAV’s packaging capacity is ∼4.8 kb)
usually cannot accommodate SpCas9 gene (4.1 kb) and its
gRNA sequence. The solution to this problem is to use a small
SaCas9 (3.2 kb) to take the place of SpCas9 or use two vehicles to
separately transport SpCas9 gene and gRNA sequence.

The delivery patterns for CRISPR/Cas9 system are generally
categorized as viral vectors or non-viral vectors, both of which
have their own unique advantages and limitations (Nelson and
Gersbach, 2016). Viral-based vehicles commonly include
adenovirus, lentivirus, AAV, and retrovirus (Tong et al., 2019).
Other viral carriers less in use for delivery still include herpes
simplex virus and poxvirus (Jin et al., 2014). Non-viral delivery
modes can be basically divided into two groups: physical
methods [e.g., electroporation, microinjection, sonoporation,
and hydrodynamic delivery (Mellott et al., 2013; Ibraheem
et al., 2014; Fajrial et al., 2020)] and chemical approaches [e.g.,
lipid particles (Yin et al., 2014), polymer nanoparticles (Kirtane
and Panyam, 2013), gold nanoparticles (Ding et al., 2014), and
cell-penetrating peptides (CPPs) (Farkhani et al., 2014)]. Taken
together, the proper choice of delivery tool is essential for the
safety of gene therapy using CRISPR/Cas9 platform.

Cas9 Cleavage Activity
To date, a growing series of wild-type and engineering Cas9
homologues and other CRISPR/Cas systems are expanding the
gene-edited toolkits. However, Cas9 proteins with different
species have distinct characteristics such as activity; scientists
need to select the appropriate nucleases according to the research
requirements and study protocols. For example, the SpCas9
enzyme is most commonly used for genome editing and
genetic manipulation in eukaryotic cells while using CRISPR/
Cas partly because of its high activity and comparative broad
PAM compatibilities. Kim et al. listed 13 types of SpCas9 variants
[wild-type SpCas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9,
evoCas9, xCas9, Sniper-Cas9, and SpCas9-NG and the VQR,
VRER, VRQR, VRQR-HF1, and QQR1 variants] for choice and
made a comparison based on the activities, specificities, and
PAM compatibilities (Choi et al., 2019). Eventually, the
experimental results recorded on the overall activity could be
ranked as SpCas9 ≥ Sniper-Cas9 > eSpCas9 (1.1) > SpCas9-HF1
> HypaCas9 ≈ xCas9 >> evoCas9 (Kim et al., 2020). Another
example is that, when applying AAV as delivery vectors, small-
volume genome-editing proteins with equal cleavage activity
such as S. aureus Cas9 (SaCas9) or Campylobacter jejuni Cas9
(CjCas9), and other newly identified CRISPR/Cas enzymes may
circumvent the limitation of packaging capacity (Doudna, 2020).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
Resistance to CRISPR/Cas9 (Cas9
Immunogenicity)
Curbing off-target activity has contributed immensely to the area
of CRISPR/Cas gene therapeutics (Dolgin, 2020). Once the
CRISPR/Cas9 system has been delivered into the target cell
and being activated, there are limited means to lower or shut
off its activity (Pawluk et al., 2016), which could raise new
practical challenges and safety concerns to researchers. For
example, excessive or prolonged Cas9 activity can exacerbate
off-target effects. At present, some wild-typed Cas9-specific
“anti-CRISPRs (Acr)” provide biotechnological tools that can
be used to adjust the activities of CRISPR/Cas9 for gene
engineering (Rauch et al., 2017). Recently, more than 50 anti-
CRISPR protein families have been characterized, which provide
various kinds of applications in genome engineering such as in
posttranslational switches for control of Cas9 or dCas9 activity
(Wiegand et al., 2020).

The Problem of Viral Escape
The problem of viral escape has been a serious source of concern
in the field of virus research. Many viruses possess the capability
to escape or inhibit the effect of pharmaceuticals (e.g., interferon)
in their evolution. Specifically in CRISPR/Cas9 applications,
viruses can escape from these suppressions through the
acquisitions of specific mutations at the target site that prevent
gRNA binding without hindering viral replications (Binda et al.,
2020). Using the HIV-1 as example, as far as we know, the RNA
interference (RNAi) technology for the treatment of HIV-1 has
already reached the clinical stage (Bobbin et al., 2015; Swamy
et al., 2016). As observed with RNAi techniques previously,
CRISPR/Cas9-based therapy of HIV-1 could also generate the
self-replicated viral mutants (White et al., 2016). Recent studies
reported that PAM sequence mutations have been shown to
allow phage to escape CRISPR/Cas system (Bikard and
Barrangou, 2017; Strich and Chertow, 2019). However, viral
escape is not insurmountable if an appropriate gene editing
treatment measures are taken.

Ethical Issues
CRISPR/Cas9 technology is still in infancy stage, and many
technical problems remain to be solved. However, the
utilizations of CRISPR/Cas9 systems toward clinical
applications will be confronted with some ethical questions.
First, the misuse of this novel technology could likely create
certain ethical controversies. Second, the safety induced by
unwanted gene editing of CRISPR/Cas9 should be carefully
improved and evaluated while clinically applying this system.
However, in UK, scientists have gained license to edit human
embryos with the use of CRISPR/Cas9 technology (Callaway,
2016), which potentially shows the technical strengths of this
system in prospective clinical applications. Nevertheless,
CRISPR/Cas9-associated clinics in the future must be strictly
supervised with newly established regulations (Shinwari et al.,
2017) so as to boost CRISPR gene editing technology to really
serve humans.
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Given the rapid progression of gene editing technologies,
CRISPR/Cas9 is revolutionizing our ability to manipulate human
genes and providing immense potentials and challenges for
cl inical tr ials . Hence, CRISPR/Cas9-based genomic
methodologies will undoubtedly improve human life.

Howerver, CRISPR babies are currently not ready yet. As we
know, significant progress has been made recently in CRISPR
technology and has promoted the rapid development of
biomedicine, agriculture, and animal husbandry. However, the
off-target effect cannot be completely eradicated, the accuracy is
not high enough, and the risks to growth are also unclear. At
present, there is a worldwide consensus that in vitro gene editing
research on embryonic development stage or germ line cells is
allowed; CRISPR babies are expressly forbidden.
CONCLUSION

Virus–host interaction is a fluctuant and persistent process
within the infectious life cycle. The existence of several tricky
viruses has led to the continuous upgrade of anti-virus
approaches. CRISPR/Cas-based genetic targeting technology
represents an alternative solution for treatment applications of
virus-related diseases in the future. To date, CRISPR/Cas9
technology has already demonstrated many potential
applications to human illnesses including genetic disorders,
tumors , and infectious viruses . In addit ion to the
aforementioned viruses, this technology is becoming
increasingly powerful and have already been extensively
applied into study on preventing and combating additional
human viruses including Epstein–Barr virus (EBV), hepatitis C
viruses (HCV), Kaposi sarcoma virus (KSHV), JC virus (JCV),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
and Herpes simplex virus (HSV). Moreover, CRISPR/Cas9
technology has been utilized not only in the treatment of viral
infections but also in the investigations of cellular mechanisms of
viral carcinogenesis.

In summary, continued efforts on developing CRISPR/Cas
systems will expand the toolbox, which enables us to acquire a
greater understanding of complex biological processes associated
with hosts and viruses. However, the future use of CRISPR/Cas9
for gene therapies need substantial improvements and
perfections before clinical applications.
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