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Bacterial small RNAs (sRNAs) are critical post-transcriptional regulators that exert broad
effects on cell physiology. One class of sRNAs, referred to as trans-acting sRNAs, base-
pairs with mRNAs to cause changes in their stability or translation. Another class of sRNAs
sequesters RNA-binding proteins that in turn modulate mRNA expression. RNA
chaperones play key roles in these regulatory events by promoting base-pairing of
sRNAs to mRNAs, increasing the stability of sRNAs, inducing conformational changes
on mRNA targets upon binding, or by titrating sRNAs away from their primary targets. In
pathogenic bacteria, sRNAs and their chaperones exert broad impacts on both cell
physiology and virulence, highlighting the central role of these systems in pathogenesis.
This review provides an overview of the growing number and roles of these chaperone
proteins in sRNA regulation, highlighting how these proteins contribute to
bacterial pathogenesis.
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INTRODUCTION

The World Health Organization (WHO) published on its website in 2017 that infectious diseases
are among the leading causes of death in the world. The ultimate challenge to manage the impact of
infectious diseases is to better understand processes guiding microbial pathogenesis. An organism’s
ability to respond to environmental stresses is critical for survival, and bacterial pathogens have long
been known to mediate gene expression changes in response to host-specific cues including
antibiotics, carbon source, temperature, pH, reactive oxygen species, and metal nutrients.
Through accurate and timely regulation of virulence gene expression, bacteria not only efficiently
evade the host immune system, but also save energy and avoid the potential toxicity of
excess nutrients.

Small bacterial regulatory RNAs (sRNAs) have gained immense appreciation over the past two
decades for their roles in mediating post-transcriptional gene regulation of numerous physiological
and virulence-related processes in bacteria by synchronizing complex networks of stress adaptation
[recently reviewed by (Chakravarty and Masse, 2019)]. In many cases, sRNAs are dependent upon
so-called “RNA chaperones”, which function by binding to secondary and tertiary structures of
RNA molecules and inducing structural changes that allow for their function [recently reviewed by
(Quendera et al., 2020)]. The purpose of this review is to highlight the increasingly appreciated role
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that RNA chaperones play in mediating sRNA-dependent
regulation of virulence gene expression in bacterial pathogens.
We begin by providing an overview of bacterial sRNA gene
regulation mechanisms, including how RNA binding proteins
contribute to these regulatory pathways. We next highlight four
major physiological processes – outer membrane transport,
biofilm formation, iron homeostasis, and quorum sensing –
that are affected by Hfq-dependent sRNAs, and we discuss
how Hfq regulation of individual processes may contribute to
successful infection. Lastly, we discuss the growing appreciation
of additional RNA chaperones, and we pose questions for the
field to consider to better understand the impact of sRNA
regulation on bacterial pathogenesis.
BACTERIAL sRNA-MEDIATED GENE
REGULATION

Bacterial sRNAs play a major role in post-transcriptional
regulation of bacterial gene expression, and RNA chaperones
are critical for the function of many of these sRNAs. Work in
numerous model organisms has shed light on the biochemical
and molecular bases of both how sRNAs function and the role of
RNA chaperones in their activity. In general, sRNAs have been
classified as either trans-acting sRNAs, which directly pair with
mRNAs, or as Csr/Rsm-type sRNAs, which sequester post-
transcriptional regulatory proteins away from target mRNAs.
Below we provide an overview of each type of sRNA and how
RNA chaperones affect their function. We also discuss the Crc
protein, which was originally thought to function as an RNA-
binding protein that could be sequestered by the CrcZ sRNA, but
it is now understood to work in concert with Hfq to modulate
post-transcriptional regulation.

Trans-Acting sRNAs
Trans-acting bacterial sRNAs function via limited base pairing
with mRNA targets, resulting in either negative or positive effects
on gene expression. Negative regulation often occurs when
sRNA pairing occurs at or near the Shine Dalgarno (SD) and/
or translational start site of the mRNA, precluding access to the
ribosome and leading to increased susceptibility to RNases (Aiba,
2007). Trans-acting sRNAs can also exert positive effects on
mRNA stability and translation, most often by inducing
conformational changes in the untranslated region to promote
ribosomal binding (Prevost et al., 2007; Soper et al., 2010).
Several proteins contribute to bacterial sRNA stability and
function, most notably the Hfq RNA-binding protein encoded
by many bacterial species (Brown and Elliott, 1996; Christiansen
et al., 2004; Arluison et al., 2007; Argaman et al., 2012). However,
not all sRNAs rely on Hfq for their stability or function (Bohn
et al., 2007; Deng et al., 2012), and some sRNA-expressing
bacteria do not encode an obvious hfq homolog. Recent work
shows that a second RNA chaperone, ProQ, contributes to
regulation by a distinct class of sRNAs in several Gram-
negative bacteria, including E. coli, Salmonella, and Legionella
(Olejniczak and Storz, 2017). While these two types of RNA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
chaperones mediate a range of sRNA regulation in Gram-
negative bacteria, they are not required for the function of
many other sRNAs. Moreover, while Hfq is encoded by many
Gram-positive bacteria, sRNA regulation in these organisms
largely occurs independently of Hfq. Further work is needed to
determine if Hfq- and ProQ-independent sRNAs function absent
a protein chaperone, or if novel classes of RNA chaperones
modulate the activity of these sRNAs.

Csr/Rsm-Type sRNAs
Bacterial sRNAs can also regulate gene expression by
sequestering RNA-binding proteins, which is exemplified by
the CsrA/RsmA family. In E. coli, CsrA (carbon storage
regulatory protein) regulates central carbon flux as well as
biofilm formation and motility (Weilbacher et al., 2003). CsrA
alters gene expression by binding to GGA motifs within loops of
the mRNA structures, thereby changing the stability of the
mRNA targets and affecting translation initiation (Babitzke
and Romeo, 2007). CsrA can alternatively be sequestered by
the sRNAs CsrB and CsrC, which bind to CsrA with high affinity
(Babitzke and Romeo, 2007; Storz et al., 2011). CsrB contains 22
CsrA binding sites (GGA motifs) and is capable of sequestering
about 9 CsrA dimers, while the CsrC sRNA contains only 9 CsrA
binding motifs (Weilbacher et al., 2003). The levels of the Csr
sRNAs are controlled in part by the CsrD protein, which targets
the sRNAs for degradation, while Csr sRNA stability is not
affected by either the CsrA or Hfq proteins [reviewed by
(Vakulskas et al., 2015)]. The Csr system has been identified in
numerous bacterial species, although the number of Csr sRNAs
and CsrA-like proteins expressed by different species varies
dramatically (Lenz et al., 2005; Vakulskas et al., 2015).

Pseudomonas species and the plant pathogen Erwinia
caratovora possess homologs of the Csr system that were
originally named Rsm (for repressor of secondary metabolites).
Similar to the Csr systems, Rsm systems are comprised of one or
more sRNAs (RsmX, RsmY, RsmZ, RsmV) and one or more
CsrA-like proteins (RsmA, RsmB, RsmF, RsmE, RsmW) (Storz
et al., 2011; Romero et al., 2016; Janssen et al., 2018). Studies in
E. caratovora initially described and named the RsmA protein for
its functions as a global regulator of extracellular enzymes,
quorum sensing, and pathogenesis (Chatterjee et al., 1995;
Babitzke and Romeo, 2007). A single RsmB sRNA in this
species was revealed to contain multiple RsmA GGA binding
motifs on its stem loops, and its ability to titrate RsmA from
target genes using these GGAmotifs was established. This system
functions similarly in Pseudomonas fluorescens and
Pseudomonas aeruginosa, but with multiple Rsm sRNAs and
RsmA-type proteins (Storz et al., 2011; Romero et al., 2016;
Janssen et al., 2018). The Rsm systems in the Pseudomonads lack
a CsrD-like protein to control stability of the sRNAs. However,
in both P. fluorescens and E. caratovora, the RsmA-type proteins
protect the Rsm sRNAs from cellular nucleases (Chatterjee et al.,
2002; Reimmann et al., 2005), and in P. aeruginosa Hfq
contributes to the stability of RsmY (Sonnleitner et al., 2006).
The difference in how the stabilities of the Csr and Rsm sRNAs
are modulated is likely reflective of the different physiologies of
the organisms by which they are produced. Degradation of the
July 2021 | Volume 11 | Article 604511
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Csr sRNAs by CsrD is responsive to the glucose-specific
phosphotransferase system (PTS), which senses the presence of
glucose to mediate carbon catabolite repression (CCR) in enteric
bacteria (Leng et al., 2016). The molecular mechanisms guiding
CCR in the Pseudomonads are vastly different than that of the
enterics, in large part due to the preference of the Pseudomonads
for organic acids over sugars (Rojo, 2010). Thus, regulatory
control of the Csr and Rsm systems likely evolved in response
to specific carbon sources that were available in their
respective habitats.

Hfq-Crc Regulation of Catabolite
Repression
CCR in the Pseudomonads is mediated at the post-
transcriptional level through the catabolite repression control
(Crc) protein and the CrcZ sRNA (Moreno et al., 2007). The
original model for Crc function posited that Crc bound mRNAs
involved in carbon utilization and modulated their translation
and/or stability (Moreno et al., 2007). However, more recent
studies have shown that Crc has no RNA binding activity
(Milojevic et al., 2013) and suggest that Crc instead promotes
binding of Hfq to target mRNAs (Sonnleitner and Blasi, 2014;
Moreno et al., 2015; Pei et al., 2019). Activity of the Crc-Hfq
complex is countered by the CrcZ sRNA, whose expression
increases when preferred carbon sources are depleted (Nishijyo
et al., 2001). CrcZ was originally shown to have a high binding
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
affinity for Crc and was therefore thought to sequester this
protein away from mRNA targets (Elisabeth Sonnleitner and
Haas, 2009). However, with the finding that Crc itself does not
bind to RNA, this model too has been re-evaluated, with more
recent work showing that CrcZ binds to Hfq and titrates it away
from its mRNA targets (Sonnleitner and Blasi, 2014). Notably,
CrcZ can also titrate Hfq from other sRNAs, including the iron-
responsive PrrF sRNAs, to reduce their stability and activity
(Sonnleitner et al., 2017). This series of studies demonstrates the
interconnectivity of sRNA regulatory networks, a consequence of
their dependency on RNA chaperones.
IMPACTS OF HFQ ON sRNA REGULATION

The best studied sRNA chaperone protein is host factor Q (Hfq)
[reviewed by (Updegrove et al., 2016)], which was originally
identified as a required host factor for replication of the RNA
phage Qb (Franze de Fernandez et al., 1968). Hfq’s role in sRNA
regulation has been primarily described in E. coli, where Hfq can
bind and stabilize sRNAs, mRNAs, or sRNA-mRNA complexes
(Figure 1A) (Soper et al., 2010), or can alternatively target
mRNAs and mRNA-sRNA complexes for degradation by
recruiting RNase E (Figure 1B) (Mohanty et al., 2004; Ikeda
et al., 2011). Alternatively, Hfq can alter mRNA translation
efficiency when bound to mRNA-sRNA complexes, either by
A

B D

C

FIGURE 1 | Gene regulation by sRNA and Hfq in bacteria. Hfq can protect sRNAs from ribonuclease cleavage (A) or recruit RNases to degrade of sRNA-mRNA
complexes (B). Hfq can also promote sRNA binding that precludes access of the ribosome to the Shine Dalgarno (SD) to inhibit translation (C), or promote sRNA
binding that releases inhibitory structures to increase translation (D).
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precluding ribosome access to the Shine Dalgarno (SD)
(Figure 1C) or by altering mRNA structures to increase access
to the SD (Figure 1D).

Structural Elements of Hfq-Dependent
sRNA Regulation
Hfq recognizes unstructured regions of sRNAs and/or mRNAs in a
semi-specific manner (Hopkins et al., 2011; Beisel et al., 2012; Peng
et al., 2014). The structure of all Hfq proteins crystallized to date
reveals a hexameric ring (Figure 2) (Someya et al., 2012; Horstmann
et al., 2012; Santiago-Frangos et al., 2019). U-rich regions of most E.
coli sRNAs, termed Class I sRNAs, are recognized by the proximal
face of Hfq ring, while Hfq’s distal face recognizes A-rich regions of
mRNA (Hopkins et al., 2011; Zheng et al., 2016). The lateral or
“rim” face, which bears a positive charge due to arginine and/or
lysine residues, mediates sRNA-mRNA annealing (Panja et al.,
2013). A second and smaller set of E. coli sRNAs, termed Class II,
bind to both the proximal and distal faces of Hfq, while the mRNA
interacts with the Hfq rim (Zhang et al., 2013; Schu et al., 2015).
This latter Class II of sRNAs appears to be more stable, due at least
in part to A-rich motifs that allow for binding to Hfq’s distal face
(Lapouge et al., 2008; Schu et al., 2015). The stability and binding
mode of Class II sRNAs may also allow these molecules to more
efficiently compete with Hfq (Kwiatkowska et al., 2018).

Hfq Increases sRNA-mRNA
Annealing Rates
Studies of Hfq established that the chaperone protein promotes
annealing between some sRNAs-mRNA pairs, in many but not all
bacterial species (Soper and Woodson, 2008; Peng et al., 2014). In
E. coli, Hfq uses a positively-charged arginine patch on its lateral
face to initiate the formation sRNA-mRNA pair (Panja et al., 2013;
Zheng et al., 2016). Therefore, Hfq was suggested to facilitate base
pairing between sRNA and mRNA by increasing annealing rates
(Fender et al., 2010; Hopkins et al., 2011; Hwang et al., 2011). One
well-studied example in E. coli is the ability of Hfq to accelerate the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
rate of annealing between DsrA sRNA and the rpoSmRNA. Either
the DsrA sRNA or rpoS mRNA could bind to Hfq to initiate the
formation of the ternary complex; the interaction of Hfq with
either one of these RNAs induced an unwinding of the initiating
RNA’s structure to facilitate base pairing with the other RNA
(Fender et al., 2010; Hopkins et al., 2011; Hwang et al., 2011).
Another set of studies demonstrated that instead of
simultaneously binding, OmrA/OmrB sRNAs and their dcgM
mRNA target to facilitate annealing, E. coli Hfq binds the dcgM
mRNA and promotes unfolding of two stem-loops that inhibit the
sRNAs access to the ribosome binding site (Hoekzema et al.,
2019). Hfq thus destabilizes the mRNA secondary structure to
allow access to the sRNA, which in turn blocks the ribosome-
binding site and therefore ablates translation.

Mechanistic studies of Hfq’s contribution to sRNA regulation
in species other than E. coli are more limited. Recent studies
using fluorescent molecular beacon RNAs showed differential
annealing activities of the Hfq proteins in P. aeruginosa and E.
coli when compared with those encoded by Gram-positive
bacteria. E. coli Hfq, which possesses three arginine residues on
its rim (R16, R17, R19), promoted annealing of the fluorescent
beacon at a rate 100-fold higher than without Hfq present, while
P. aeruginosa Hfq, which possesses a single R->K substitution
(R16, K17, R19) only increased the rate of annealing by 10-fold.
L. monocytogenes Hfq, which possesses two R->K substitutions
on its rim (R16, K17, K19) increased annealing by 3-fold, while
both B. subtilis, which contains only one arginine (R16, K17,
N19), and S. aureus, which lacks an arginine patch entirely (K16,
A17, Q19), were unable to initiate sRNA-mRNA annealing
(Zheng et al., 2016). Additional studies of P. aeruginosa Hfq
with a native sRNA-mRNA binding pair showed that Hfq
similarly increases the rate of sRNA annealing (Sonnleitner
et al., 2017; Djapgne et al., 2018). Of note, the rims of the Hfq
proteins in non-pathogenic Pseudomonas species possess three
lysine residues, suggesting a reduced ability of these Hfq proteins
to facilitate sRNA-mRNA annealing. Thus, it remains unclear
how broadly conserved the annealing function of Hfq is,
FIGURE 2 | Crystal structure of the P. aeruginosa Hfq protein adapted from 1U1S.PDB: its proximal face, its distal face, and its rim/lateral face indicated. Also
indicated in yellow (R16), orange (K16), and magenta (R19) are the acidic amino acid residues on the rim (Nikulin et al., 2005).
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underlining how much of this protein’s function is independent
of sRNA regulation [reviewed in (Dos Santos et al., 2019)].
IMPACTS OF Hfq-sRNA REGULATION
ON BACTERIAL CELL PHYSIOLOGY
AND VIRULENCE

To cause infection, bacterial pathogens must be able to effectively
colonize their host, acquire nutrients that are often sequestered,
and evade the activities of the immune system. The timing of
expression of genes that mediate these functions is directed by a
complex regulatory cascade that responds to rapidly changing
environmental cues. Bacterial sRNAs are critical regulators of
these pathways, as they allow for bacteria to rapidly respond to
changes in the environment, including those that signal
nutritional requirements and evasion of host immune factors.
Hfq similarly plays a critical role in many of these processes, in
some cases through its modulation of sRNA function. However,
due to Hfq’s pleiotropic roles in regulating gene expression, via
both sRNA-dependent and -independent mechanisms, teasing
out these functions has proven to be an immensely complicated
field of study. Below we highlight four specific virulence-related
processes that are responsive to both Hfq and sRNA regulation,
and we describe the current knowledge of how these Hfq-
dependent processes intersect to affect pathogenesis.

Hfq-sRNA Regulation of Iron Homeostasis
Iron is a critical cofactor for nearly all-living organisms, and
bacterial sRNAs are well-characterized as major mediators of
bacterial iron homeostasis (Oglesby-Sherrouse and Murphy,
2013). The iron responsive RyhB sRNA was first identified in
E. coli, and the gene from which it was transcribed was highly
conserved amongst numerous enteric pathogens, including
pathogenic E. coli strains, and Shigella, Salmonella, Yersinia,
and Vibrio species (Masse and Gottesman, 2002). The RyhB
sRNAs from all enteric organisms that have been studied are
expressed upon iron starvation and repress the expression of
iron-containing proteins to spare iron when it is limiting, and in
pathogenic enterics RyhB has also been linked to virulence
(Davis et al., 2005; Mey et al., 2005; Oglesby et al., 2005;
Broach et al., 2012; Deng et al., 2012; Leclerc et al., 2013;
Porcheron et al., 2014). Hfq is required for RyhB stability in E.
coli K12 (Masse et al., 2003), and is similarly important for RyhB
function in many, but not all enteric pathogens. In
uropathogenic E. coli (UPEC), RyhB positively regulates
siderophore biosynthesis through the regulation of two
separate genes - shiA and iucD – and the siderophore defect
correlated with decreased colonization in a murine model of
urinary tract infection (Porcheron et al., 2014). Because of the
close relation to E. coli K12, UPEC RyhB is presumably
dependent on Hfq, though this has not been definitively
shown. Yersinia pestis and Yersinia pseudotuberculosis also
produce two RyhB homologs – RyhB1 and RyhB2 – both of
which are expressed during mammalian infection (Deng et al.,
2012). RyhB1 and RyhB2 sRNAs have distinct requirements for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Hfq, with RyhB2 showing more inherent stability in the absence
of hfq (Deng et al., 2012), thus RyhB function in Yersinia species
may be retained in the absence of Hfq. V. cholerae RyhB, which
interacts with the Hfq protein in vivo (Davis et al., 2005), also
regulates multiple virulence related phenotypes, including
motility, biofilm formation, but it is not required for intestinal
colonization in a murine model (Davis et al., 2005; Mey
et al., 2005).

Subsequent to the identification of RyhB, the iron-responsive
PrrF (Pseudomonas RNAs responsive to Fe) sRNAs, were
identified in P. aeruginosa. While the PrrF sRNAs show no
sequence homology to RyhB, they mediate many of the same
functions in promoting iron homeostasis (Wilderman et al.,
2004). The PrrF sRNAs are also required for biofilm formation
in the presence of antibiotics, and they are essential for
colonization and virulence in an acute murine lung infection
model (Reinhart et al., 2015; Reinhart et al., 2017). The PrrF
sRNAs rely on the chaperone protein Hfq interaction with at
least one of their target mRNAs, antR (Sonnleitner et al., 2017;
Djapgne et al., 2018). PrrF repression of antR spares anthranilate
for synthesis of a family of small, secreted molecules termed 2-
akyl-4(1H)-quinolones (Djapgne et al., 2018), which mediate a
variety of toxic effects against mammalian and microbial cells.
More recent work using label-free proteomics discovered that
PrrF positively affects levels of proteins for twitching motility and
T6SS (Nelson et al., 2019; Brewer et al., 2020). Thus, Hfq-
dependent PrrF regulation likely exerts pleiotropic effects on
cell physiology and virulence gene expression, making it likely
that the PrrF requirement in virulence is multifactorial.
Numerous additional orthologs of RyhB have now been
identified in both Gram-positive and Gram-negative bacterial
species, with varying dependencies on Hfq. Like PrrF, these
orthologs share little to no sequence similarities to RyhB (or
PrrF), but they exert similar effects on gene expression and iron
homeostasis (Mellin et al., 2007; Ducey et al., 2009; Metruccio
et al., 2009; Jackson et al., 2013; Santana et al., 2014; Pannekoek
et al., 2017; Sass and Coenye, 2020). However, the specific
impacts of iron-responsive sRNAs and Hfq on virulence of
these organisms has yet to be fully elucidated.
Hfq-sRNA Regulation of Outer Membrane
Proteins in Enteric Bacteria
Gram-negative bacteria contain numerous outer membranes
proteins (OMPs) that are essential for bacterial nutrient and
solute transport and therefore are critical to bacterial survival.
OMPs serve to scavenge nutrients from the environment, and in
pathogenic bacteria further function to evade the host defense
mechanisms as well as mediate cell adhesion and signaling
(Rollauer et al., 2015). The appropriate regulation of OMP
biogenesis is critical for survival, and dysregulation of OMPs
can lead to membrane perturbations that are sensed by the sigma
E (sE) regulatory protein (Ding et al., 2004; Figueroa-Bossi et al.,
2006; Vogt and Raivio, 2014). Amongst the sE regulon in enteric
bacteria are multiple Hfq-dependent sRNAs, including MicA,
RybB, CyaR, and MicL (Johansen et al., 2006; Johansen et al.,
2008; Guo et al., 2014). In response to envelope stress these
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sRNAs bind to and destabilize mRNAs encoding OMPs
including LamB and OmpA [by the MicA sRNA (Bossi and
Figueroa-Bossi, 2007)], OmpX [by the CyaR sRNA (Papenfort
et al., 2008)], OmpC and OmpD [by the RybB sRNA (Johansen
et al., 2006; Vogel and Papenfort, 2006)], and Lpp [by the MicL
sRNA (Guo et al., 2014)]. Hfq therefore plays an integral role in
membrane composition in enteric pathogens, and deletion of hfq
in multiple enteric bacteria leads to membrane perturbations and
activation of the sE stress response (Figueroa-Bossi et al., 2006;
Johansen et al., 2006; Vogel and Papenfort, 2006; Guisbert et al.,
2007; Guo et al., 2014; Vogt and Raivio, 2014; Klein and
Raina, 2017).

Hfq-sRNA Regulation of Biofilm Formation
Biofilms represent a major mechanism for bacterial survival
during chronic infections (Costerton and Stewart, 2001; Brady
et al., 2008; Hoiby et al., 2011). Owing in part to its role in
membrane composition, Hfq affects biofilm formation in
multiple enteric pathogens. Salmonella hfq mutants show
defects in biofilm formation and maturation (Kint et al., 2010;
Monteiro et al., 2012), phenotypes that have been attributed to
multiple sRNA regulatory pathways. These include the above
cited Hfq-dependent sRNAs that affect OMP expression, as well
as the Hfq-dependent ArcZ, RprA, OxyS, and DsrA sRNAs that
coordinate expression of the stationary phase sigma factor RpoS
[reviewed in (Van Puyvelde et al., 2013)]. In P. aeruginosa the
Rsm system controls the switch between chronic and acute
virulence phenotypes via the modulation of the RNA-binding
protein RsmA. As mentioned above, when RsmY and RsmZ
small RNAs are expressed, they inhibit the activity of RsmA
protein by sequestering the latter away from its mRNA targets
(Storz et al., 2011; Romero et al., 2016; Janssen et al., 2018).
RsmA is essential for the activation of type 3-secretion system
(T3SS), which is a noted marker of acute infection; sequestration
of RsmA results in the activation of type 6 secretion system
(T6SS) and biofilm formation (T6SS), both recognized as a
hallmarks of chronic infection (Lapouge et al., 2008).
Consequently, in P. aeruginosa, the Rsm system influences
organism pathogenicity and patient disease state by governing
the transition from acute to chronic infection (Sonnleitner et al.,
2006). Biofilm formation is further controlled in P. aeruginosa by
the chaperone protein Hfq, which mediates the expression of
RsmA protein in this network and thus indirectly controls the
formation of biofilms (Irie et al., 2020).

Hfq and sRNA Regulation of
Quorum Sensing
Hfq-dependent sRNAs have also been shown to regulate cell-to-
cell communication, or quorum sensing (QS), in many bacterial
species. A P. aeruginosa hfq mutant shows extensive alterations
in the QS network, much of which occurs through Hfq’s effects
on the RsmY sRNA (Sonnleitner et al., 2006). Hfq also
contributes to PrrF’s ability to interact with the antR mRNA,
which promotes the biosynthesis of multiple AQ metabolites
including the Pseudomonas quinolone signal (PQS) (Djapgne
et al., 2018), a QS molecule that activates the expression of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
multiple virulence genes (Collier et al., 2002). More recent work
demonstrated that the PrrF sRNAs activate the expression of
genes for T6SS via the positive impact on AQ synthesis (Brewer
et al., 2020), suggesting Hfq may mediate additional effects on
P. aeruginosa QS and virulence via the PrrF sRNAs.

Hfq-dependent sRNAs also play a key role in QS in Vibrio
species. An initial screen for repressors of the QS system in
Vibrio harveyi and Vibrio cholerae revealed the Hfq-dependent
Qrr (quorum regulatory RNA) sRNAs, which were present in 4
to 5 copies and present in multiple pathogenic and
nonpathogenic Vibrio species (Lenz et al., 2004). Regulation of
at least one Qrr target mRNA (hapR) has been experimentally
shown to occur through Hfq-dependent base-pairing (Bardill
et al., 2011). The Qrr sRNAs also post-transcriptionally activate
the expression of a diguanylate cyclase that is required for biofilm
formation (Zhao et al., 2013), suggesting that the Hfq-Qrr
regulatory network plays a central role in the sessile-motile
lifestyle switch of Vibrio species.

Pleiotropic Impacts of Hfq on
Pathogenesis
As might be expected from the preceding sections, Hfq has a
demonstrated requirement in virulence for many bacterial
pathogens. Deletion of hfq in multiple E. coli pathovars,
including uropathogenic E. coli (UPEC), enterohemorrhagic E.
coli (EHEC), enteropathogenic E. coli (EPEC), causes reduced
virulence (Simonsen et al., 2011; Bojer et al., 2012), and hfq
mutants in these organisms show defects in multiple Hfq-
dependent sRNA regulatory processes. In UPEC, this includes
the loss of regulation by the PapR sRNA, which regulates P
fimbriae needed for adherence (Khandige et al., 2015), induction
of sE regulation, and loss of RpoS regulation (Kulesus et al.,
2008). Since Hfq is required for RyhB stability in E. coli K12
(Masse et al., 2003), loss of hfq in UPEC is similarly expected to
promote RyhB stability, thus further impacting siderophore
production and virulence in UPEC. Notably, while hfq mutants
in E. coli K12 and an EPEC strain both induced the sE pathway,
the EPEC hfq mutant (and not E. coli K12) also induced the Cpx
stress response due to dysregulation of an EPEC specific sRNA
pathway responsible for pilus production (Vogt and Raivio,
2014). Moreover, Hfq in EHEC modulates expression of
multiple additional virulence factors, including the locus of
enterocyte effacement (LEE) locus, the Qse two component
signaling system, and Shiga toxins (Hansen and Kaper, 2009;
Shakhnovich et al., 2009; Kendall et al., 2011).

V. cholerae hfq mutants are also defective for virulence (Ding
et al., 2004). Neither OMP nor envelope stress responses in V.
cholerae were determined to be the source of virulence
attenuation of the V. cholerae hfq mutant (Ding et al., 2004),
and ryhB mutants showed no defect in virulence (Davis et al.,
2005; Mey et al., 2005). It is therefore likely that the combined
defects in multiple processes – including membrane integrity,
biofilm formation, QS, and iron homeostasis – collectively
contribute to the impact of Hfq on V. cholerae pathogenesis. A
P. aeruginosa hfq mutant likewise exhibits pleiotropic effects on
cell physiology, including virulence attenuation, growth defects,
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changes in quorum sensing, and upregulation of several PrrF-
responsive genes including antR (Sonnleitner et al., 2003;
Sonnleitner et al., 2006). This overlap suggests that attenuation
of the hfqmutant is due at least in part to loss of the PrrF sRNAs;
however, the impact of Hfq on P. aeruginosa physiology appears
to be even more extensive than that of PrrF. Deletion of hfq
similarly attenuated virulence in both Salmonella and Yersinia,
presumably through multiple effects cell physiology (Sittka et al.,
2007; Geng et al., 2009; Schiano et al., 2010; Deng et al., 2012;
Lathem et al., 2014). Hfq is further required for virulence in
additional Gram-negative pathogens, including Burkholderia
cepacia (Sousa et al., 2010), Bordetella pertussis (Bibova et al.,
2013), and Borrelia burgdorferi (Lybecker et al., 2010), and at
least one Gram-positive pathogen, Listeria monocytogenes
(Christiansen et al., 2004); however the specific roles that Hfq-
dependent sRNA regulation play in these latter virulence
phenotypes remain less clear.

While ascribing virulence defects to any one function of Hfq
is complicated by its requirement for multiple sRNAs in the
above species, additional factors can further confound
understanding the attenuation of hfq mutants. First and
foremost, many hfq mutants exhibit growth defects, which will
affect survival in the host independently of any one specific
sRNA function. Also important is the broad range of functions
Hfq plays outside of sRNA regulation in many bacteria,
including more newly understood roles in ribosomal biogenesis
and protein translation [reviewed by (Dos Santos et al., 2019)].
Despite these caveats, Hfq-dependent sRNA regulation clearly
plays a central and critical role in survival within the host for
many bacterial pathogens.
ADDITIONAL sRNA CHAPERONE
PROTEINS

While many bacterial sRNAs require Hfq for their function and
stability, several notable exceptions exist. For instance, Hfq is
present in Staphylococcus aureus, but does not appear to have
any impact on sRNA function or regulation (Bohn et al., 2007).
Moreover, the activity of orthologous sRNAs in related species
often show varying dependencies on Hfq. This variation
underlines the ambiguous requirement of Hfq for sRNA
function and stability across prokaryotes. In light of this,
several studies have identified additional chaperones that affect
sRNA function in numerous bacterial species, though many
species that express sRNAs still lack evidence for a bona fide
RNA chaperone.

FinO/ProQ Domain Chaperone Proteins
The chaperone protein ProQ was first identified in 1999 as an
element in E. coli that influenced the osmotic activation of ProP
at a posttranscriptional level (Kunte et al., 1999). ProP is an
osmoregulatory transporter and is essential for solute movement
across the plasma membrane (Kunte et al., 1999). Initial
mutagenesis analyses revealed that mutation of the proQ
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sequence decreased the activation rate of the ProP protein but did
not alter proP transcript or ProP protein levels (Kunte et al., 1999).
Later studies suggested that wild type ProQ might control proP
mRNA levels by acting as a chaperone protein (Chaulk et al., 2011).
Additional investigations showed that ProQ interacts with two
distinct proP mRNAs transcribed from different promoters, with
equal affinities, and also interacts with the rpoSmRNA (Sheidy and
Zielke, 2013). More recent analyses revealed that ProQ in
Salmonella is a prominent binding partner of numerous sRNAs
(Smirnov et al., 2016).

ProQ is a part of the FinO domain protein family, and recent
structure studies show that ProQ’s N-terminal domain resembles
that of the chaperone protein FinO, which regulates conjugation
by modulating interactions between the finP sRNA and traJ
mRNA (Arthur et al., 2011; Gonzalez et al., 2017). In vitro
experiments showed that FinO recognizes single stranded
regions on each of the RNA molecules, stabilizing the finP
sRNA against degradation, and promoting the sRNA-mRNA
interaction. Once stabilized, the finP and traJ RNAs base pair at a
region of complementarity within their respective stem-loops,
allowing RNase E to target the sRNA-mRNA complex for
degradation and thus translation inhibition (Arthur et al.,
2011). The ProQ/FinO domains have been structurally
characterized across multiple Gram-negative species (E. coli,
Salmonella, Legionella pneumophilia) and are generally shaped
like a fist, with a conserved, positively charged RNA binding site
on the concave side of the protein. This positively-charged region
in one of two L. pneumophilia ProQ homologs, designated
Lpp1663, showed a preference for binding single stranded U-
rich RNA molecules (Immer et al., 2020). A second ProQ
homolog in L. pneumophilia, originally designated Lpp0148
and re-named RocC, binds and stabilizes the RocR sRNA,
which in turn represses mRNAs required for natural
competence (Attaiech et al., 2016). RocC binds to RocR
adjacent to a U-rich tail (Attaiech et al., 2016), seemingly in
agreement with the sequence determinants identified for
Lpp1663 RNA binding. RocR is the only binding partner for
RocC that has yet been described, so it remains unclear how
extensive ProQ homologs function as RNA chaperones in this
and other pathogens where it has been identified.

In contrast, the ProQ proteins in E. coli and Salmonella clearly
have extensive effects on sRNA regulatory networks, with some
overlap with Hfq sRNA regulatory networks also being recently
reported (Melamed et al., 2020). Moreover, Salmonella ProQ
plays a central role in regulating factors required for
pathogenicity. Specifically, a ΔproQ mutant strain was defective
in infecting HeLa cells as compared to the wild type strain, and
the expression of virulence genes for motility, chemotaxis
pathways, and numerous sigma factors was reduced in
the ΔproQ mutant (Westermann et al., 2019). The levels of
three ProQ-interacting sRNAs – SraL, RaiZ and STnc540 – were
shown to be reduced in a ΔproQ mutant compared to the wild
type strain when grown in HeLa cells (Westermann et al., 2019).
Detailed analysis of the RaiZ sRNA showed that ProQ stabilizes
RaiZ and promotes complex formation with the hapR mRNA,
encoding histone-like protein (Smirnov et al., 2017). Moreover,
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levels of the STnc540 sRNA inversely correlated with that of the
mgtCBR mRNA (Westermann et al., 2019), encoding a
magnesium transport system that is required for survival inside
macrophages (Blanc-Potard and Groisman, 1997). Deletion of
proQ similarly affected levels of mgtCBR mRNA, indicating this
mRNA is likely a direct target of ProQ-dependent STnc540
regulation (Blanc-Potard and Groisman, 1997). Two recent
reports further demonstrated that FinO-dependent sRNAs
regulate copy number of plasmids carrying antibiotic resistance
genes in E. coli and S. enterica (El Mouali et al., 2021; Yang
et al., 2021).

The Fbp Proteins in Bacillus subtilis
As discussed above, the iron-regulated small basic proteins FbpA,
FbpB, and FbpC work in collaboration with FsrA sRNA to mediate
post-transcriptional gene regulation in B. subtilis (Smaldone et al.,
2012). FsrA is expressed under low-iron environment and represses
the synthesis of numerous iron-containing proteins such as the
lutABC operon that encodes iron sulfur-containing proteins
involved in lactate utilization (Smaldone et al., 2012). Several
studies have established that these small proteins are required for
FsrA sRNA stability and function by stabilizing and mediating the
function of FsrA sRNA (Smaldone et al., 2012; Smaldone et al.,
2012; Kim and Kwon, 2013). Based on these findings, it was
hypothesized that FbpABC small proteins might behave as
chaperone proteins, in a manner similar to how Hfq modulates
regulation by iron-responsive sRNAs in Gram-negative bacteria.
CONCLUDING STATEMENTS

Even thoughmany questions remain unanswered regarding the role
of bacterial RNA chaperone proteins in gene expression and
pathogenesis, advances in the field and the development of new
methodologies over the past two decades have shed significant light
on the matter. The more recently characterized ProQ as an sRNA
chaperone is just one great example of our limited knowledge
regarding the function of bacterial sRNAs. Identification and in
depth characterization of sRNA chaperones and their mechanisms
of action will open new avenues and provide better understanding
of the regulation of bacterial virulence factors. Specific questions
remaining to be answered include:
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i) What are the specific mechanisms of Hfq-sRNA control of
virulence in non-enteric bacteria?

ii) How do FinO/ProQ domain proteins contribute to virulence
in non-enteric, as well as enteric, bacteria?

iii) Do other chaperones mediate sRNA regulation in organisms
where Hfq or ProQ homologs are either lacking or play no
discernable role in sRNA regulation?

iv) Or is sRNA regulation in some species capable of functioning
in the absence of chaperone proteins?

Another intriguing area for study is determining how these
sRNAs pathways have evolved from non-pathogenic species to
related pathogens. For example, the increased acidity in the Hfq
rim sequence in the more recently evolved P. aeruginosa (R16,
K17, R19) from the non-pathogenic pseudomonads (K16, K17,
K19) may shed light on sRNA regulatory mechanisms that are
required for survival in the host. In this vein, continued
characterization of already discovered RNA chaperone proteins
and sRNA regulatory pathways amongst highly related species
may reveal new appreciation for sRNA mechanisms that are
required for virulence.
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