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Malaria is responsible for unacceptably high morbidity and mortality, especially in Sub-
Saharan African Nations. Malaria is caused by member species’ of the genus Plasmodium
and despite concerted and at times valiant efforts, the underlying pathophysiological
processes leading to severe disease are poorly understood. Here we describe zoonotic
malaria caused by Plasmodium knowlesi and the utility of this parasite as a model system
for severe malaria. We present a method to generate long-read third-generation
Plasmodium genome sequence data from archived clinical samples using the MinION
platform. The method and technology are accessible, affordable and data is generated in
real-time. We propose that by widely adopting this methodology important information on
clinically relevant parasite diversity, including multiple gene family members, from
geographically distinct study sites will emerge. Our goal, over time, is to exploit the
duality of P. knowlesi as a well-used laboratory model and human pathogen to develop a
representative translational model system for severe malaria that is informed by clinically
relevant parasite diversity.
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BACKGROUND

Malaria is a vector-borne disease that has impacted human health in tropical and sub-tropical
regions since ancient time and continues to outwit human endeavors to control and eradicate.
Malaria parasites, genus Plasmodium, have a highly complex lifecycle, intimately dependant on an
invertebrate mosquito host for the diploid sexual stage of reproduction and equally dependant on
specific vertebrate hosts for asexual replication and transmission. Lifecycle complexity, including
adaptation to specific vertebrate hosts, invertebrate host restriction to particular Anopheline vector
species with spatial and ecological niche requirement may augur unfavourably for Plasmodium spp.
survival in a dynamic world. Yet, despite sustained efforts, human malaria persists to the extent that
the altruistic World Health Organization (WHO) malaria eradication goal of the 1950s, was
downgraded to country and at times species-specific elimination https://www.who.int/malaria/
areas/elimination/en/. Even so, eradication is not a forgotten dream and may well be achievable
within a new 30-year time-frame (Feachem et al., 2019).
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The human host-adapted Plasmodium species; Plasmodium
falciparum, Plasmodium vivax, Plasmodium malariae, and
Plasmodium ovale, two sub-species (Sutherland et al., 2010) are
responsible for most of the reported cases of malaria.
P. falciparum, in particular, and P. vivax are responsible for
the global health burden of disease. P. falciparum infections carry
a high level of morbidity and mortality in adults and children.
Severe malaria manifests variously, for example as severe malaria
with coma, acute kidney injury and severe malarial anaemia
(Plewes et al., 2018; White, 2018; World-Health-Organization,
2019). Understanding the underlying pathophysiology of severe
malaria is thwarted by the absence of a translational model
system. In practice, malaria elimination remains the most
effective strategic method to reduce indigenous transmission of
P. falciparum and/or P. vivax and consequently the impact of
severe malaria. Malaria elimination is a long-term goal and in the
meantime people will continue to be infected and succumb to
severe malaria.

Malaria elimination status is awarded to each country by the
WHO even though the country need not necessarily be malaria
free. A case in point is Malaysia where indigenous human-host
adapted Plasmodium species transmission is zero and malaria
elimination status was expected to be awarded to Malaysia by the
WHO in 2020 (Liew et al., 2018; Jiram et al., 2019; Noordin et al.,
2020) https://www.who.int/malaria/areas/elimination/e2020/
malaysia/en/. However, malaria - the disease, persists in
Malaysia, particularly in the eastern states of Sabah and
Sarawak where for the past 20 years Plasmodium knowlesi, a
malaria parasite of macaque monkeys, has been regularly
diagnosed in symptomatic patients in Sabah and Sarawak (Lee
et al., 2009a; Barber et al., 2017; Cooper et al., 2020; Raja
et al., 2020).
Plasmodium knowlesi Malaria

As one millennium closed and a new one began, a substantial
number of cases of P. knowlesi were identified in the human
population in the Kapit division of Sarawak Malaysia Borneo
(Singh et al., 2004). The entry of P. knowlesi into the human
population became apparent as the number of cases of
P. falciparum and P. vivax declined in response to robust
control programmes. Up to that point P. knowlesi, a parasite
morphologically similar to both P. malariae and the early
trophozoites of P. falciparum, was misdiagnosed by routine
microscopy (Lee et al., 2009b). Misdiagnosis as P. falciparum
had little clinical consequence as both infections require urgent
treatment and management. Misdiagnosis as the more benign
P. malariae resulted in delayed treatment and the development
of severe disease and preventable fatality (Cox-Singh et al., 2008).

There is no indication that the cases of P. knowlesimalaria are
decreasing, 69% of the 16,500 reported cases of malaria in
Malaysia between 2013 and 2017 were caused by P. knowlesi
(Raja et al., 2020) (Hussin et al., 2020). In 2018, more than 4,000
cases of malaria were reported in Malaysia and with
P. falciparum and P. vivax close to elimination, P. knowlesi
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
accounted for most of those (World-Health-Organization, 2019;
Chin et al., 2020).

P. knowlesi malaria is also widespread across South East Asia
where the natural habitat supports sylvan transmission – areas
where the specific Anopheline vectors of P. knowlesi, the natural
macaque hosts and the parasites co-exist and where humans
enter these habitats (Singh and Daneshvar, 2013; Shearer et al.,
2016). Zoonotic malaria is unlikely to fill the void left by the
removal of P. falciparum and P. vivax, however, communities
living close to and individuals who enter the jungle transmission
areas for work or leisure activities are at risk of this newly
emergent potentially life threatening disease.

P. knowlesi malaria is associated with severe disease in 10 –
12% of cases with death in vulnerable and untreated individuals
(Cox-Singh et al., 2008; Daneshvar et al., 2009; William et al.,
2011; Rajahram et al., 2012; Grigg et al., 2018; Hussin et al.,
2020). Although P. knowlesi infections are associated with
hyperparasitaemia, severe malaria caused by P. knowlesi occurs
across a wide spectrum of parasitaemia. Relatively low parasite
counts, ≥15,000 parasites/µl carry a high risk of severe disease
(Willmann et al., 2012; Cooper et al., 2020). Severe P. knowlesi
malaria is characterised by one or more of the WHO criteria for
severe malaria including; anaemia, acute kidney injury, acute and
late-onset respiratory distress, hypotension, jaundice, and
metabolic acidosis (Cox-Singh et al., 2008; Daneshvar et al.,
2009; Cox-Singh et al., 2010; Barber et al., 2011; World-Health-
Organization, 2013; Grigg et al., 2018). Indeed, until the
discovery of zoonotic malaria caused by P. knowlesi, severe
malaria was the preserve of P. falciparum and severe malaria
guidelines written for P. falciparum infection. With few tools to
study the pathways to severe malaria and the absence of a
comparator disease, assigning clinical cause and effect in
malaria was roadblocked.

Even so characterising and untangling the combined
contribution of human host response and pathogen to disease
presentation and outcome is inherently complex, in the literal
sense. The human race survives and often thrives in a harsh
microbial world (Numbers, 2011). Of the many microbes only a
few are pathogenic, and even-then not uniformly so. Host innate
immune function is key to infectivity with co-factors, including
age, co-morbidity and co-evolution influencing disease
outcomes. Such disease determinants are poorly defined, yet
critical to understand, as witnessed in the ongoing Coronavirus
pandemic (Mills et al., 2015; Loy et al., 2017; Mandl et al., 2018;
Petersen et al., 2020). Human host diversity and response to
infection, including response to infection with potentially
virulent malaria parasites, is outside of the scope of this article.
Rather we focus on determining clinically relevant Plasmodium
spp. genetic diversity and propose a model system to test for
association between parasite genetic diversity and clinical
outcome (Figure 1).

It is also perhaps worth noting here that in general, disease
phenotype precision remains a limiting factor in genome-wide
associations studies (GWAS) and an area that lags behind
available technologies (MacRae, 2019). No different is the
study of parasite genetic characters associated with disease
March 2021 | Volume 11 | Article 607686
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progression (pGWAS) in malaria where disease phenotype
precision is currently lacking. No matter how sophisticated the
model system, mathematical, in silico, in vitro, or in vivo, the
outputs can only be as precise as the input data.

Modelling malaria is especially difficult because malaria
parasites have co-evolved with their vertebrate hosts each
exerting selective forces on the other in a dynamic dance for
survival (Loy et al., 2018). That dynamic is complicated further
because malaria parasites are eucaryotic with a relatively large
genome, 20–40 mega bases organised into 14 chromosomes
(Gardner et al., 2002; Carlton et al., 2008; Pain et al., 2008;
Ansari et al., 2016). Designing experiments to identify the drivers
of pathogenesis, of parasite virulence and disease cause and effect
are challenging.

The advent of “omics” may better inform models for malaria
through multiple data generation platforms; genomics,
transcriptomics and proteomics (Pinheiro et al., 2015;
Campino et al., 2018; Benavente et al., 2019; Lindner et al.,
2019). Even with these tools all too often, information is
extrapolated. Rodent models and experimental lines that are
unable to capture clinically relevant parasite diversity are much
better characterised for markers of parasite virulence than
diverse contemporary clinical isolates (Plewes et al., 2018). The
value of supporting sophisticated forward genetic screens on
laboratory isolates with clinical isolate genotyping was
demonstrated in a recent study on P. falciparum gene clusters
involved in erythrocyte invasion (Campino et al., 2018). Invasion
phenotypes generated from crossing two experimental lines and
phenotype-associated deletions were compared with long-read
sequence data available from a small number of clinical isolates
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
where indels in the same large locus were identified supporting
invasion pathway variation in nature. Ignoring the impact of
natural pathogen diversity on disease progression and virulence
creates an inexcusable vacuum when analysing data for parasite
association with disease severity.

P. knowlesi is an adaptable and naturally diverse parasite. A
genetic study on clinical isolates of P. knowlesi identified an
association between certain haplotypes of a short polymorphic
fragment (~885bp) of the Plasmodium knowlesi normocyte
binding protein (Pknbp)xa on chromosome 14 and continuous
data on markers of disease severity (Ahmed et al., 2014). In
addition to disease association, the fragment was dimorphic,
clinical isolates clustered into one of two distinct genotypes at
that locus, begging the question how far the dimorphism
extended across the Pknbpxa 9578bp gene and chromosome 14.

Harnessing the power of next-generation sequencing seemed
the obvious choice to take this work forward within the caveat
that the clinical isolates of P. knowlesi available to study were
small volume (<1mL) frozen whole blood. Undeterred and as
proof of concept, we developed a method to deplete human DNA
and concentrate parasite DNA in the samples. We produced P.
knowlesi genome sequences from six clinical isolates using
massively parallel Illumina short-read sequencing platforms
(Pinheiro et al., 2015). The move from genetics to genomics
for clinical isolate characterization unlocked a wealth of
information. Subsequent analyses found that the Pknbpxa
dimorphism extended along the gene and chromosome 14.
Indeed, SNPs associated with the dimorphism were found on
all chromosomes and involved more than half of all genes in
P. knowlesi parasites isolated from patients. The work
FIGURE 1 | Plasmodium knowlesi - proposed translational and dynamic model system for severe malaria. Precise clinical phenotyping malaria patients coupled with
parasite genome sequencing “bed-side”. Parasite genome wide association studies (pGWAS) with markers of disease – an example of renal impairment in severe
P. knowlesi infection is used here. Associating alleles are superimposed onto an experimental parasite genetic background to produce genetically modified parasites
(GM). GM parasites phenotyped in vitro and in vivo (non-human primate -NHP, model) for matched disease phenotype. NHP model used to develop strategies to
specifically reduce the impact of the clinical phenotype for translation into therapies for patients with severe malaria.
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demonstrated that P. knowlesi isolated from human infections in
Sarawak, Malaysian Borneo are one of two distinct genotypes.

Both pieces of work unlocked hidden genome-wide
characters in clinical isolates of P. knowlesi. The studies
reinforced the idea that pathogen genome sequence data
extracted from clinically well characterised infections provides
a valuable resource for studies on the role of pathogen diversity
in virulence and disease outcome.
P. knowlesi – A Model for Malaria

P. knowlesi was first described in a long tailed macaque in the
1930s (Knowles and Gupta, 1932). Early work demonstrated that
P. knowlesi was an adaptable parasite and experimental lines
were developed and maintained in rhesus macaques, Macaca
mulatta, to model for malaria. The P. knowlesi – rhesus macaque
malaria model was used extensively for studies on malaria
antigenic variation, vaccine development, parasite invasion,
and biology, recently reviewed (Butcher and Mitchell, 2018;
Galinski et al., 2018; Pasini et al., 2018). Traditionally
P. knowlesi was not favoured as a model for disease,
pathophysiology, mostly because the P. knowlesi in Macaca
mulatta was particularly aggressive and not representative of
human malaria caused by P. falciparum. A view supported in
more recent work on cytokine responses in M. mulatta
experimentally infected with P. knowlesi where a dampened
response, and if anything, an anti-inflammatory response was
observed in this model, a response that is uncharacteristic of
human-host Plasmodium infections (Praba-Egge et al., 2002). P.
falciparummalaria and indeed P. knowlesi clinical infections, are
characterised by vigorous pro- and anti-inflammatory responses
depending on age and endemicity (Cox-Singh et al., 2011;
Farrington et al., 2017). Taken together there was little support
for the utility of P. knowlesi inM. mulatta as an in vivomodel for
severe malaria. P. knowlesi in other experimental non-human
primates (NHP’s) produces a disease more representative of
human malaria and it is surprising that this opportunity to
model severe malaria has not been taken forward (Langhorne
and Cohen, 1979; Ozwara et al., 2003; Onditi et al., 2015).
Unfortunately lack of support for using P. knowlesi to model
for severe malaria is compounded by evolutionary distance. P.
knowlesi and P. falciparum occupy distinct phylogenetic clades
and phylogenetic distance is often used to argue against using P.
knowlesi to model for P. falciparum. Evolutionary distance
continues to be used to question the validity of comparing P.
knowlesi with P. falciparummalaria, yet they are member-species
of the same genus – by definition they are closely related. In
practice, evolutionary distance often over-rides biological and
comparable clinical characters and P. knowlesi is more often
favourably viewed as a model for the phylogenetically closer yet
phenotypically quite distinct P. vivax (Moon et al., 2013;
Mohring et al., 2019; Verzier et al., 2019).

Neither P. falciparum nor P. vivax is permissive in intact
experimental NHP hosts and to date, representative heterologous
translational models for malaria are not available to interrogate
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
pathways to pathology and to develop augmentative therapies.
Consequently, the treatment and management of patients
severely ill with malaria remain imprecise and generally
supportive. We argue that clinical data collected from patients
with naturally acquired severe P. knowlesi coupled with
homologous laboratory adapted, well characterised and
genetically adaptable experimental lines of P. knowlesi can be
exploited to discover the parasite drivers of severe malaria.
Laboratory adapted lines of P. knowlesi are permissive in a
range of NHP hosts, including olive baboons and common
marmosets (Langhorne and Cohen, 1979; Ozwara et al., 2003;
Onditi et al., 2015). Some of these in vivo models exhibit clinical
characters representative of severe malaria caused by P. falciparum
and, importantly, contemporary clinical descriptions of severe
malaria caused by P. knowlesi (Cox-Singh et al., 2008;
Daneshvar et al., 2009; Cox-Singh et al., 2010; Daneshvar et al.,
2018). Notwithstanding NHP models are of ethical concern,
expensive and valid only if the information obtained
significantly advances knowledge, which often is not the case.
Experimental lines of P. knowlesi even if modelled in vivo are
effectively research silos lacking the power to inform clinical
disease caused by genetically diverse contemporary wild-type
zoonotic parasites (Ahmed et al., 2014; Assefa et al., 2015; Divis
et al., 2015; Pinheiro et al., 2015).

Clinical descriptions of P. knowlesi malaria portray a
spectrum of disease from uncomplicated – to severe and fatal
infections and can be compared phenotypically with P.
falciparum malaria (Cox-Singh et al., 2008; Daneshvar et al.,
2009; Cox-Singh et al., 2010; Cox-Singh et al., 2011; Rajahram
et al., 2012; Ahmed et al., 2014; Barber et al., 2018a; Barber
et al., 2018b).

The duality of P. knowlesi as an adaptable experimental model
and human pathogen offers a unique opportunity to develop a
comprehensive representative translational model system for
malaria informed by same-species clinical disease.

Two important advances enhance the utility of P. knowlesi as
a model for disease. The first is the adaptation of an experimental
line of P. knowlesi to in vitro growth in human erythrocytes
(Moon et al., 2013). The second is transfection technology. P.
knowlesi in macaque erythrocytes was already shown to be more
amenable to transfection, meaning genetic modification, than
experimental lines of P. falciparum (Kocken et al., 2002). The
human erythrocyte adapted line is similarly receptive to
transfection and indeed CRISPR-Cas9 targeted genetic
modification technology, genome editing, has been developed
for P. knowlesi (Moon et al., 2013; Mohring et al., 2019). These
technologies together with genome sequence data, generated
from clinical isolates, will facilitate the introduction of
clinically relevant alleles of P. knowlesi into experimental lines
for in vitro characterisation and the unique opportunity to take
this work forward in vivo (Cox-Singh and Culleton, 2015).

A long journey to cause and effect harnessing omics, genetically
modified parasites and comprehensive model systems to properly
ascribe parasite virulence to malaria pathophysiology while possible
is a long game, difficult, time-consuming and expensive. However,
failure to make this effort is to perpetuate acceptance of clinical and
March 2021 | Volume 11 | Article 607686
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therapeutic blind-spots, imprecise and generally supportive
treatment and management for severe malaria, that perhaps is
only acceptable if there is no alternative.

In the first instance, the ability to genome sequence
Plasmodium species isolated from clinically well-characterised
malaria patients will facilitate Plasmodium Genome-Wide
Associations Studies (pGWAS) and identify virulence gene
candidates. We show how short and long-read Plasmodium
genome sequence data can be generated from fresh or archived
frozen samples held in the many malaria research centres
worldwide. Plasmodium genome sequence outputs over time
and space will facilitate the construction of a substantial genetic
reference resource, based on diverse wild-type parasites isolated
from patients, that will inform model systems (Milner et al.,
2012; Ahmed et al., 2014; Pinheiro et al., 2015; Auburn et al.,
2018; Campino et al., 2018; Divis et al., 2018; Otto et al., 2018; Su
et al., 2019; Siao et al., 2020). Until now genome sequence data
generated from clinical samples was more feasible using Illumina
massively parallel short-read sequencing.

As highlighted in the P. falciparum invasion gene study
described in an earlier section, prohibitively expensive and
otherwise impractical long-read genome sequencing data from
clinical isolates were required to validate study findings
(Campino et al., 2018). We have already developed a method
to extract P. knowlesi DNA from archived small volume clinical
isolates suitable for Illumina short-read sequencing (Pinheiro
et al., 2015). To overcome limitations of short-read genome
sequencing that are problematic for multiple repeat regions and
multiple gene families in Plasmodium spp., the method was
further adapted for Oxford Nanopore MinION long-read
sequencing, third-generation sequencing, that is accessible,
affordable, mobile and suitable for low yield DNA samples
(Figure 2). Briefly 200–400ul samples of archived whole blood
from P. knowlesi patients was rapidly thawed and immediately
diluted in 50mL cold PBS. The suspension was mixed gently
before recovering parasites and any contaminating white blood
cells (WBC’s) by centrifugation: 2,000 x g; 20 minutes; 4°C
(pellet 1). The supernatant was transferred to a fresh tube and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
centrifugation repeated to maximise parasite recovery (pellet 2).
The pellets were combined and resuspended in 1.2mL of cold
PBS. Surviving host WBCs, a source of human DNA (hDNA)
contamination, were removed using magnetic beads coated with
antibodies to the ubiquitous WBC surface marker CD45
(Dynabeads™ CD45, Invitrogen™). Dynabeads were prepared
as per manufacturers’ instruction and 100ul bead suspension
added to the 1.2mL pellet suspension followed by incubation at
4°C with rotation for 30 minutes. WBC’s bound to the beads
were removed by placing in a magnetic field for two minutes.

The human WBC depleted eluate was carefully removed and
transferred to a fresh Eppendorf tube and centrifuged at 2,000 x g
for 20 min to recover the parasite enriched pellet (PEP). The PEP
was suspended in 200ul PBS for DNA extraction (QIAamp DNA
Blood Mini Kit, QIAGEN). Recovered DNA was eluted in 150ul
of Buffer AE. Percent hDNA depletion and Plasmodium DNA
recovery were determined using quantitative PCR (qPCR)
(Klaassen et al., 2003; Divis et al., 2010). P. knowlesi qPCR ct
values negatively correlated with genome coverage (p = 0.0375).
P. knowlesi DNA enriched samples (post hDNA depletion) from
isolates with a starting parasitaemia of <40,000 per ul had low
parasite DNA yield and sequence coverage.

Twenty-one (21) samples from 15 different patients, median
parasitaemia 193,600 parasites/ul (IQR 127,875 – 321,750; min
20,656; max 794,063) with >90% hDNA depletion were taken
forward to PCR-free rapid barcoding library preparation (Oxford
Nanopore, SQK-RBK004). SQK-RBK004 library preparation is
suitable for small yield DNA samples in the region of 400ng and
includes a tagmentation step that generates read lengths normally
distributed around a mean length of 4,500 kb. Of 21 library
preparations 13 (62%) had >10x genome sequence coverage and
six of these >30x coverage. Coverage of 100x was achieved especially
when >1 sequencing library was prepared per isolate.

For the first time it is possible to generate long-read Plasmodium
genome sequence data from small clinical samples from malaria
patients. Samples that are archived or collected prospectively can be
sequenced in a cost-effective and time-efficient manner anywhere.
The importance of this capability is the opportunity to move
FIGURE 2 | Protocol for processing low volume frozen whole blood samples from patients with malaria in preparation for third generation genome sequencing.
(A) Human leucocyte depletion and (B) sequencing pipeline. *Human DNA was quantified using qPCR (Klaassen et al., 2003) and a standard curve derived from
Human Genomic Control DNA (Applied Biosystems®, TaqMan®). In the absence of pure control parasite DNA, cycle threshold (ct) values from P. knowlesi qPCR
(Divis et al., 2010) were normalised by volume and used to estimate parasite DNA enrichment following human DNA depletion. Parts of the figure are conceptualised
and adapted using Servier Medical Art, Servier: https://smart.servier.com.
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forward from a necessary dependence on Plasmodium genome
sequence generated from experimental lines to genome sequence
generated from clinical samples with matched clinical data. The
methodology we describe is particularly applicable to P. knowlesi
infections that tend to be single genotype and reach relatively high
parasitaemia. The methods can be applied to, albeit, relatively
uncommon single genotype P. falciparum infections. Although
multiple genotype infections present a limiting factor to the
methods described here, the potential to generate valuable
genome-wide information on even a small number of clinical
isolates to inform studies on P. falciparum virulence should not
be overlooked.

Subsequent pGWAS on long read sequence data from clinical
isolates with matched high quality continuous clinical and
laboratory data, relative to particular clinical manifestations of
severe malaria, will help unravel the contribution of parasite
diversity to virulence. In addition to accessibility and field
application of low-cost real-time sequencing in-house,
Nanopore MinION long-read sequencing can resolve
important multiple gene family members, including the P.
knowlesi kirs and SICAvars (Pain et al., 2008; Pinheiro et al.,
2015; Lapp et al., 2018). These and other gene clusters encode
surface antigens that are implicated in malaria parasite virulence
and are difficult to sequence, formerly requiring expensive
sequencing platforms equally prohibitive in cost and quantity
of input DNA required (Campino et al., 2018).

Our particular interest is to use MinION sequence data from
clinical isolates of P. knowlesi in pGWAS studies. We will analyse
matched continuous clinical data predictive of precise
characteristics of severe malaria to identify candidate alleles
implicated in virulence to take forward in functional studies.
CRISPR-Cas9 technology developed for P. knowlesi (Mohring
et al., 2019) will facilitate locus-specific gene editing to
superimpose clinically relevant alleles onto experimental lines
and offer the opportunity for allele-specific phenotyping in vitro.
Genetically modified lines with in vitro phenotypic characters
that carry a high suspicion of involvement in parasite virulence
and following exhaustive experimentation will be deemed
suitable to take forward in vivo for clinical phenotyping and
translational research (Figure 1).

Our immediate goal is to promote third-generation genome
sequencing and capacity strengthening in bioinformatics for
routine genetic studies on clinical malaria in endemic
countries. The outputs will create a repository that captures
diversity and information on multiple gene families hitherto
outside the remit of all but large centres mostly working on
model parasites. Our long-term vision is to develop a precise
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
experimental model system for severe malaria pathophysiology
informed by clinical infections and culminating in in vivo disease
phenotyping and translational research. A model that, for the
first time, will have the power to characterise parasite allele-
specific cause and effect. A model system that exploits the utility
of P. knowlesi, a laboratory model, and P. knowlesi that is
responsible for naturally acquire human disease.

Not the end of the story or perfect by any standard but our
sequencing capability represents a significant step forward towards
creating the means to understand malaria pathophysiology and to
inform the rational design and development of adjunctive
therapies for patients with severe malaria.
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