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There is an increased global outbreak of diseases caused by coronaviruses affecting
respiratory tracts of birds and mammals. Recent dangerous coronaviruses are MERS-
CoV, SARS-CoV, and SARS-CoV-2, causing respiratory illness and even failure of several
organs. However, profound impact of coronavirus on host cells remains elusive. In this
study, we analyzed transcriptome of MERS-CoV, SARS-CoV, and SARS-CoV-2 infected
human lung-derived cells, and observed that infection of these coronaviruses all induced
increase of retrotransposon expression with upregulation of TET genes. Upregulation of
retrotransposon was also observed in SARS-CoV-2 infected human intestinal organoids.
Retrotransposon upregulation may lead to increased genome instability and enhanced
expression of genes with readthrough from retrotransposons. Therefore, people with
higher basal level of retrotransposon such as cancer patients and aged people may have
increased risk of symptomatic infection. Additionally, we show evidence supporting long-
term epigenetic inheritance of retrotransposon upregulation. We also observed chimeric
transcripts of retrotransposon and SARS-CoV-2 RNA for potential human genome
invasion of viral fragments, with the front and the rear part of SARS-CoV-2 genome
being easier to form chimeric RNA. Thus, we suggest that primers and probes for nucleic
acid detection should be designed in the middle of virus genome to identify live virus with
higher probability. In summary, we propose our hypothesis that coronavirus invades
human cells and interacts with retrotransposon, eliciting more severe symptoms in
patients with underlying diseases. In the treatment of patients with coronavirus
infection, it may be necessary to pay more attention to the potential harm contributed
by retrotransposon dysregulation.

Keywords: coronavirus, retrotransposon, SARS-CoV-2, TET, long interspersed nuclear element

Abbreviations: LINE, long interspersed nuclear element; LTR, long terminal repeat; SINE, short interspersed nuclear element;
TE, transposable element.
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INTRODUCTION

Emerging coronaviruses often spread rapidly from person to
person and there seems to be an increased global outbreak of
related diseases. MERS-CoV and SARS-CoV are two identified
rare coronavirus strains which cause not only severe lung
infection but also serious complications (Ksiazek et al., 2003;
Rota et al., 2003; Zaki et al., 2012; Arabi et al.,, 2017). More
recently, coronavirus disease named COVID-19 caused by a
novel coronavirus SARS-CoV-2 is expanding globally and
rapidly, resulting in emerging health issues (Chan et al., 2020;
Guan et al., 2020; Huang et al., 2020; Zhou et al., 2020). Although
cell receptors and the routes of infection of these coronaviruses
have been identified (Li et al., 2003; Raj et al., 2013; Zhou et al,,
2020; Wrapp et al., 2020), complicated impact on human cells is
far from clear.

Transposable Elements (TEs) are mobile DNA elements in
virtually all eukaryotes and comprise more than 40% of human
genome (Dewannieux et al., 2003). They can self-replicate and
insert into various locations inside genome. Dysregulation of TE
may lead to various illnesses like inflammatory diseases (Saleh
et al, 2019). The only active member in TE is retrotransposon
which can “copy and paste” themselves through RNA
intermediate. Examples of retrotransposons include Long
interspersed nuclear elements (LINEs), short interspersed
nuclear elements (SINEs) and long terminal repeats (LTRs).
Expression of most of retrotransposon members is suppressed
in somatic cells and they are only active in brains, germ cells,
early embryos and pathological conditions (Munoz-Lopez et al.,
2016). About 5% of newborn babies show a new retrotransposon
integration event (Cordaux et al., 2006). Abnormally
upregulation of retrotransposons cause insertions, deletions,
and inversions in genome (Gilbert et al., 2002; Symer et al.,
2002), resulting in compromised genetic stability and even cell
death (Malki et al., 2014; Newkirk et al., 2017). Accumulated
evidence in recent years also proved their importance in
orchestration of gene expression (Izsvak et al., 2016),
regulation of chromatin structure (Fadloun et al., 2013) and
modulation of developmental program (Percharde et al., 2018;
Lu et al., 2020).

LINEs are common autonomous retrotransposons and
comprise about 17% of human genome (Cordaux and Batzer,
2009). Some LINE-1 elements can be transcribed and translated
in cells. After reverse transcription of LINE-1 RNA, they can be
integrated back into genome (Babushok et al., 2006). Naturally,
LINEs expression is repressed in most cell types. Its RNA is
mainly heritable during early embryogenesis because of its
enrichment and high retrotransposition activity in early
embryos (Grow et al., 2015). Transgenic mouse model carrying
mouse/human LINE-1 retrotransposition reporter demonstrated
that this activity creates somatic mosaicism during development
(Kano et al., 2009). Besides LINEs, SINEs and LTRs are also
enriched retrotransposons in human genome, and mobilization
of SINEs relies on LINE-1-encoded proteins (Dewannieux
et al., 2003).

In our study, we analyzed publicly available transcriptome data
of human cells infected with coronavirus MERS-CoV, SARS-CoV,

and SARS-CoV-2, and observed enhanced expression of TEs
including several retrotransposons, as well as inflammation,
immunity, and apoptosis related genes. We further noticed
potential fusion of SARS-CoV-2 RNA with retrotransposon
transcripts especially LINEs and SINEs. Therefore, further
examinations on genome and transcriptome of cells from
patients and studying models will be valuable to evaluate
potential crosstalk between coronavirus and retrotransposons.

METHODS

Cell Types Used for Transcriptome Study
of Coronavirus Infection

Cell types below are used in this study. Calu-3, human lung
cancer cell; MRC5, human fetal lung strain; A549, human
adenocarcinomic alveolar basal epithelial cell; NHBE, primary
human bronchial epithelial cell. Each group above has three
replicates. For human intestinal organoids, each group has
two replicates.

RNA-Seq Data Processing

Raw reads were processed with cutadapt v1.16 to perform quality
trimming with default parameters except for: quality-cutoff =20,
pair-filter=both. To include as many non-uniquely mapped
reads as possible, trimmed reads were firstly aligned to human/
mouse genome (hgl9/mm10) by STAR (v2.5.1b) with default
settings including parameters “—outFilterMismatchNmax 10 -
winAnchorMultimapmax 2000 -outFilterMultimapNmax
1000”. RSEM was used to calculate FPKM value of genes. The
annotation and fasta sequences for consensus transposable
element sequences were downloaded from Repbase (version
20.01) (Bao et al., 2015). TEtranscripts program (Jin et al,
2015) with default parameters was used to get counts for
transposable elements. Read counts of gene and TE transcripts
were normalized by total aligned counts. For RNA-seq alignment
of coronavirus genomes, MERS-CoV (NC_019843), SARS-CoV
(NC_004718) and SARS-CoV-2 (NC_045512) genomes were
downloaded from NCBI, and trimmed reads were aligned to
coronavirus genome by STAR (v2.5.1b) using default
parameters. To identify potential chimeric transcripts of
coronavirus and cellular transcripts from single-end RNA-seq
data, 30nt fastq reads from each end were extracted from raw
fastq reads and both were aligned to human and SARS-CoV-2
genomes respectively. Non-viral end of the chimeric reads were
mapped to consensus transposable element sequences using
STAR with parameters “~winAnchorMultimapmax 2000 -
outFilterMultimapNmax 1000” to get counts of transposons.
Integrative Genomics Viewer (IGV) and UCSC Genome
Browser was used for snapshot of transcriptome. R package
Deseq2 was used to get differential expressed genes. Metascape
was used to visualize functional profiles of genes and gene
clusters (Zhou et al.,, 2019). Graphs were created by R or Excel.
Images were organized by Adobe Illustrator.
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Accession Number

RNA sequencing data of coronavirus-infected human lung-
derived cells are from GSE122876 (transcriptome of MERS-
CoV-infected Calu-3 cells; single-read; MOI 2, treated for
24 h) (Yuan et al,, 2019), GSE56192 (transcriptome of MERS-
CoV and SARS-CoV infected MRCS5 cells; paired-end; MOI 2,
treated for 24 h), GSE147507 (transcriptome of SARS-CoV-2
infected A549 cells, Calu-3 cells, and NHBE cells; MOI 2, treated
for 24 h) (Blanco-Melo et al,, 2020). RNA sequencing data of
SARS-CoV-2-infected human intestinal organoids are from
GSE149312 (MOI 1, treated for 24 and 60 h, grown in
differentiation medium) (Lamers et al.,, 2020). SARS-CoV-2
infected Calu-3 cells were used to identify chimeric transcripts
of coronavirus and cellular RNA. RNA sequencing data of IRF1
knockout and control human hepatocytes infected with hepatitis
A virus are from GSE114916. RNA sequencing data of STAT1
knockout and control human HepG2 cells treated by IFN are
from GSE98372 (Chen et al,, 2017). RNA sequencing data of
human tissues and cell types are from GSE83115 (Zhu et al,
2016). RNA sequencing data of human early embryos and
embryonic stem cells are from GSE36552 (Yan et al, 2013).
RNA sequencing data of 8-cell mouse embryos and adult mouse
islet developed from zygotes with injection of sperm tsRNAs
from high-fat-diet males are from GSE75544 (Chen et al., 2016).

RESULTS AND DISCUSSION

Coronavirus Infection Disturbs Diverse
Biological Processes in Human Cells and
Can Stimulate ACE2 Expression Through
IRF1 and STAT1

Coronaviral infection led to not only respiratory failure but also
multiple organ dysfunction syndromes, indicating that
coronavirus impacts a wide range of human cells (Wang et al.,
2020). Transcriptome analysis may provide valuable information
on how human cells react with coronavirus entry.

To examine whether coronavirus infection disturbs expression
of specific gene sets in human cells, we analyzed public available
RNA-seq data of human lung-derived cells with infection of
MERS-CoV, SARS-CoV, and SARS-CoV-2. Through
comparison of transcriptomes before and after infection, we
identified thousands of dysregulated genes (adjusted p-value <
0.05) for each group (Figure 1A). Among those dysregulated
genes, we found that 26 genes were commonly upregulated after
infection of the three coronaviruses (Figure 1B), but very few
genes were identified to be commonly downregulated (Figure 1C).
GO analysis of the 26 commonly upregulated genes demonstrated
enrichment on inflammation, immunity and apoptosis related
pathways (Figure 1B). Through relative viral sequence content in
transcriptome, we found that the three coronaviruses can infect
various human lung-derived cells (Figure 1D), however, low dose
of coronavirus or using NHBE cells for infection were not
successful to support coronavirus replication (Figure S1).

ACE?2 is the cell receptor of SARS-CoV-2 (Zhou et al., 2020
Wrapp et al., 2020). Differently from robust expression of ACE2
in Calu-3 cells, ACE2 expression was undetectable in A549 cells,
but after SARS-CoV-2 infection, low level of ACE2 was observed
(Figure 1E). This indicates that transcription factors responding
to coronavirus infection induced ACE2 expression. Recent report
showed that ACE2 can be stimulated by interferon, and proposed
IRF1 and STAT1-binding sites near ACE2 transcription start site
(Figure S2) (Ziegler et al., 2020). Here, we noticed that
expression of both IRF1 and STAT1 were increased after
SARS-CoV-2 infection, and ACE2 expression was reduced
when IRF1 was depleted in virus-infected human cells or
STAT1 was depleted in interferon-treated human cells (Figure
1E). These results confirmed that IRF1 and STAT1 are essential
upstream activators of ACE2 upon virus infection. So, we
propose that SARS-CoV-2 might enter human cells with low
efficiency by bulk-phase endocytosis in A549 cells, inducing IRF1
and STAT1 expression which further enhances ACE2 expression
to facilitate receptor-mediated viral entry.

Coronavirus Infection Enhanced
Retrotransposon Expression in Human
Lung-Derived Cells

Next, we ask whether TE expression is impacted by coronavirus
infection. We first examined transcriptome of human lung
adenocarcinoma cell line Calu-3 after 24-h infection of MERS-
CoV (Yuan et al, 2019). We observed that expression of TE
including retrotransposons was generally activated after
coronavirus infection (Figure 2A). Further examination
documented that subfamilies of LINEs, SINEs, LTRs were
differentially upregulated by coronavirus (Figure 2B). LINE-1
is the mostly well-studied autonomous retrotransposon. Most
LINE-1 elements are inactivated in somatic cells, but some
escape variously evolved silencing mechanisms. Hence, we ask
whether evolutionarily old and young retrotransposons were
impacted by coronavirus infection differently. We compared
the ratio of fold change of specific LINE-1 element expression
ordered by predicted evolutionary ages (Khan et al., 2006), and
found that older and younger LINE-1 elements were similarly
influenced (Figure 2C). One of the major mechanisms for LINE-
1 silencing is DNA methylation, and we examined expression of
genes encoding DNA methyltransferases (DNMTs) and Ten-
eleven translocation (TET) enzymes mediating active DNA
demethylation. We observed that Tet genes were generally
upregulated after coronavirus infection (Figure 2D), and
upregulated DNA demethylation activity may lead to
demethylation of retrotransposon promoters. This result supports
that increased retrotransposon expression was caused by genome-
wide DNA demethylation. We obtained similar results in MERS-
CoV/SARS-CoV infected MRC5 cells which are noncancerous
human lung fibroblast cells (Figures 2A-D).

Recent COVID-19 outbreak is caused by the novel
coronavirus SARS-CoV-2. Here, we explored transcriptomes of
SARS-CoV-2 infected A549 and Calu-3 cells. Similar to MERS-
CoV and SARS-CoV infection, we found general increase of
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FIGURE 1 | Analysis of transcriptome alteration induced by infection of various coronaviruses. (A) MA plot (log ratio RNA abundance versus log abundance) of
RNA-seq data comparing control and coronavirus-infected cells. Differentially expressed genes with adjusted P<0.05 are highlighted in red. Numbers of up/down-
regulated genes are indicated. Calu-3, MRC5, and A549 are all human cells with lung origin. MERS, MERS-CoV; SARS, SARS-CoV; CoV2, SARS-CoV-2. (B) Venn
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processes (right panel). (C) Venn diagrams document only three commonly downregulated genes by SARS-CoV-2 infection in two cell types. (D) Bar graph indicates
percentage of reads mapped to coronavirus genome to total mapped reads in human cells infected with coronavirus. (E) Bar graphs demonstrate that SARS-CoV-2
infection caused change of ACE2 expression from below detection to low level in A549 cells. SARS-CoV-2 infection also caused upregulation of IRF1 and STATT.
IRF1 knockout in human hepatocytes infected with hepatitis A virus decreased ACE2 expression. STAT1 knockout in IFN-treated human HepG2 cells decreased
ACE2 expression.

multiple transposable elements (Figures 2A, B), no biased = more severe. Moreover, retrotransposon is able to encode
impact of older and younger LINE-1 elements by SARS-CoV-2  proteins and can form retrovirus-like particles (Grow et al,
infection (Figure 2C). SARS-CoV-2 infection also causes  2015), so examination of coronavirus-infected samples may
upregulation of TET gene expression (Figure 2D). Similarly, = need to discriminate coronavirus from retrovirus-like particles
SARS-CoV-2 was identified to have the capability of infecting  because of upregulation of retrotransposons.

human intestinal organoids (Figure 2E) and increased .
retrotransposon expression can also be observed post infection Upregulation of Retrotransposon May Be

in a time-dependent manner (Figure 2F). Long-Term Memorized Epigenetically
Therefore, upregulation of retrotransposon seems to be a ~ We then ask whether retrotransposon upregulation can be long-
common event induced by coronavirus infection, possibly  term inherited through several generations of cell divisions. We
through enhancing global DNA demethylation activity. Despite ~ found the mouse model of transgenerational epigenetic
of similar upregulation of retrotransposon families triggered by the ~ inheritance of acquired traits may provide molecular insights
three coronaviruses, individual retrotransposons are differently  into this question.
dysregulated, and this may cause various phenotypes in human tRNA-derived small RNAs (tsRNAs) in sperm were reported to
cells. Note that above results were from 24-h infection of  transmit abnormal epigenetic information into preimplantation
coronaviruses, and impact of long-term infection should be  embryo, and epigenetic abnormality was further inherited to adult

N
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tissue, causing metabolic disorders (Chen et al., 2016). Two kinds
of tsRNAs were previously identified to regulate retrotransposon
LTR (Schorn et al., 2017), so we ask whether abnormal
retrotransposon activity is inheritable during this process. We
analyzed the transcriptome of cleavage mouse embryo and adult
islet originated from zygote with injection of tsRNA of sperm from
normal or high-fat diet (HFD) male mice. We found that LINE,
SINE, and LTR retrotransposons were all upregulated in 8-cell
embryo when HFD tsRNA was injected (Figure 3A). Notably,
LTR retrotransposon also showed upregulation in adult islet
(Figure 3B). Further analysis on LTR families supported that
upregulation of ERV1 expression was inherited from early embryo
(Figure 3C) to adult islet (Figure 3D), probably through DNA
methylation inheritance at ERV1 locus. Therefore, above result
indicates that enhancement of retrotransposon expression, ERV1
in this case, may be long-term inherited, even from cleavage-stage
early embryos to adult tissues, with change of DNA methylation as
the potential molecular mechanism (Figure 3E).

SARS-CoV-2 RNA May Form Chimeric
Transcripts With Retrotransposon RNA
Especially LINE for Potential Insertion Into
Host Genome

Coronaviruses are RNA viruses and are not supposed to integrate
into host genome by themselves. However, it was reported that
several RNA viruses have capacity to recombine with
retrotransposons to invade host genome (Geuking et al., 2009).

Regarding contribution of SARS-CoV-2 RNA to total
transcriptome in infected Calu-3 cells to be as high as 15.32%
(Figure 1D), we explored in the transcriptome the potential
chimeric transcripts of SARS-CoV-2 and cellular RNA, and
obtained subtranscriptome with chimeric reads.

We found that 0.23% of SARS-CoV-2 RNA formed chimeric
transcripts with non-TE genes and 0.14% with TE (Figure 4A).
Surprisingly, TE-virus chimeric reads contribute 37.36% to total
mapped chimeric reads, while TE reads are only 2.83% in total
mapped reads (Figure 4B), indicating that TE is much more
efficient to form chimeric transcripts with SARS-CoV-2 RNA
than non-TE genes. We randomly extracted reads from
subtranscriptome of chimeric transcripts of SARS-CoV-2 and
cellular RNA, and confirmed identity of the chimeric reads
(Figure 4C).

We further analyzed distribution of TE subfamilies in total
transcriptome and subtranscriptome with chimeric reads, and
found that reads of retrotransposon LINE, SINE, and LTR were
all enriched in the subtranscriptome of chimeric reads (Figure 4D).
Unexpectedly, only LINE RNA was overrepresented in
subtranscriptome with chimeric reads than in total transcriptome,
and further analysis showed that virus-LINE-1 was overrepresented
in virus-LINE reads (Figure 4E). This demonstrates high efficiency
of LINE family especially LINE-1 in forming chimeric transcript
with SARS-CoV-2 RNA. LINE-1 is autonomous retrotransposon
with retrotransposition activity, and RNA-RNA ligation mediated
by endogenous RNA ligase RtcB was previously reported for LINE-
1 to carry other types of RNA for host genomic invasion
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FIGURE 3 | Potential long-term memory of transposable element (TE) upregulation. (A) Expression of TE subfamilies in 8-cell (8C) embryos developed from normal
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(Moldovan et al, 2019), so similar mechanisms may apply for
SARS-CoV-2 transcripts. Further examination of human genome
from SARS-CoV-2 infected human cells or biopsies will be
particularly important to identity existence of integration of
coronavirus RNA into human genome.

Moreover, to identify which region of SARS-CoV-2 RNA
prone to form chimeric transcripts with cellular RNA, we
obtained subtranscriptome of chimeric transcripts, extracted
SARS-CoV-2 reads, and aligned to SARS-CoV-2 genome, and
viewed on IGV to find that the front and the rear parts, especially
the rear part of coronavirus RNA were biased in forming
chimeric transcripts (Figure 4F). Moreover, our further
examination showed that only the rear part of SARS-CoV-2 is
prone to form chimeric RNA with TE/LINE (Figure 4F).
However, more direct evidence is needed to prove existence of
chimeric transcripts and potential human genome integration,
for example, through genome sequencing of blood cells from
coronavirus-infected patients. Based on above analysis, we
suggest that primers and probes for SARS-CoV-2 testing are
designed in middle of the SARS-CoV-2 genome.

Our Hypothesis on Coronavirus-
Retrotransposon Interaction

Based on above analysis, we propose our hypothesis that
coronavirus infection may increase retrotransposon expression
through modulating TET activity to reduce global DNA
methylation. Increased retrotransposon RNA may further form
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FIGURE 4 | Retrotransposon-coronavirus chimeric transcripts were observed in SARS-CoV-2 infected human cells. (A) Bar graph shows relative enrichment of
chimeric transcripts of coronavirus and cellular transcripts to total coronavirus transcripts. (B) Examination of ratio of mapped transposable element (TE) reads to
non-TE gene reads in total transcriptome and in subtranscriptome of chimeric reads (between viral and cellular transcripts). (C) Example of chimeric reads with
junctions of coronavirus-gene, coronavirus -LINE and coronavirus-SINE. (D) Pie charts demonstrate distribution of TE subfamilies in total transcripts (left panel) and
coronavirus-retrotransposon chimeric transcripts (right panel) in SARS-CoV-2 infected Calu-3 cells. Red arrow indicates overrepresentation of LINE reads. (E) Pie
charts demonstrate distribution of LINE members in total transcripts (left panel) and coronavirus-retrotransposon chimeric transcripts (right panel) in SARS-CoV-2
infected Calu-3 cells. Red arrow indicates overrepresentation of LINE-1 (L1) reads. (F) IGV snapshot of SARS-CoV-2 transcripts (upper first) and chimeric transcripts
(between viral and cellular transcripts, viral and TE transcripts, as well as viral and LINE transcripts, lower three) identified in infected Calu-3 cells. SARS-CoV-2
genome was used for alignment. Logarithmic scale is displayed. The reference panel was obtained from UCSC genome browser.

chimeric transcripts with coronavirus RNA, and integrate viral
genomic fragments into human genome. Moreover, enforced
retrotransposon expression may be harmful and probably long-
term inherited (Figure 5A).

TE is widely expressed in human tissues (Figure 5B), with
highest enrichment in early human embryos (Figure 5C). The cells
used in this study are mainly derived from human lung and also
robustly express TE (Figure 5D). Moreover, TE subfamilies are
variable in different cell types (Figures 5E-G), suggesting extensive
but specific phenotype upon global retrotransposon upregulation.

The first concern regarding global retrotransposon
upregulation is genome instability. Retrotransposition activity is
high in early embryo (Grow et al,, 2015) and brain (Zhao et al,
2019) during normal development, so potential integration of
coronavirus sequence into human genome is suggested to be
scrutinized for these cells. It was also reported that
retrotransposon upregulation is positively correlated with tumor
progression (Jung et al., 2018), causing genomic deletion,
translocation, and duplication (Rodriguez-Martin et al., 2020).
What’s more, increased expression of retrotransposon LINE-1
contributes to age-associated inflammation in several tissues (De
Cecco et al,, 2019). Additionally, vapers and smokers demonstrated
higher retrotransposon expression and hypomethylation at
associated loci (Caliri et al., 2020). Also, people with neurological
disorders may have higher retrotransposon expression and
retrotransposition activity (Terry and Devine, 2019). These
reports not only show that upregulation of retrotransposon
expression may cause several diseases, but also indicate that
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persons with higher basal level of retrotransposons are supposed to
be more susceptible to coronavirus infection and have increased risk
of symptomatic infection. In support of this, recent analysis of
SARS-CoV-2 patients showed that cancer patients (Liang et al.,
2020) and aged people (Wu et al., 2020) get more severe symptoms
after infection. Therefore, inhibition of reverse transcriptase activity
in human cells may be necessary during pharmaceutical treatment
of coronavirus-infected patients, especially those with higher basal
level of retrotransposons.

The second concern regarding global retrotransposon
upregulation is disturbance of retrotransposon adjacent gene
expression. Accumulated evidence shows that retrotransposons
are not just genomic fossils, but have molecular functions. For
example, physically adjacent retrotransposon activates gene
promoter of TMEM156 or MYADM by readthrough mechanism
(Figure 5H, Figures S3-S5, Table S1) in both SARS-CoV-2
infected A549 and Calu-3 cells, and the read-through mechanism
for BCL3 gene is shown in SARS-CoV-2 infected A549 cells
(Figure S6). Also, transcripts of LINEs, SINEs and low-
complexity repeats physically interacted with specific genomic
areas to play distinct roles (Ding et al., 2004).

The third concern regarding global retrotransposon
upregulation is whether coronavirus RNA can enter nucleus and
associate with specific genomic regions through sequence
homology, similar like the behavior of retrotransposon RNA
(Ding et al,, 2004; Fadloun et al., 2013). Blast analysis in NCBI
using SARS-CoV-2 genome showed no similar sequence in
human genome. We further used CENSOR program (Jurka,
1998) to analyze the SARS-CoV-2 genome and all predicted
candidate repetitive elements are less than 200bp. Therefore, no
evidence supports that SARS-CoV-2 RNA has the ability to
recognize human genome by homologous sequence even these
transcripts enter nucleus by chance.

CONCLUSIONS

Taken together, we demonstrate that coronavirus infection
increases retrotransposon expression in human cells, possibly
through global DNA hypomethylation, and increased
retrotransposon RNA may further form chimeric transcripts with
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coronavirus RNA for integration of viral genomic fragments into
human genome. These enhanced retrotransposon transcripts may
be long-term inherited to harm host organs. Therefore, we propose
that retrotransposon upregulation induced by coronavirus
infection may have potential contributions to coronavirus caused
symptoms, and suggest careful transcriptome examination and
genetic tests in future investigations on coronavirus-infected
patients. Finally, we note that our hypothesis needs further
validation in a more direct manner.
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