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Treatment of leishmaniasis is a challenging subject. Although available, chemotherapy is
limited, presenting toxicity and adverse effects. New drugs with antileishmanial activity are
being investigated, such as antiparasitic compounds derived from plants. In this work, we
investigated the antileishmanial activity of the biflavonoid amentoflavone on the protozoan
Leishmania amazonensis. Although the antileishmanial activity of amentoflavone has
already been reported in vitro, the mechanisms involved in the parasite death, as well
as its action in vivo, remain unknown. Amentoflavone demonstrated activity on intracellular
amastigotes in macrophages obtained from BALB/c mice (IC50 2.3 ± 0.93 mM). No
cytotoxicity was observed and the selectivity index was estimated as greater than 10.
Using BALB/c mice infected with L. amazonensis we verified the effect of an intralesional
treatment with amentoflavone (0.05 mg/kg/dose, in a total of 5 doses every 4 days).
Parasite quantification demonstrated that amentoflavone reduced the parasite load in
treated footpads (46.3% reduction by limiting dilution assay and 56.5% reduction by Real
Time Polymerase Chain Reaction). Amentoflavone decreased the nitric oxide production
in peritoneal macrophages obtained from treated animals. The treatment also increased
the expression of ferritin and decreased iNOS expression at the site of infection.
Furthemore, it increased the production of ROS in peritoneal macrophages infected in
vitro. The increase of ROS in vitro, associated with the reduction of NO and iNOS
expression in vivo, points to the antioxidant/prooxidant potential of amentoflavone, which
may play an important role in the balance between inflammatory and anti-inflammatory
patterns at the infection site. Taken together these results suggest that amentoflavone has
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the potential to be used in the treatment of cutaneous leishmaniasis, working as an ally in
the control and development of the lesion.
Keywords: amentoflavone, biflavonoid, prooxidant, antileishmanial activity, intralesional treatment, cutaneous
leishmaniasis, Glucantime
INTRODUCTION

Leishmaniases are a complex of infectious diseases caused by
several species of protozoa from the genus Leishmania, which are
transmitted between vertebrate and invertebrate hosts by the bite
of infected female sandflies. The clinical manifestations range
from more severe forms such as visceral leishmaniasis (VL) and
mucous leishmaniasis (ML) to more common and benign forms
as cutaneous leishmaniasis (CL). In general, the form and
severity of the disease depends on the infecting species
combined with the host genetics and the immune response
generated by the host (Colmenares et al., 2002). With a wide
global distribution, leishmaniases put at risk more than one
billion people living in endemic areas. It is estimated that 30,000
new cases of visceral leishmaniasis and more than one million
cases of cutaneous leishmaniasis occur annually (World Health
Organization, 2020).

Pentavalent antimonials and amphotericin B are the most
widely used drugs for the treatment of leishmaniases. They have
important limitations such as high toxicity, adverse effects and
parenteral administration. To further aggravate the current
scenario of leishmaniases chemotherapy, treatment varies in
effectiveness as a result of the variation in the intrinsic
sensitivity of the different Leishmania species, acquired
resistance and differences in the host immune response (Croft
and Coombs, 2003). In 2010, the World Health Organization
(WHO) promoted the use of local therapies to treat cases of
uncomplicated CL (World Health Organization, 2010) and the
intralesional approach was included in the CL treatment
recommendations in Brazil (Brasil, 2017), after studies in the
country that had already shown the benefits of CL local
treatment (Oliveira-Neto et al., 1997; de Oliveira Duque et al.,
2016). These studies highlighted not only the decrease in adverse
effects and toxicity, but also the cost and accessibility of
treatment, especially in rural areas (Añez et al., 2018; Arboleda
et al., 2019; de Oliveira Duque et al., 2019). Therefore,
intralesional treatment can offer advantages such as simplicity,
efficiency, and safety, especially when the patient conditions do
not allow systemic chemotherapy (de Oliveira Duque
et al., 2019).

In the search for novel and effective treatments to combat
leishmaniases, natural products have been used. In addition to
exhibiting potential as therapeutic compounds, natural products
may also contribute to the development of new drugs based on
their chemical structures (Gervazoni et al., 2020). The
biflavonoid amentoflavone (3’, 8’’ - Biapigenin) is an apigenin
dimer linked by a C3’-C8’’ covalent bond. Many biological
amentoflavone activities have been described, both in vitro and
in vivo.
gy | www.frontiersin.org 2
Several activities and effects have been described for this
flavonoid, including a number of studies investigating its anti-
inflammatory (Cao et al., 2017), antioxidant (Saroni Arwa et al.,
2015; Su et al., 2019), anti-tumor (Yen et al., 2018; Hsu et al.,
2019), neuroprotective (Chen et al., 2018) and, recently, anti-
SARS-CoV-2 (Mishra et al., 2020) properties. Antileishmanial
activity has also been investigated. The biflavonoid was active
against promastigotes (Njock et al., 2017) and in a previous
study, our group showed that amentoflavone has a
leishmanicidal action on intracellular forms, independent of
nitric oxide (NO) production (Rizk et al., 2014).

In this study, we evaluated the leishmanicidal activity of
amentoflavone in vivo, using the intralesional route after
BALB/c mice infection with Leishmania amazonensis
promastigotes, and searched for its mechanism of action.
Intralesional treatment with amentoflavone showed no toxicity
and reduced the parasitic burden in infected animals, revealing
its potential use in the treatment of cutaneous leishmaniasis.
Furthemore, amentoflavone treatment increased reactive oxygen
species (ROS) production in murine macrophages, consequently
reducing the number of intracellular amastigote forms. These
results points for the amentoflavone prooxidant effect as its
mechanism of action against Leishmania sp infection.
MATERIALS AND METHODS

Test Compounds
Amentoflavone was purchased from Sigma-Aldrich® (HPLC
grade ≥ 98%). A stock solution was prepared in DMSO
(Sigma-Aldrich) and then diluted in the culture medium to
obtain the concentrations used in the in vitro assays. For the in
vivo experiments, amentoflavone was solubilized directly in the
administration vehicle, as follows: 10% Ethanol + 10%
Kolliphor®EL (Sigma-Aldrich) + 1% DMSO in phosphate
saline (PBS Buffer) pH 7.2. The N-methyl glucamine
(Glucantime®, Sanofi-Aventis), was kindly provided by the
pharmacy of the National Institute of Infectology/FIOCRUZ,
Rio de Janeiro, and diluted in PBS when necessary.

Parasites
Amastigotes of L. amazonensis (IFLA/BR/1967/PH8) were
isolated from cutaneous lesions of BALB/c mice and
maintained as promastigotes at 26°C in liquid medium
LIBHIT (Costa and Lagrande, 1981). The medium was
supplemented with 10% Fetal Bovine Serum (FBS, Gibco),
10,000 U/L penicillin and 10 mg/L streptomycin (Sigma-
Aldrich). Promastigote forms grown in axenic culture were
used for infection. Fresh cultures were unfreezed every six
February 2021 | Volume 11 | Article 615814
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passages and always used in the stationary phase (fifth day of
growth) to ensure infectivity.

Intracellular Amastigote Activity
Thioglycollate-elicited peritoneal macrophages from BALB/c
mice were seeded in 24-well plates containing coverslips at a
concentration of 2 × 105 cells/well in complete RPMI medium -
RPMI-1640 medium (Sigma-Aldrich) supplemented with 10%
FBS (Gibco), 200 mM L-glutamine, 10,000 U/L penicillin and 10
mg/L streptomycin (Sigma-Aldrich). After adhesion, plates were
washed with PBS to remove non-adherent cells and kept
overnight at 34°C /5% CO2. Subsequently, macrophages were
infected with promastigote forms of L. amazonensis 10:1
(parasite/macrophage) in the stationary growth phase for 6 h,
and then the culture was washed with PBS pH 7.0 to remove
promastigotes from the supernatant. After that, different
concentrations of amentoflavone (0–11.14 mM) were added to
wells containing infected macrophages, and plates were
incubated at 37°C/5% CO2 for 72 h. After Bouin-fixing and
Giemsa-staining, cells were analyzed by light microscopy. The
number of intracellular amastigote forms was determined in 200
macrophages/coverslip. The concentration that inhibits 50% of
growth (IC50) was calculated by dose-response and nonlinear
regression analysis, using the GraphPad Prism® 7.0 software.

Cytotoxicity
Peritoneal macrophages (1 × 105 cells/well) in complete RPMI
medium were seeded in 96-well plates and incubated overnight
at 37°C/5% CO2. After removing non-adherent cells,
macrophages were treated with different concentrations of
amentoflavone (0–22.3 µM) and incubated for another 72 h.
Cell viability was determined using MTT colorimetric assay, as
follows. After 4 h of incubation in the dark at 37°C with MTT,
the culture supernatant was completely removed and 100 µl of
DMSO added per well. For the complete dissolution of formazan
crystals formed in viable cells, the plates were shaken for 15 min.
The absorbance was measured at 570 nm using a
spectrophotometer (EZ Read 400®, Biochrom). The CC50 value
was determined by logarithmic regression analysis using
GraphPad Prism® 7.0. The selectivity index (SI) was calculated
as macrophages CC50/intracellular amastigotes IC50.

In Vivo Experimental Protocol
Female BALB/c mice (4–6 weeks-old) ranging from 20 to 25 g
were randomly distributed into five groups. Animals of the
groups 1 to 3 were subcutaneously (SC) infected with 1 × 104

promastigote forms of L. amazonensis in the left hind footpad,
while animals of the groups 4 and 5 were kept uninfected. As
soon as the lesions appeared, on the 28th day after the inoculum,
all animals were weighed and the thickness of their footpads,
right and left, was measured with a caliper (0.1 mm,
Schnelltäster, HC Kroplin). Then, intralesional treatment (IL)
with amentoflavone (0.5 mg/kg/dose) was initiated, through
subcutaneous injection in the lesion site (groups 1 and 4). N-
metil glucamine (64 mg Sb5+/kg/dose) was used as a positive
control, and amentoflavone vehicle (10% Ethanol/10%
Cremophor/1% DMSO/PBS) as a negative control of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
treatments (groups 3 and 5, respectively). All treatments were
performed in five doses, administered 4 days apart. The animals’
weight and footpad thickness were monitored weekly. One week
after the last treatment dose, animals were weighed and the
lesion was measured just before being euthanized with Xylazine
Hydrochloride (30 mg/kg, Syntec) associated with Ketamine
Hydrochloride (300 mg/kg, Syntec). After euthanasia, tissue
and blood samples were collected for subsequent analysis.

Toxicology
Immediately after euthanasia, mice blood was collected (1 ml)
via cardiac puncture and centrifuged to separate the serum. Sera
were sent to the Animal Clinical Analysis Core Facilities of the
Institute of Science and Technology in Biomodels (ICTB, Fiocruz
RJ) to measurement of aspartate transaminase (AST), alanine
transaminase (ALT), and creatinine in a Vitros 250 equipment
(Ortho clinical - Jonhson & Jonhson).

Parasite Load in the Lesion Site
Parasite load was estimated by a limiting dilution assay (LDA)
(Cardoso et al., 2010). In brief, footpads were aseptically removed,
weighed, and macerated in LIBHIT medium. Several sequential
1:2 dilutions were plated in 96-well “U” round-bottom plates,
which were incubated at 26°C. Between the 5th and 10th day, the
plates were analyzed by visualization in an inverted microscope
(Axiovert 25®, Zeiss) to determine the last well containing at least
one parasite in its promastigote form. The parasite load of footpads
was calculated from the last dilution that contained parasites,
divided by the weight of the respective organ. The results were
expressed as the number of parasites per gram of tissue following
the method described by Taswell (1984). The percentage of
reduction in the parasite load was calculated considering the
group treated with vehicles as having 100% of infection.

Quantitative PCR (qPCR) was used to confirm the parasite
load in the lesion. After DNA extraction by a routine phenol-
chloroform technique (Sambrook and Russell, 2006), 20 ng of
total DNA were amplified using a specific primer for Leishmania
sp. kDNA3 (forward 5’GGGTAGGGGCGTTCTGC3’, reverse
5’CCCGGCCTATTTTACACCAACC3’) (Weirather et al.,
2011), as well as for the mouse b-actin endogenous control
(forward 5’CTTGGCTGAACCATCAC3’, reverse 5’GGTCCT
CATCGTTTAGCA3’) (Giulietti et al., 2001). Amplification
was performed in a QuantStudio 3 equipment (Applied
Biosystems) using GoTaq® PCR Master Mix (Promega), with
250 nM of kDNA3 or 100 nM of b-actin primers per reaction.
PCR conditions were as follows: hold at 95°C for 2 min, followed
by 40 cycles of 95°C for 15 s and 62°C for 1 min followed by a
dissociation curve. Standard curves were generated from 10-fold
serial dilutions (100 ng–1 pg) of axenic Leishmania DNA and
used to calculate parasite concentration in the samples.

Histopathological Analysis
The lesion site, draining lymph nodes, spleen and liver were
routinely processed for histopathological analysis. Five
micrometers thick paraffin sections were obtained in a rotating
microtome (HM 360, Microm) and stained using the hematoxylin-
eosin (HE) or Giemsa techniques. Photomicrographs were obtained
February 2021 | Volume 11 | Article 615814
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using a microscope (Axioplan 2, Zeiss) with image capture
(AxioCam ERc 5s, Zeiss).

Nitric Oxide Production by
Peritoneal Macrophages
Peritoneal macrophages collected from all groups were plated in
96-well plates at a concentration of 5 × 105 cells/well in RPMI
complete medium and incubated for 48 h, at 37°C/5% CO2. Cells
were stimulated with total L. amazonensis antigen (1 µg/ml) or
Lipopolysaccharide (LPS, 1 µg/ml) (positive control).
Unstimulated cells were maintained as negative control. Cell
culture supernatants were harvested and used to evaluate nitric
oxide production by the Griess reaction (Rizk et al., 2014).

Local Expression of iNOS and Nrf2-
Related Genes
Total RNA was extracted from mouse footpads using a standard
TRI Reagent® (Sigma-Aldrich) protocol, followed by DNAse
treatment. RNA concentration and quality were determined by
spectrophotometry (NanoDrop One, ThermoScientific).
Complementary DNA (cDNA) was synthesized using iScript™

cDNA Synthesis kit (Bio-Rad) and 1 µg of total RNA, according
to the manufacturer’s recommendations. Then, qPCR was
performed on QuantStudio 3 equipment (Applied Biosystems).
The sequences of the specific primers targeting mouse genes were
Nfe2l2 - nuclear factor, erythroid derived 2, like 2, transcript
variant 1 (Nrf2) (forward 5’TCACACGAGATGAGCTTAG
GGCAA3’, reverse 5’TACAGTTCTGGGCGGCGACTTTAT3’),
Hmox1 - heme oxygenase 1 (HO-1) (forward 5’CCCAAAACT
GGCCTGTAAAA 3’, reverse 5’CGTGGTCAGTCAACA
TGGAT3’), L-ferritin (forward 5’TTCCAGGATGTGCAGA
AGCC3’, reverse 5’AAGAGGGCCTGATTCAGGTTC3’) and
Actb - actin, beta (b-actin) (forward 5’AGCTGCGTTTTACAC
CCTTT3 ’ , reverse 5’AAGCCATGCCAATGTTGTCT3 ’)
(Tomiotto-Pellissier et al., 2018), as well as Nos2 - nitric oxide
synthase 2, inducible, transcript variant 1 (iNOS) (foward 5’GGA
TCTTCCCAGGCAACCA3’, reverse 5’CAATCCACAACTCGC
TCCAA3’) and Rplp0 - ribosomal protein, large, P0 (Rplp0)
(foward 5’GCCAGCTCAGAACACTGGTCTA3’, reverse
5’ATGCCCAAAGCCTGGAAGA3’) (Cardoso et al., 2020).
The reaction mixtures contained 10 µl of GoTaq® qPCR
Master Mix (Promega), 20 ng of cDNA for Nrf2, HO-1 and b-
actina targets, and 100 ng of cDNA for Rplp0 and iNOS targets;
100 nM of Nrf2, HO-1, ferritin and b-actin primers, 600 nM of
iNOS primer and 900 nM of Rplp0 primer in a final volume of 20
µl. Cycling conditions were 2 min at 95°C, 40 cycles of 15 s at
95°C and 1 min at 60°C (HO-1, ferritin, b-actin) or 62°C (Nrf2, b-
actin, Rplp0 and iNOS), followed by the dissociation curve. The
results were analyzed with QuantStudio™ Design & Analysis
software (Applied Biosystems). The relative quantification of
mRNA of each gene was estimated by the 2-DDCT method, with
the b-actin and Rplp0 mouse genes as endogenous control.

ROS Measurement
The levels of intracellular ROS in macrophages infected and
treated with amentoflavone were measured using the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
permeable dye 2 ’ , 7 ’ - dichlorofluorescein diacetate
(H2DCFDA). In the cell cytoplasm, this dye is deacetylated
by cellular esterases and the compound formed oxidized by the
ROS present, resulting in a highly fluorescent compound.
Peritoneal macrophages obtained as described above were
seeded in black 96-well plates at a density of 2 × 106 cells/
well. After 30 min, the plates were washed with PBS to remove
non-adherent cells and the adhered cells kept at 34°C/5% CO2

overnight. Promastigote forms of L. amazonensis were added
(10 parasites per cell) and the cells incubated for 5 h at 34°C.
The cells were washed twice with PBS and the plate was kept an
additional hour at 34°C before treatment. The concentrations
of 1.15 mM (1/2 IC50), 2.3 mM (IC50), 4.6 mM (2× IC50), or
9.2 mM (4× IC50) of amentoflavone were added and the plates
incubated for 24, 48 or 72 h. Antimycin B (10 mM) and glucose
(60 mM) + glucose oxidase (20 units/ml) (G/GO) were used as
positive controls. After the incubation times, medium was
discarded and the macrophages washed once with Hank’s
balanced salt solution (HBSS). Then, cells were incubated
with H2DCFDA (20 mM) for 30 min at 37°C. Fluorescence
was measured by fluorescence spectroscopy (SpectraMax M2,
Molecular Devices), at 507 nm and 530 nm (excitation/
emission wavelengths).

Amentoflavone In Silico
Toxicity Evaluation
To predict the toxicity of amentoflavone, the pkCSM tool was
used (Pires et al., 2015). The SMILES (simplified molecular-input
line-entry system) used for in silico analysis was as follows:
C1=CC(=CC=C1C2=CC(=O)C3=C(O2)C(=C(C=C3O)O)
C4=C(C=CC(=C4)C5=C C(=O)C6=C(C=C(C=C6O5)O)O)
O)O.

Ethics Statement
Female BALB/c mice (4–6 weeks-old) were obtained from the
Institute of Science and Technology in Biomodels (ICTB,
Fiocruz) and kept in an experimental animal facility with
controlled room temperature, water, and food ad libitum. All
procedures involving the use of animals were previously
evaluated and approved by the Animal Use Ethics Committee
of the Oswaldo Cruz Institute (CEUA/IOC), under licenses N°.
L-053/2016 and N°. L-026/2019.
RESULTS

Amentoflavone Was Active Against L.
amazonensis Intracellular Amastigotes
The treatment with amentoflavone reduced the amount of
intracellular amastigotes in murine macrophages. The two
highest tested concentrations (5.57 and 11.14 µM) reduced in
57% the total number of amastigotes, with no significant
difference between them (t-test, p = 0.9244) (Figure 1A). The
IC50 calculated from a non-linear regression curve was 2.3 ± 0.93
µM (Figure 1B).
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Rizk et al. Amentoflavone in Leishmania Infected Mice
Amentoflavone Presented No Signs of
Toxicity In Silico, In Vitro or In Vivo
To perform the in silico toxicity analysis of amentoflavone, we
used the pkCSM tools (Pires et al., 2015). Amentoflavone showed
absence of Ames toxicity, hepatotoxicity, skin sensitization,
M innow tox i c i t y , and non - inh ib i t o r o f hERG I
(Supplementary Table I), suggesting that amentoflavone is
safe. In fact, amentoflavone was not cytotoxic to peritoneal
macrophages at the tested concentrations for a period of
72 h. The viability of cells treated with the highest tested
concentration (22.3 µM) was not significantly different from
the mock-treated control cells. The selectivity index in vitro was
estimated to be greater than 10, but it could not be calculated
since the higher concentration essayed was not toxic to cells.
When the drug was intralesionally injected in BALB/c infected
mice, there was no weight loss and the survival rate was
100% throughout the treatment. Intralesional treatment with
amentoflavone did not show hepatic or renal toxicity since no
alterations were observed in the biochemical markers ALT, AST
and creatinine. Similar results were observed in animals treated
with the reference drug (Glucantime®) and in mock-
treated controls.

Amentoflavone Reduced Parasitic Burden
in L. amazonensis-Infected Mice
Intralesional treatment with amentoflavone (0.05 mg/kg/dose
every 4 days in a total of 5 doses) led to a significant reduction
(p = 0.0014) in the size of the lesion just after the last dose of
subcutaneous treatment, 21 days after the start of treatment, in
comparison to the mock-treated group. Nevertheless, after the
end of treatment, lesions regained their growth, reaching the
same size as the control, one week later. The group that received
intralesional Glucantime® maintained the same lesion size
throughout the treatment, reaching the end of it with a
significantly smaller lesion than the control group treated with
vehicle (p < 0.0001) (Figure 2A).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Seven days after the last dose of intralesional treatment,
animals were euthanized and the parasite load at the lesion site
measured by a limiting dilution assay (LDA) and quantitative
PCR (qPCR). Amentoflavone treatment significantly reduced the
number of viable parasites by 46.3% and parasite DNA by 56.1%
in the footpad, when compared to vehicle-treated animals (p <
0.0001 and p = 0.0292, for ADL and qPCR, respectively).
Glucantime® induced a strong reduction in the parasite load
(74.4% and 99.9%, for ADL and qPCR, respectively) as compared
to mock-treated animals (Figures 2B, C and Supplementary
Table II). The two techniques used to calculate parasite load
presented a positive correlation (r = 0.825 on a Spearman test;
p = 0.0003).

Histological Findings
Histological evaluation of footpad, draining popliteal lymph
node, liver and spleen of non-infected animals did not show
evident histopathological alterations. However, discrete foci of
inflammatory infiltrate were observed in the footpad, with the
presence of mast cells and a slight increase in collagen fibers,
possibly due to the trauma of the subcutaneous injections of the
vehicle. On the other hand, footpads of the infected mock-treated
animals showed an intense parasitism among the muscle fibers;
thinning of the conjunctiva between the superficial dermis and
the epidermis; mast cells in the middle of the dermis and the first
muscle layer; macrophages intensely parasitized and presence of
an inflammatory infiltrate predominantly composed of
polymorphonuclear cells (Figure 3A). The lymph nodes
showed intense parasitism and presence of giant cells (Figure
3B). No histopathological alterations were observed in the liver
and spleen of these animals. The infected animals treated with
0.05 mg/kg/dose of amentoflavone also showed moderate to
intense parasitism in the footpad, with a similar inflammatory
infiltrate (Figure 3C). The lymph nodes presented amastigotes
and strong lymphoid activation and proliferation of germinal
centers, with follicular hiperplasia (Figure 3D). The liver and
A B

FIGURE 1 | In vitro amentoflavone effect on macrophages infected with L. amazonensis. BALB/c mice peritoneal macrophages were infected with L.
amazonensis promastigotes and treated with amentoflavone (0–11.14 mM) for 72 h. (A) Total intracellular amastigotes in 200 macrophages and (B) Dose-
response curve of amentoflavone. Mock-treated infected cells were used as a control (0 mM). The columns represent the mean ± S.E.M. of quadruplicates.
Significant difference (1-way ANOVA, followed by Tukey post-test) in relation to the mock-treated control *p < 0.05, **p < 0.01, ***p < 0.0001.
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spleen showed no parasitism, with the later showing a greater
lymphoid activation and several of germinal centers in
comparison to the infected mock-treated group. Footpad of
infected animals treated with 64 mg Sb5+/kg/dose of
Glucantime® showed low parasitism; fibrosis foci; presence of
fibroblasts, macrophages, mast cells, and some eosinophils
(Figure 3E). The lymph node showed low parasitism; presence
of giant cells, as well as many polymorphonuclear cells and some
mast cells (Figure 3F). The spleen, on the other hand, did not
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
show parasitism. No changes were found in the liver of
these animals.

Amentoflavone Exerts Both Antioxidative
and Prooxidative Responses
To evaluate whether NO production could be associated with
amentoflavone mechanism of action, peritoneal macrophages
from BALB/c mice, infected or not with L. amazonensis and
treated intralesionally with amentoflavone or Glucantime were
stimulated in vitro with soluble antigens of L. amazonensis, LPS
(positive control) or medium (negative control). As expected,
LPS stimulated-cells produced NO, whereas non-stimulated cells
did not. Leishmania antigens were able to stimulate NO
production, but peritoneal macrophages taken from mice
treated with amentoflavone produced significantly lower NO
than cells from mock-treated animals. This decrease occurred in
cells derived from both infected and non-infected animals (p =
0.0270 and p = 0.0035, respectively) (Figure 4A). In addition,
when iNOS expression in the lesion was evaluated by RT-qPCR,
although no significant difference was observed, treated animals
presented slightly lower iNOS expression than infected mock-
treated animals (Figure 4B).

Recently, amentoflavone has been reported as a molecule
capable of triggering the Nrf2 activation pathway, a gene
responsible for triggering antioxidant responses in the cell
(Chen et al., 2018; Wahyudi et al., 2018). Several studies point
out to Nrf2 as responsible for the antioxidant effect of
leishmanicidal compounds (Tomiotto-Pellissier et al., 2018;
Cataneo et al., 2019; Miranda-Sapla et al., 2019). Therefore, the
expression of Nrf2, as well as HO-1 and Ferritin genes, both
regulated by Nrf2, were investigated in the footpad of animals
infected with L. amazonensis and treated with amentoflavone
intralesionally. Treatment with amentoflavone did not alter the
expression of Nrf2, which was increased in Glucantime®-treated
footpads (p = 0.0172). Although Nrf2 expression was not altered
at that time point, HO-1 expression in the amentoflavone-
treated footpad was significantly reduced (p = 0.0120), as well
as Glucantime®-treated footpad (p = 0.0236). The ferritin gene
expression was increased both in amentoflavone and
Glucantime®-treated groups when compared to the control
group (p = 0.0168 and p = 0.0042, respectively) (Figure 5).

Since amentoflavone’s mechanism of action could not be
explained by an increase of NO production, the generation of
ROS was evaluated in vitro. The ROS production was measured
in amentoflavone-treated and non-infected peritoneal
macrophages obtained from normal BALB/c mice (Figure 6A).
After 24 h of treatment, amentoflavone did not alter the
production of ROS. However, after 48 h of treatment, this
production was significantly higher in cells treated with 2.3 µM
(IC50) (p = 0.0009) or more of amentoflavone (4.6 µM: p =
0.0393, 9.2 µM: p = 0.0280). The increase in ROS was still noticed
after 72 h of treatment with the two highest concentrations
(4.6µM: p = 0.0022, 9.2 µM: p = 0.0069), but not in cells treated
with 2.3 µM, which had the highest production in 48 h.
Antimycin B and Glucose/Glucose oxidase, both used as
positive controls, presented significantly higher production
A

B

C

FIGURE 2 | Effect of intralesional amentoflavone treatment on L. amazonensis-
infected BALB/c mice. (A) Lesion size kinetics. The size of the lesions was
monitored weekly from the beginning of treatment until 1 week after the last
treatment dose by measuring the footpad with a caliper, with 0.1 mm sensitivity.
The data shown represents the average of the difference between the infected
footpad and the uninfected contralateral footpad ± S.E.M. of 10 animals per
group. (B) Parasite load estimated by limiting dilution assay. (C) Parasite load
estimated by qPCR. Points and bars represent the mean ± S.E.M. of five animals
per group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001: significant
difference in relation to the mock-treated control (1-way ANOVA, followed by
Tukey post-test). L.a., Animals infected with L. amazonensis; AMT,
Amentoflavone; GLU, Glucantime.
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than non-treated normal cells at all times. When ROS
production was evaluated in L. amazonensis-infected
macrophages, amentoflavone increased ROS production at 2.3
µM or higher at 24 and 48 h, decreasing at 72 h, when the lower
concentration 1.15 µM increased the ROS production in relation
to mock-treat infected cells (Figure 6).
DISCUSSION

Amentoflavone action on Leishmania parasites has been
controversial. Weniger and collaborators (Weniger et al., 2006)
found no activity against L. donovani axenic amastigotes, but our
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
group have shown that amentoflavone can disrupt the
membrane potential of mitochondria and effectively kill L.
amazonensis promastigotes (manuscript in preparation). When
amentoflavone was tested on intracellular amastigote forms of L.
amazonensis, it showed antileishmanial activity and a good
selectivity index (SI) (Oubada et al., 2014). Corroborating these
data, amentoflavone isolated from S. sellowii also showed
potential antileishmanial activity on this same Leishmania
species and cellular form (Rizk et al., 2014). In this work, we
evaluated the activity of commercially acquired amentoflavone
on these intracellular amastigote forms, reaching an IC50 value of
2.3 mM, which confirms the antileishmanial activity of this
biflavonoid. In addition, in silico data suggested that
FIGURE 3 | Histopathological analysis of BALB/c mice treated intralesionally. Photomicrographs of the footpad and lymph nodes of BALB/c mice infected with L.
amazonensis and treated with vehicle (A, B), amentoflavone 0.5 mg/kg/dose (C, D) or Glucantime 64 mg Sb5+/kg/dose (E, F). (A) Inflammatory infiltrate with
polymorphonuclear cells and intense parasitism (black arrows) in the footpad (hematoxylin and eosin); (B) Infected macrophages (black arrows) in the lymph node
(Giemsa). (C) Amastigotes in footpad (black arrow) (hematoxylin and eosin). (D) Hyperplastic germinal center in the lymph node with follicular hyperplasia (Giemsa).
(E) Connective tissue thickening among the muscles and inflammatory infiltrate (asterisk) in the footpad (hematoxylin and eosin). (F) Polymorphonuclear cells (mainly
eosinophils), parasitism (detail, white arrow) in the lymph node (Giemsa). Representative images (2 animals/group).
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amentoflavone presents low toxicity. These data was
corroborated by an experimental SI greater than 10, pointing
out to the safe use of amentoflavone as a chemotherapeutic agent.

In order to evaluate the effect of amentoflavone treatment on
cutaneous leishmaniasis in vivo, BALB/c mice were infected with
promastigote forms of L. amazonensis and treated via
intralesional injection. Once the oral route does not seem to be
the preferred form of amentoflavone administration due to its
low bioavailability (Liao et al., 2015), in this work a local
application was chosen, as already used in the clinic for
cutaneous leishmaniasis treatment, in order to prevent
systemic metabolism and increase bioavailability at the lesion
site. Animals treated either with amentoflavone or Glucantime®

showed no signs of toxicity, including no alteration on ALT,
AST, and creatinine levels, no decreased body weight or death,
corroborating data from the literature (Lee et al., 2018; Liu and
Yu, 2018; Shen et al., 2018; Tsai et al., 2018).

Throughout the intralesional treatment of L. amazonensis-
infected mice, the amentoflavone-treated group showed an
increase in the thickness of the lesion similar to that observed
in the mock-treated group. It is interesting to note that, just after
the last dose of treatment (21 days post-treatment),
amentoflavone-treated mice had their lesion size reduced when
compared to the mock-treated group. However, 7 days later, at
the end of the experimental protocol, the increase in lesion
thickness caught up to the average thickness of the mock-
treated group. Although the amentoflavone treatment has not
been effective in maintaining the lesions reduction, both LDA,
which quantifies only viable parasites, and the real-time PCR,
which quantifies parasite DNA, showed a reduction in the
parasite load in the lesion of the group treated with
amentoflavone (0.05 mg/kg/dose). However, as this reduction
was not absolute (between 45% and 56%), the lesion remained
active after the last dose and regained its growth. It is possible
that the use of higher dosages and/or a longer therapeutic
regimen might increase this activity in vivo.

N-metil glucamine treatment maintained the initial thickness
of the lesion until the end of the experiment. In fact, the reference
A

B

FIGURE 4 | Evaluation of NO production and iNOS expression on
amentoflavone-treated mice (A) Nitrite quantification in peritoneal
macrophages isolated from L. amazonensis-infected BALB/c, treated or not
with amentoflavone intralesionally. Macrophages were stimulated with total L.
amazonensis antigen (1 µg/µl) and the amount of nitrite in the cell culture
supernatant was measured by the Griess reaction. The bars represent the
mean ± S.E.M. of five animals per group. *p < 0.05, **p < 0.01 (Test t).
(B) Relative quantification of iNOS mRNA in L. amazonensis-infected BALB/c
mouse footpads treated or not with amentoflavone or Glucantime,
intralesionally. Expression was estimated by 2-DDCT method, using Rplp0 as
a reference gene. The bars represent the mean ± S.E.M. of three animals per
group. L.a., Animals infected with L. amazonensis; AMT, Amentoflavone;
GLU, Glucantime.
A B C

FIGURE 5 | Relative quantification of Nrf2-related genes in L. amazonensis-infected BALB/c mice footpads treated or not with amentoflavone or Glucantime, intralesionally.
RT-qPCR analyses were performed to quantify the expression of Nrf2 (A), HO-1 (B), and ferritin (C) genes. Expression was estimated by 2-DDCT method, using Actb as a
reference gene. The bars represent the mean ± S.E.M. of three animals per group. Significant differences (1-way ANOVA, followed by Tukey post-test); *p < 0.05; **p <
0.01 in relation to the mock-treated control. Nrf2, nuclear factor, erythroid derived 2, like 2; HO-1, heme oxygenase 1; Feritin, L-ferritin. Actb, actin beta.
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drug reduced the parasite load by 74% to 99% compared to
mock-treated animals. Despite reducing the amount of parasitic
DNA present in infected footpads by almost 100%, treatment
with Glucantime did not result in a sterile cure. In fact, studies
show that treatment with intralesional Glucantime does not
completely eradicate the parasite in BALB/c mice (de Paladi
et al., 2012; Garcıá et al., 2017; Tamargo et al., 2017). The dose of
Glucantime used in our study was based on a guidance of the
Ministry of Health in Brazil, which predicts the administration of
intralesional non-dilluted Glucantime® through infiltration at
the base of the skin lesion, until the area swells (Brasil, 2017). As
a result, the volume may vary depending on the affected region
and the size of the lesion. In our experimental protocol, for
standardization purposes, we chose to apply 0.02 ml of
Glucantime® per mouse, without previous dilution, reaching a
dose of 64 mg of Sb5+/dose, which was able to reduce almost
completely the parasitic burden in the footpads after five
subcutaneous injections. Our results, combined with data in
the literature, including studies with humans, lead us to
reinforce the effectiveness of the intralesional use of
Glucantime in the treatment of localized skin lesions. The
intralesional use of amentoflavone has shown to have potential
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
in the treatment of the cutaneous lesion caused by L.
amazonensis in BALB/c mice. However, the use of a higher
dosage may result in an increased effect in vivo. The difficulty
of solubilizing higher concentrations of the compound in a
vehicle that can be applied subcutaneously was a challenge.
The difficulty in dissolving amentoflavone in water and
organic solvents is known (Feng et al., 2020). In order to
improve solubility in liquid solvents, there are several
pharmacotechnical possibilities. Recently, micelles and
nanomicelles have been used to improve the solubility and
bioavailability of amentoflavone (Zhang et al., 2019; Feng et al.,
2020). Also, the use of amorphous solid dispersion contributed
to the increase in solubility, dissolution and oral bioavailability
of amentoflavone, promoting the antitumor effect in rats
(Chen et al., 2020). Therefore, it is suggested that the
pharmacotechnical improvement of amentoflavone may
increase its antileishmanial activity in vivo.

It is known that the interactions that initially occur between
the Leishmania parasite and the immune cells can shape the
macrophages response and the type of adaptive immune
response that is being induced. The first interactions between
the protozoan and eosinophils and mast cells influence the
A

B

FIGURE 6 | Amentoflavone concentration influence on the ROS production in peritoneal macrophages. Murine peritoneal macrophages (2 × 106) were treated with
different concentrations of amentoflavone. (A) Uninfected macrophages treated with amentoflavone in concentrations of 1.15 mM (1/2 IC50), 2.3 mM (IC50), 4.6 mM
(2× IC50) or 9.2 mM (4× IC50) for 24, 48, and 72 h. Mock-treated macrophages were used as controls. Antimycin B and Glucose/Glucose oxidase (G/GO) were used
as a positive control. (B) Macrophages infected with L. amazonensis and treated with different concentrations of amentoflavone for 24, 48, or 72 h. Infected and
mock-treated macrophages were used as controls. The generation of ROS was measured using the fluorescent indicator H2DCFDA. The data were expressed in
units of fluorescence intensity (FIU). Significant differences in relation to the control (t test): *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. AMT,
Amentoflavone; L.a., L. amazonensis.
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response of macrophages to infection and the development of the
adaptive immune response, thus determining the final result of
the infect ion (Rodr ı ́guez and Wilson , 2014) . The
histopathological analysis of our experimental protocol showed
the presence of these cells in all infected groups. The decrease in
parasitism with the presence of mast cells in the footpad of
animals treated with Glucantime may be associated with the
remodeling of the tissue injured by the parasite. In dogs naturally
infected with L. infantum, the low parasitism and the presence of
few clinical signs were associated with a higher density of mast
cells and deposition of type III collagen in tissues of
oligosymptomatic animals (Cardoso et al., 2017). The findings
observed in histopathology regarding the presence of parasites
were compatible with the parasite load quantification, both by
LDA and by qPCR. Amentoflavone treated group presented
follicular hyperplasia, which is often seen during leishmaniasis
and argues for the effective activation of the immune response
(Corbett et al., 1992). The group treated with Glucantime® had,
in fact, lower amastigotes colonization, when compared to the
other groups. It is interesting to highlight the persistence of the
protozoan in the lymph nodes of this group after lesion
reduction, which might serve as a reservoir of the parasite. The
persistence of parasites in the lymph nodes was also shown by
our group after clinical cure of the lesions in C3H/He L.
amazonensis-infected mice (Cardoso et al., 2010; de Souza
et al., 2018). These findings reinforce the need to consider this
organ as a reservoir of the protozoan even after the clinical cure
of the lesion.

Several cellular processes begin after the activation of
macrophages infected by the protozoan Leishmania, including
liposomal degradation of enzymes, NO and reactive oxygen
species production (Van Assche et al., 2011). The oxidative
attack is the main weapon used by cells against invading
pathogens (Paiva and Bozza, 2014).

Bearing in mind that NO is an important inflammatory
mediator in infection by Leishmania sp. (Liew et al., 1990;
Stenger et al., 1994; Lima-Junior et al., 2013), the analysis of its
production also becomes an interesting strategy in the
investigation of the immunological factors related to the
treatment of the cutaneous lesion generated by L. amazonensis.
Our previous work showed that amentoflavone treatment reduces
NO production in macrophages infected by L. amazonensis (Rizk
et al., 2014). Similarly, the results obtained in the present work
showed that amentoflavone treatment reduced the NO production
in infected macrophages obtained from both infected and
uninfected animals. In addition, amentoflavone treatment was
also able to reduce the iNOS expression in the lesions of infected
mice, reinforcing the role of amentoflavone in the reduction of
nitric oxide. These results suggest that this inflammatory mediator
is not the mechanism of parasitic death and that the
antileishmanial activity of amentoflavone would not be directly
related to the reduction of this free radical, but with its antioxidant
capacity (Rizk et al., 2014). In fact, parasite death is not always
linked to the production of NO. Studies show that only NO
production is not enough to control the infection (Mukbel et al.,
2007; Santos-Pereira et al., 2019).
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The production of reactive oxygen species (ROS) is another
mechanism that can interfere with the elimination of microbes
(Paiva and Bozza, 2014). In the present study, amentoflavone
treatment was pro-oxidant in vitro, inducing an increase of ROS
in peritoneal macrophages. This increase was independent of
intracellular infection, although the presence of the parasite
seems to anticipate this event, as seen at 24 h after treatment. In
fact, it has been reported that amentoflavone induces the formation
of hydroxyl radicals and thus acts synergistically with antibiotics to
exert a microbicidal effect on gram-negative bacteria (Hwang et al.,
2013). The generation of these hydroxyl radicals has also been
associated with mitochondrial dysfunction and apoptosis in
Candida albicans cells (Hwang et al., 2012) and in breast cancer
cells (Pei et al., 2012). Oxidative stress generated by the release of
ROS has already been reported as a leishmanicidal mechanism in
other flavonoids (Fonseca-Silva et al., 2013; Cataneo et al., 2019)
and, therefore, we suggest that this is one of the means by which
amentoflavone exert its antileishmanial activity.

The transcription factor Nrf2 is responsible for the balance
between the antioxidant and pro-inflammatory profiles and has
attracted attention in studies that investigate the immune system
in the modulation of infectious diseases (Vivarini and Lopes,
2020). In vitro studies have attributed the positive regulation of
Nrf2 to the activity of leishmanicidal compounds (Tomiotto-
Pellissier et al., 2018; Cataneo et al., 2019; Miranda-Sapla et al.,
2019). In recent years, amentoflavone has been associated with
the reduction of oxidative stress in vivo through the regulation of
Nrf2. In a model of Alzheimer’s disease in rats, amentoflavone
exerted a neuroprotective effect, attributed to the ability to
decrease oxidative stress by inducing Nrf2 (Chen et al., 2018).
In our model, amentoflavone did not alter Nrf2 expression.
Nonetheless, HO-1 was downregulated. The level of expression
of this gene can be related to the reduction of parasite load in the
lesion, since it’s known that Leishmania protozoan induces the
expression of the human heme oxygenase gene (HMOX1) due to
its lipophosphoglycans (LPG) (Luz et al., 2012; De Menezes et al.,
2019; Saha et al., 2019). L. amazonensis induces higher amounts
of this antioxidant enzyme than L. major, which may have a role
in the outcome of the different clinical forms of the disease (De
Menezes et al., 2019). It was expected that the decrease in HO-1
would be accompanied by a decrease in the iron-sequestering
protein, given the metabolic relationship between the two.
However, we found an increase in the expression of ferritin in
both amentoflavone and Glucantime® treated mice. It is possible
that parasite death led to an increase of free iron inside the cell,
which is known to regulate ferritin synthesis without the
participation of heme (Eisenstein et al., 1991).

The increase in ROS associated with high concentrations of
amentoflavone in vitro together with the reduction of NO in vivo,
led us to investigate the role of this biflavonoid in the balance
between inflammatory and anti-inflammatory patterns at the
infection site, known to be determinant in the development of
cutaneous leishmaniasis. In addition, the alteration of the
expression of antioxidant genes, associated with the reduction
of parasites in the lesion reinforces the need for studies that
deepen the role of these mechanisms in the pathogenesis of
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leishmaniasis. Therefore, we demonstrate that amentoflavone
has an antileishmanial effect both in vitro and in vivo, acting on
the balance of the inflammatory response, and may represent an
ally in the control of the leishmaniotic lesion.
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