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Azoles such as posaconazole (Posa) are highly potent against Trypanosoma cruzi.
However, when tested in chronic Chagas disease patients, a high rate of relapse after
Posa treatment was observed. It appears that inhibition of T. cruzi cytochrome CYP51, the
target of azoles, does not deliver sterile cure in monotherapy. Looking for suitable
combination partners of azoles, we have selected a set of inhibitors of sterol and
sphingolipid biosynthetic enzymes. A small-scale phenotypic screening was conducted
in vitro against the proliferative forms of T. cruzi, extracellular epimastigotes and
intracellular amastigotes. Against the intracellular, clinically relevant forms, four out of 15
tested compounds presented higher or equal activity as benznidazole (Bz), with EC50

values ≤2.2 mM. Ro48-8071, an inhibitor of lanosterol synthase (ERG7), and the steroidal
alkaloid tomatidine (TH), an inhibitor of C-24 sterol methyltransferase (ERG6), exhibited the
highest potency and selectivity indices (SI = 12 and 115, respectively). Both were directed
to combinatory assays using fixed-ratio protocols with Posa, Bz, and fexinidazole. The
combination of TH with Posa displayed a synergistic profile against amastigotes, with a
mean SFICI value of 0.2. In vivo assays using an acute mouse model of T. cruzi infection
demonstrated lack of antiparasitic activity of TH alone in doses ranging from 0.5 to 5 mg/
kg. As observed in vitro, the best combo proportion in vivowas the ratio 3 TH:1 Posa. The
combination of Posa at 1.25 mpk plus TH at 3.75 mpk displayed suppression of peak
parasitemia of 80% and a survival rate of 60% in the acute infection model, as compared
to 20% survival for Posa at 1.25 mpk alone and 40% for Posa at 10 mpk alone. These
initial results indicate a potential for the combination of posaconazole with tomatidine
against T. cruzi.
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INTRODUCTION

Chagas disease (CD), a vector-borne anthropozoonosis endemic in
the American continent, is caused by the protozoan parasite
Trypanosoma cruzi (Chagas, 1909). The triatomine vector of CD
is spread from the southernUnited States to the south ofArgentina.
Due to increasing global migration, CD has spread to other
continents through a diversity of other transmission routes such
as blood transfusion, organ transplantation, and mother-to-child
(Gascon et al., 2010; Pérez-Molina and Molina, 2018). Also, oral
transmission due to beverages contaminated with the feces or with
infected triatomines currently represents a serious challenge in
many endemic areas such as Brazil (Coura et al., 2014; Dias, 2017).
This neglected disease presents a short acute phase with patent
parasitemia, which is usually asymptomatic or oligosymptomatic
with “flu-like” symptoms (Prata, 2001;Rassi et al., 2010).After six to
nine weeks, parasite proliferation is controlled due to a competent
immune response, and infected individuals enter a second stage, the
chronic phase, with most of them remaining in an indeterminate
form. However, after years or even decades, about 30% of the
patients in the chronic phase develop progressive cardiac or
gastrointestinal injuries (Ribeiro et al., 2012; Malik et al., 2015).

The front-line drugs for CD are two nitroderivatives,
benznidazole (Bz) and nifurtimox. Both are far from ideal, with
the occurrence of naturally resistant strains, lack of efficacy in the
later chronic phase, and severe side effects that led to 10–30%
therapy withdrawals (Molina et al., 2015). These limitations
highlight an urgent need for novel, potent, and safer drugs for
CD, and many strategies have been followed, including drug
repurposing and drug combinations (Coura, 2009; Miranda and
Sayé, 2019).

Drug combination may tackle more than one target
simultaneously, allowing reduced doses, costs, time of drug
administration, and reducing the risk of parasite drug resistance,
providing increased efficacy and selectivity (Sun et al., 2016). These
approaches have been largely explored in experimental models of
Chagas disease (Batista et al., 2011; Diniz et al., 2013) as well as in
clinical trials with chronic chagasic patients (Morillo et al., 2017).

Regarding drug repurposing, the identification of targets in T.
cruzi shared by other pathogens fueled several in vitro and in vivo
assays (Sales Junior et al., 2017). These piggy-back studies
comprised fungal ergosterol biosynthesis inhibitors (EBIs) such as
posaconazole (Posa) andE1224, the prodrug of ravuconazole (Sales
Junior et al., 2017; Urbina, 2018), as well as a set of more specific
inhibitors of the protozoan CYP51 orthologs, for instance VNI
[(R)-N-(1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-
phenyl-1,3,4-oxadiazol-2-yl)benzamide)] and derivatives (Guedes-
da-Silva et al., 2015). Unfortunately, both Posa and E1224 failed in
clinical trials for CD, and many possibilities were raised regarding
the lack of translation from the preclinical to clinical outcomes
(Morillo et al., 2017; Chatelain and Ioset, 2018; Torrico et al., 2018).

A possible explanation for the disappointing outcome of the
clinical trials with azole-type CYP51 inhibitors is, that these
molecules fail to kill every single parasite, i.e., they have high
EC99 values. This notion is supported by in vivo (Francisco et al.,
2015) and in vitro (Moraes et al., 2014; Cal et al., 2016; Fesser
et al., 2020) models of pharmacodynamics. Nevertheless, azole-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
type CYP51 inhibitors have nanomolar EC50 values against T.
cruzi and a high selectivity index, and they are well tolerated by
the treated patients (Morillo et al., 2017). As a strategy to
overcome the limitation of CYP51 inhibitors, we have
proposed to combine them with a partner drug that either acts
in the same pathway, sterol biosynthesis, or that inhibits a
functionally linked pathway, sphingolipid synthesis (Fügi et al.,
2015). Both rationales are supported by genetic interaction data
from yeast (Eisenkolb et al., 2002; Guan et al., 2009; Fügi et al.,
2015). Sphingolipids are a major class of lipids and ubiquitous
constituents of eukaryotic membranes, playing also a role as
bioactive signaling molecules involved in the regulation of cell
growth, differentiation, senescence, and death (Pruett et al.,
2008), as well as in virulence and survival of pathogens upon
interaction with the host, including T. cruzi (Goldston et al.,
2012; Guan and Mäser, 2017).

In the present work, we have assembled a panel offifteen drugs
and experimental compounds that interfere either with sterol
synthesis or with sphingolipid metabolism. The compounds, their
target enzymes, and theirmedical use (if any) are described inTable
1. All compounds were phenotypically assayed against the
multiplicative forms of T. cruzi. Identified hit compounds were
further combined with Posa and reference drugs in in vitro and in
vivomodels of parasite experimental infection.
MATERIALS AND METHODS

Compounds
Amitryptiline (hydrochloride), FTY720, FTY720phosphate,AMP-
deoxynojirimicin, D609 (potassium salt), fumonisin B1, myriocin,
Ro48-8071, TMP-153, GW4869 (hydrochloride hydrate), PDMP
(hydrochloride), tomatidine hydrochloride (TH) were purchased
from Cayman chemicals and bezafibrate, quinuclidine
hydrochloride, 3-aminoquinuclidine dihydrochloride, and
posaconazole (Posa) were from Sigma-Aldrich Switzerland.
Fexinidazole (Fexi) was received from DNDi and benznidazole
(Bz) was purchased from Laboratório Farmacêutico do Estado de
Pernambuco (Brazil). For in vitro tests, stock solutions of each
compound were prepared in DMSO, never exceeding 0.6%DMSO
as final concentration, which does not induce cellular damages to
mammalian cells and parasites. For in vivo, Bz, Posa, and TH were
prepared for oral (p.o., 100 µl) administration in extemporaneous
solutions. For in vivo drug vehicles, Bzwas diluted in distilled water
with 3% Tween 80 (Sigma-Aldrich, Belgium), Posa and TH in
aqueous solution of 0.5% carboxymethylcellulose (Sigma-
Aldrich, Belgium).

Mammalian Cells and Parasites for In Vitro
Assays
L6 cells derived from rat skeletal myoblast (ATCC CRL-1458)
were used as host cells for T. cruzi using trypomastigotes of
Tulahuen C2C4 strain (DTU VI) expressing the b-galactosidase
gene (LacZ) (Buckner et al., 1996). The cultures were sustained in
RPMI-1640 supplemented with 10% inactivated fetal bovine
serum (FBS) and 2 mM L-glutamine at 5% CO2 and 37°C.
Epimastigote T. cruzi (STIB 980 strain, DTU TcI) were
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TABLE 1 | Compounds used in this study, their mode of action, and medical use.

Chemical structure Target/MoA Indication/Use

Reference drugs
Benznidazole
[31593]

Oxydative stress after activation by
nitroreductase I

Chagas disease

Fexinidazole
[68792]

Oxydative stress after activation by
nitroreductase I

Human African
trypanosomiasis

Lipid signaling
Bezafibrate
[39042]

Peroxisome proliferator-activated receptor
a agonist

Hyperlipidemia

D609
[4234241]

Phosphatidylcholine-specific phospholipase
C

Experimental

FTY720
[107969]

Parent molecule (Fingolimod)
of FTY720-P

Multiple sklerosis, immuno-
modulatory

FTY720-P
[9908268]

Sphingosine-1-phosphate-receptors see above

Sterol synthesis
Quinuclidine
[7527]

Derivatives inhibit
squalene synthase (Erg9)

Experimental

3-Amino
quinuclidine
[123238]

Derivatives inhibit
squalene synthase (Erg9)

Experimental

Ro48-8071
[1949]

Oxidosqualene cyclase
(Erg7)

Experimental

Posaconazole
[468595]

Lanosterol 14-a demethylase
(Erg11)

Antifungal

(Continued)
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TABLE 1 | Continued

Chemical structure Target/MoA Indication/Use

Tomatidine
[65576]

Sterol 24-C-methyltransferase (Erg6) Natural dietary supplement,
experimental

TMP-153
[125289]

Sterol O-acyltransferase
(ACAT)

Experimental

Sphingolipid metabolism
Myriocin
[6438394]

Serine palmitoyltransferase Fungal toxin, experimental

Fumonisin B1
[2733487]

Ceramide synthase Fungal toxin, experimental

PDMP
[3129]

Glucosylceramide synthase Experimental

AMP-
Deoxynojirimycin
[9822159]

Non-lysosomal glucosylceramidase Experimental

Amitriptyline
[2160]

Acid sphingomyelinase Depression

GW4869
[16078967]

Neutral sphingomyelinase Experimental
Frontiers in Cellular
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cultivated at 28°C in liver infusion tryptose (LIT) medium
supplemented with hemin (2 mg/ml) and 10% FBS and were
used in log phase of growth. Bloodstream trypomastigotes (Y
strain, DTU II) were isolated from Swiss Webster mice infected
at the peak of parasitemia (≥ 2.5 × 106/ml), as reported (Meirelles
et al., 1986).

Activity on T. cruzi Epimastigotes
Epimastigotes (107 parasites/ml) were incubated for 72 h at 28°C
with serially diluted compound concentrations (eleven 1:3
dilutions) in supplemented LIT medium. Parasite viability and
motility were evaluated by direct observation by light microscopy
and fluorometric assays performed with resazurin (12.5 mg
resazurin dissolved in 100 ml distilled water). After 2–4 h of
incubation with resazurin solution, plates were read in Spectramax
Gemini XS microplate fluorometer (Molecular Devices
Cooperation, USA) using wavelengths of 536 nm (excitation)
and 588 nm (emission) (Räz et al., 1997). Growth was expressed
as percentage of the values of solvent-treated controls. The
graphics program Softmax Pro (Molecular Devices) was used to
construct dose–response curves and calculate EC50 (half maximal
inhibitory concentration) values. Bz was used as reference drug.

Activity on T. cruzi Intracellular
Amastigotes
Rat skeletal myoblasts (L6 cell lines) were seeded in 96-well plates
(104 cells/well) in 100 ml RPMI 1640 medium supplemented with
10% fetal bovine serum (FBS) and 2 mM L-glutamine. The medium
was removed after 24 h incubation and replaced by 100 ml of fresh
medium containing 105 LacZ trypomastigotes (Tulahuen DTU VI).
After 48 h, the medium was again removed and replaced with or
without a serial of compound concentrations (eleven three-fold
dilution steps). After 96 h of compound exposure, CPRG/Nonidet
(50 ml) substrate was added and the reading performed after 2–6 h
at 540 nm in Versamax microplate reader (Molecular Devices
Cooperation, USA). Growth was expressed as percentage of the
values of solvent-treated controls. The graphics program Softmax
Pro (Molecular Devices) was used to construct dose–response
curves and calculate EC50 values. Bz was used as reference drug.

Cytotoxicity Against L6 Cells
Rat skeletal myoblasts (L6 cell lines) were seeded in 96-well
plates (4 × 104 cells/well) in 100 ml RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS) and 2 mM
L-glutamine. After 24 h incubation the medium was replaced
with 100 ml of fresh medium with or without a serial dilution of
compound concentrations (eleven three-fold dilution steps).
After 72 h of compound exposure, fluorescent dye resazurin
(10 ml, 12.5 mg resazurin dissolved in 100 ml water) was added
for 2 h and the readings performed at Spectramax Gemini XS
microplate fluorometer (Molecular Devices Cooperation, USA),
with excitation wavelength of 536 nm and an emission
wavelength of 588 nm. Growth was expressed as percentage of
the values of solvent-treated controls. The graphics program
Softmax Pro (Molecular Devices) was used to construct dose–
response curves and calculate EC50 values. Podophyllotoxin (a
microtubule destabilizing agent) was used as positive control.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Drug Combination
In vitro drug interactions on L6 cell cultures infected with Lac-Z T.
cruzi using TH or Ro48-8071 combined to Bz, Posa or Fexi were
performed at 1:3, 1:1, and 3:1 fixed-ratios (Fivelman et al., 2004)
according to the same protocol as described above. Fractional
inhibitory concentration indexes (FICI) and the sum of FICIs
(∑FICI) were calculated as follows: FICI values = EC50 or EC90 of
the combination/EC50 or EC90 of each compound alone. An overall
∑FICI was then determined and used to classify the nature of each
interaction (Odds, 2003). ∑FICI ≤ 0.5 = synergism; 0.5 < ∑FICI ≤
4.0 = additive (no interaction); ∑FICI > 4.0 = antagonism.

Isobolograms were built by plotting the FICI of compound 1
against the FICI of compound 2.

Animals
Male Swiss Webster mice (18–23 g) were obtained from the
Instituto de Ciência e Tecnologia em Biomodelos (ICTB/
Fiocruz) (Rio de Janeiro, Rio de Janeiro, Brazil). Five mice
were housed per cage, kept in a conventional room at 20–24°C
under 12 h/12 h light/dark cycle. Sterilized water and chow were
provided ad libitum. The animals were acclimated for 7 days
before being used in the different assays. All procedures were
done following Biosafety Guidelines in compliance with the
Fiocruz and all animal procedure approved by the Committee
of Ethics for the Use of Animals (CEUA L-38/17).

Mouse Infection and Efficacy Studies
Male mice (n = 5 per group) were infected i.p. with 104 bloodstream
trypomastigotes of T. cruzi (Y strain). Only mice with positive
parasitemia at day 5 post infection (dpi) were included in the
studies. T. cruzi-infected mice were treated (p.o.) for ten
consecutive days, from 5 to 14 dpi, with Posa (10 and 1.25 mg/kg
body weight (mpk) corresponding to optimal and suboptimal doses
of Posa for parasitemia suppression, respectively), TH (5–0.5 mpk)
and combos of PosaplusTH,using the suboptimal dose of Posa (1.25
mpk) in different proportions, nearby those with best in vitro
outcomes as follows: Posa 1.25 mpk + TH 5 mpk (ratio 1:4), Posa
1.25mpk+TH3.75mpk (ratio1:3) andPosa1.25mpk+TH0.5mpk
(ratio 2.5:1)).Uninfected andT. cruzi-infectedmice treated onlywith
vehicle (aqueous solution of 0.5% carboxymethylcellulose) were age-
matched and housed under identical conditions and used as controls
(Simões-Silva et al., 2017). All compound formulations were freshly
prepared before every administration.

Parasitemia, Mortality Rates, and Endpoint
All animals were individually checked for circulating blood
parasitemia by counting the number of parasites in 5 µl of blood
taken from the tail vein and investigated under the microscope
(Brener, 1962). Parasitemia was checked till 30 dpi, while mortality
was checked daily up to 30 days after the administration of the last
dose. Mortality was given as percentage of cumulative mortality
(CM) (Simões-Silva et al., 2017).

Statistical Analysis
All experiments were performed in triplicate in three independent
experimental sets. The citotoxicity and antitrypanosomal activity
were analyzed by ANOVA/Dunnet test using GraphPad Prism
March 2021 | Volume 11 | Article 617917
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5.01 software. P values of 0.05 or lower were assumed
as significant.
RESULTS

The in vitro activity of the fifteen compounds (Table 1) was assessed
on the multiplicative forms of T. cruzi: epimastigotes (strain STIB
980) and intracellular amastigotes (Tulahuen C2C4 strain
expressing the b-galactosidase gene LacZ) (Table 2). In parallel,
the cytotoxicity of the compounds was evaluated on mammalian
host cells (Table 2). Against T. cuzi epimastigotes, two compounds
(FTY720 and Ro48-8071) were promising, displaying similar
potency as Bz (7.55, 11.6 and 13.9 µM, respectively; both of
which were not significantly different to Bz, with p values >0.05
in comparison to Bz), and showing about 2.5–8-fold lower EC90

values than the reference drug (both with p < 0.05) (Table 2).
Against the intracellular amastigotes, four compounds (FTY720,
RO48-8071, tomatidine hydrochloride (TH) and TMP-153)
displayed EC50 values ≤1 µM, lower than Bz (2.2 µM) (the four
compounds presenting p <0.05 in comparison to Bz) (Table 2).
Most of the tested compounds showed quite relevant toxicity
towards mammalian host cells, leading to low selectivity indices
(SIs), except for Ro48-8071 and TH, which presented promising SIs
of 12 and 115, respectively (Table 2).

Based on their high activity against intracellular amastigote T.
cruzi and good selectivity towards the mammalian host cells,
Ro48-8071 and tomatidine were moved to in vitro combination
assays with the reference drug for CD (Bz) and two others that
displayed efficacy in in vitro and in vivo assays of T. cruzi
experimental infection: the imidazole CYP51 inhibitor Posa
and the nitroimidazole Fexinidazole (Fexi) (Table 3). Of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
six combinations tested, only that between TH and Posa had a
synergistic profile with mean SFICI values below 0.5, based on
their EC50 (Table 3, Figure 1). These results encouraged us to
follow up with in vivo studies. Posa or TH did not show any signs
of toxicity when administered to female mice p.o. up to 200 mpk
(data not shown).

Before moving to co-administration schemes, TH and Posa
alone were administered in mouse models of acute T. cruzi
infection (Figure 2). Posa at 10 mpk suppressed parasitemia on
the peak (8 dpi), providing 40% survival of mice, while all vehicle-
treated mice died until the endpoint (Figure 2). A suboptimal dose
of Posa (1.25 mpk) decreased the parasitemia peak (about 80%),
but only provided a mild protection against mortality (20% of
animal survival) (Figure 2). On the other hand, all tested doses of
TH (up to 5 mpk) alone resulted in a maximum reduction of only
28% in blood parasitemia on the peak and were unable to protect
against the mortality induced by the infection since all animals
died by 20 dpi (Figure 2).

The co-administration of TH (variable doses from 0.5 to 5
mpk) plus Posa at the suboptimal dose of 1.25 mpk led to a
parasitemia drop ranging from 60 to 80%, and cumulative death
ranging from 40 to 100% (Figure 3). The best effect as evaluated
by the concomitant reduction in peak parasitemia (80%) and
increased animal survival (60%) was achieved with the combo
Posa 1.25 mpk + TH 3.75 mpk (ratio 1:3) (Figure 3), which
corroborated the best in vitro ratio of combination (Table 3).
DISCUSSION

Drug repurposing and drug combination are pre-clinical strategies
used in experimental pharmacology to tackle many diseases,
TABLE 2 | Activity (EC50 and EC90, µM, n = 3) and selectivity of lipid biosynthesis inhibitors on Trypanosoma cruzi epimastigotes (STIB 980 strain) and intracellular
amastigotes (Tulahuen strain in rat L6 myoblasts).

Epimastigotes (mean ± SD) (µM) Amastigotes (mean ± SD) (µM) L6 cells (mean ± SD) (µM)

Compound EC50 EC90 EC50 EC90 EC50 SIa

Benznidazole 13.9 ± 2.2 101 ± 18 2.22 ± 0.98 6.61 ± 2.5 >384 >172
Bezafibrate >276 >276 132.3 ± 38.6 226 ± 65 >276 >2.1
D609
(potassium salt)

154 ± 32 >375 99.4 ± 17.6 198 ± 32 247 ± 20 2.5

FTY720 7.55 ± 0.4 11.6 ± 0.3 0.81 ± 0.5 1.84 ± 1.3 0.39 ± 0.1 0.5
FTY720 Phosphate >258 >258 93.8 ± 3.3 168 ± 25 127 ± 22 1.4
Quinuclidine hydrochloride >677 > 677 478 ± 174 > 677 >677 >1.4
3-Amino
quinuclidine dihydrochloride

>502 >502 268 ± 10 485 ± 28 >502 >1.8

Ro48-8071 11.6 ± 6.1 29.4 ± 16.2 0.47 ± 0.09 2.5 ± 1.9 5.7 ± 2.4 12
Posaconazole >14.2 >14.2 0.002 ± 0.001 0.016 ± 0.005 >1.42 >700
Tomatidine (hydrochloride) 192 ± 8.1 >221 0.78 ± 0.2 1.8 ± 0.2 89.5 ± 26.7 115
TMP-153 106 ± 27 >228 0.09± 0.04 3.9 ± 2.1 0.12 ± 0.03 1.4
Myriocin >249 >249 130 ± 34 231 ± 25 >249 >1.9
Fumonisin B1 >92 >92 50.8 ± 5.7 84 ± 9.1 >92 >1.8
PDMP (hydrochloride) 47.9 ± 9.4 88.7 ± 18 12.5 ± 2.9 24.6 ± 9 33.5 ± 3.1 2.7
AMP-Deoxy
nojirimycin

158 ± 5.9 237 ± 2 34.8 ± 15.1 66.6 ± 15.4 40.4 ± 10.9 1.2

Amitriptyline (hydrochloride) 59.9 ± 5.4 96.8 ± 3.3 12.2 ± 3.6 20.9 ± 3 17.2 ± 1.2 1.4
GW4869 (hydrochloride hydrate) >173 >173 106 ± 44 >173 >173 >1.7
Ma
rch 2021 | Volume 11 | Article 61
aSelectivity Index based on the EC50 and EC50 on intracellular amastigotes and the mammalian cells, respectively.
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reaching quite effective results when applied to clinical trials and
off-label use (Sbaraglini et al., 2016). Successful examples from
neglected tropical diseases include the repositioning of nifurtimox
administered in combination with eflornithine for Human African
trypanosomiasis (Priotto et al., 2007), the association of
miltefosine and paromomycin, and sodium stibogluconate plus
paromomycin, for visceral leishmaniasis (Atia et al., 2015; Rahman
et al., 2017; Alves et al., 2018). Regarding Chagas disease,
fungicidal inhibitors of CYP51 enzymes have been assayed in
clinical trials (e.g., Posa and E1224 in association with Bz), but
unfortunately had high rates of therapeutic failure (Morillo et al.,
2017; Torrico et al., 2018). On the other hand, the BENEFIT trial
demonstrated that, although effective to reduce parasite load in
chronic chagasic patients, Bz did not impair the progression of
cardiac damages, reinforcing the need to search for new
therapeutic alternatives for CD (Rassi et al., 2017).

Inhibitors of sterol biosynthetic enzymes and sphingolipid
metabolism and signaling had been proposed as combination
partners for Posa (Fügi et al., 2015). Selected inhibitors (Table 1)
were phenotypically assessed against T. cruzi. FTY720 and Ro48-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
8071 were as active as Bz against epimastigotes. Against the
therapeutically relevant intracellular forms, four compounds had
similar or even higher potency than Bz: FTY720, Ro48-8071,
tomatidine hydrochloride and TMP-153. The different EC50

values of the studied compounds (including the reference drug)
against epimastigotes and amastigotes can be explained by the
distinct cellular metabolism of these proliferative forms that face
different environments and hosts. Although we cannot exclude
variabilities in drug susceptibility among the different strains
(Zingales et al., 2014; Zingales, 2018), our data confirm the
importance of using the intracellular amastigote form for drug
discovery (Romanha et al., 2010; de Castro et al., 2011).

Interestingly, tomatidine hydrochloride (TH) had shown
activity against bacteria (Staphylococcus aureus), fungi (Candida
albicans), Chikungunya, Dengue, and Zika virus, and the
trypanosomatids Phytomonas serpens and Leishmania
amazonensis (Mitchell et al., 2011; Mitchell et al., 2012; Robbins
et al., 2015; Dorsaz et al., 2017; Soltani et al., 2017; Diosa-Toro
et al., 2019; Troost et al., 2020). While ATP synthase was proposed
as the target of TH in S. aureus (Lamontagne Boulet et al., 2018),
the antifungal and antitrypanosomal target of TH turned out to be
C-24 sterol methyltransferase (Medina et al., 2012; Medina et al.,
2015; Dorsaz et al., 2017). This enzyme, encoded by the gene
ERG6, catalyzes a downstream step of ergosterol synthesis from
CYP51 (ERG11). Ro48-8071 targets lanosterol synthase (ERG7),
the step immediately before CYP51. In a previous study (PubMed
id 9491766, Chataing et al., 1998), tomatidine at 5.7 µM inhibited
the growth of T. cruzi epimastigote cultures to 50% after four days
of incubation.

Based on their promising activity and selectivity against T. cruzi
amastigotes, Ro48-8071 and TH were selected for in vitro
combination testing using fixed-ratio proportions as reported
(Simões-Silva et al., 2016). Regarding the choice of partner drugs,
Bz as one of the standard drugs for CD was an obvious candidate
(Coura, 2009). Posa and Fexi are very potent anti-T. cruzi agents in
vitro and in vivo (Urbina, 2015) that were moved to clinical trials for
CD (Bahia et al., 2012; Morillo et al., 2017; DNDi Portfolio, 2020).
None of the combos made with Ro48-8071 showed synergistic
activity and were therefore not further investigated. Combos of Bz
and Fexi with TH were also additive. However, the association of
TH plus Posa was essentially synergistic, displaying ∑FICI = 0.2.

A synergistic interaction for TH has already been reported with
aminoglycoside antibiotics, being more effective in inhibiting
colony growth of S. aureus clinical isolates as compared to
FIGURE 1 | Isobologram showing the sum of the fractional inhibitory
concentration indexes (∑FICI) of tomatidine hydrochloride and posaconazole,
demonstrating the synergistic interaction of the combination in different fixed
ratio proportions (1:3, 1:1, and 3:1) against T. cruzi intracellular amastigotes
(strain Tulahuen in L6 cells). ∑FICI ≤ 0.5 = synergism; 0.5 < ∑FIC ≤ 4.0 =
additive (no interaction); ∑FICI > 4.0 = antagonism.
TABLE 3 | Sum of the mean fractional inhibitory concentration indices (SFICI) of the combinations between Ro48-8071 or tomatidine hydrochloride and benznidazole,
posaconazole, or fexinidazole in different fixed ratio proportions (1:3, 1:1, and 3:1; the first number corresponds to the standard drug) against T. cruzi intracellular
amastigotes (strain Tulahuen in L6 cell lines).

Combos Mean SFICIs Benznidazole Posaconazole Fexinidazole

Ro48-8071 Tomatidine hydrochloride Ro48-8071 Tomatidine hydrochloride Ro48-8071 Tomatidine hydrochloride

EC50 EC90 EC50 EC90 EC50 EC90 EC50 EC90 EC50 EC90 EC50 EC90

1:3 1.8 1.5 0.7 1.0 1.1 0.8 0.1 0.4 1.4 1.2 1.4 0.9
1:1 4.0 3.3 1.1 1.1 1.6 1.7 0.2 0.7 3.6 3.1 1.1 0.9
3:1 4.0 5.0 1.7 1.3 4.4 3.5 0.3 0.4 5.5 5.0 1.7 1.7
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standard monotherapies (Mitchell et al., 2011; Mitchell et al., 2012;
Soltani et al., 2017). Also, the combination of TH with fluconazole
exhibited synergistic interaction against a C. albicans azole-
resistant strain (Robbins et al., 2015), thus confirming the
potential of TH for drug combination protocols.

Based on these in vitro results, Posa + THwas moved to in vivo
assays using a well-established mouse model of acute T. cruzi
infection (Romanha et al., 2010). TH alone did not present
antiparasitic activity in vivo. However, it is important to note
that the lack of in vivo efficacy may be due to the poor solubility of
TH. Previous studies reported that, as TH is a highly hydrophobic
sterol-like molecule, many vehicles including DMSO, ethanol or
cyclodextrin failed to demonstrate efficacy in in vivo models of C.
albicans infection, except for the use of a nanoparticle-based
formulation that allowed successful reduction of fungal burden
in infected mice (Dorsaz et al., 2017). Thus, the exploration of
other formulations for TH is desirable to better assess its potential
against T. cruzi in vivo. When the combos were assayed, the best
results in terms of reduction of parasitemia and mortality were
obtained with the proportion of Posa 1.25 mpk + TH 3.75 mpk,
which correlates to the most synergistic combo in vitro (drug ratio
1:3). The combination of Posa at 1.25 mpk plus TH at 3.75 mpk
displayed a survival rate of 60% in the acute infection model as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
compared to 20% for Posa at 1.25 mpk alone, and 40% for Posa at
10 mpk alone.

Thus, our finding that only the combo of Posa plus TH gave a
synergistic profile in vitro was further corroborated by our in vivo
assays demonstrating a reduction in parasite load and animal
death rates. These results possibly are due to the simultaneous
action on enzymes (lanosterol 14-a demethylase and sterol 24-
C-methyltransferase) to the sterol biosynthetic route, impacting
the fitness profile and metabolism of the intracellular, clinically
relevant form of T. cruzi.

TH is a natural compound, originally found in unripe tomatoes,
that has a wide array of bioactivities including antioxidant,
anticarcinogenic and antimicrobial effects (Friedman, 2013). TH
exerts antifungal and antitrypanosomatid effects by inhibition of C-
24 sterol methyltransferase (Medina et al., 2015; Dorsaz et al., 2017).
The finding that TH synergistically interacts with Posa encourages
further studies with this class of compound and reinforces the
potential of drug repurposing and combination protocols. These
approaches represent reduced cost and time in the search for better
treatments for CD, which is clearly relevant considering the
shortage of resources in benefit of the poor population around
the world affected by neglected tropical diseases such as Chagas
disease. Although Posa at 10 mpk and the combo Posa 1.25 mpk +
FIGURE 2 | Parasitemia and cumulative mortality of mice infected with T. cruzi (Y strain) treated with vehicle alone, posaconazole (Posa 10 and 1.25 mpk), or
tomatidine hydrochloride (TH 5, 3.75 and 0.5 mpk) administrated for ten consecutive days (dpi 5 to 14).
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TH 3.75 mpk suppressed/highly reduced the parasitemia, neither
therapeutic scheme was able to reach 100% animal survival and
induce sterile cure. Thus, further studies will need to address the
efficacy against dormant forms of T. cruzi as recent data suggest the
existence of an adaptive difference between parasite strains to
generate dormant cells, and that homologous recombination in T.
cruzi may be important for dormancy stages (Sánchez-Valdéz and
Padilla, 2019; Resende et al., 2020).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

All procedures followed the guidelines in compliance with the Fiocruz
Committee of Ethics for the Use of Animals (CEUA L-38/17).

AUTHOR CONTRIBUTIONS

MR-H performed the in vitro and in vivo studies, data analysis,
and drafted the manuscript. PM, MK, and MS (corresponding
author) obtained the funding, conceived the study, performed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
data analysis, and drafted the manuscript. XG helped in drafting
the manuscript and in study design. GO, AD, LF, and RP
contributed to the in vivo studies. AF, MC, and RR contributed
to the in vitro studies. All authors contributed to the article and
approved the submitted version.

FUNDING

The fundings were provided by the Swiss National Science
Foundation (SNF grant IZRJZ3_164172), Fundação Carlos
Chagas Filho de Amparo à Pesquisa do Rio de Janeiro (FAPERJ),
Coordenação de Aperfeiçoamento de Pessoal de Nıv́el Superior
(CAPES), Conselho Nacional de Desenvolvimento Cientıfíco e
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Jacques, P. É., et al. (2018). Tomatidine Is a Lead Antibiotic Molecule That
Targets Staphylococcus aureus ATP Synthase Subunit C. Antimicrob. Agents
Chemother. 62 (6), e02197–e02117. doi: 10.1128/AAC.02197-17

Malik, L. H., Singh, G. D., and Amsterdam, E. A. (2015). Chagas Heart Disease:
An Update. Am. J. Med. 128 (11), 1251.e7–9. doi: 10.1016/j.amjmed.2015.
04.036

Medina, J. M., Rodrigues, J. C., De Souza, W., Atella, G. C., and Barrabin, H.
(2012). Tomatidine promotes the inhibition of 24-alkylated sterol biosynthesis
and mitochondrial dysfunction in Leishmania amazonensis promastigotes.
Parasitology 139 (10), 1253–1265. doi: 10.1017/S0031182012000522

Medina, J. M., Rodrigues, J. C., Moreira, O. C., Atella, G., Souza, W. D., and
Barrabin, H. (2015). Mechanisms of growth inhibition of Phytomonas serpens
by the alkaloids tomatine and tomatidine. Mem. Inst. Oswaldo Cruz 110 (1),
48–55. doi: 10.1590/0074-02760140097

Meirelles, M. N., de Araujo-Jorge, T. C., Miranda, C. F., de Souza, W., and Barbosa,
H. S. (1986). Interaction of Trypanosoma cruzi with heart muscle cells:
ultrastructural and cytochemical analysis of endocytic vacuole formation and
effect upon myogenesis in vitro. Eur. J. Cell Biol. 41 (2), 198–206.
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