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Approximately 20 Leishmania species are known to cause cutaneous, mucocutaneous,
and visceral disorders in humans. Identification of the causative species in infected
individuals is important for appropriate treatment and a favorable prognosis because
infecting species are known to be the major determinant of clinical manifestations and may
affect treatments for leishmaniasis. Although Leishmania species have been
conventionally identified by multilocus enzyme electrophoresis, genetic analysis
targeting kinetoplast and nuclear DNA (kDNA and nDNA, respectively) is now widely
used for this purpose. Recently, we conducted countrywide epidemiological studies of
leishmaniasis in Ecuador and Peru to reveal prevalent species using PCR-RFLP targeting
nDNA, and identified unknown hybrid parasites in these countries together with species
reported previously. Furthermore, comparative analyses of kDNA and nDNA revealed the
distribution of parasites with mismatches between these genes, representing the first
report of mito-nuclear discordance in protozoa. The prevalence of an unexpectedly high
rate (~10%) of genetically complex strains including hybrid strains, in conjunction with the
observation of mito-nuclear discordance, suggests that genetic exchange may occur
more frequently than previously thought in natural Leishmania populations. Hybrid
Leishmania strains resulting from genetic exchanges are suggested to cause more
severe clinical symptoms when compared with parental strains, and to have increased
transmissibility by vectors of the parental parasite species. Therefore, it is important to
clarify how such genetic exchange influences disease progression and transmissibility by
sand flies in nature. In addition, our aim was to identify where and how the genetic
exchange resulting in the formation of hybrid and mito-nuclear discordance occurs.
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INTRODUCTION

Human leishmaniasis is caused by approximately 20 species of
the genus Leishmania belonging to the subgenera Leishmania
(Leishmania), Leishmania (Viannia) , and Leishmania
(Mundinia) (Paranaiba et al., 2017; Ruiz-Postigo et al., 2020).
The clinical presentation is varied, ranging from a localized
cutaneous lesion to a potentially fatal visceral disorder, and the
infecting parasite species is the major determinant of the
outcome (Ruiz-Postigo et al., 2020). Importantly, several L.
braziliensis complex species, such as Leishmania (Viannia)
braziliensis and L. (V.) guyanensis, are associated with a risk of
metastasizing destructive mucosal lesions after healing of the
primary cutaneous lesion (Ruiz-Postigo et al., 2020). In addition,
for cutaneous leishmaniasis, variability in disease severity and
susceptibility to treatment may be as sociated with the infecting
parasite species, although the characteristic cutaneous lesions
caused by each infecting species have yet to be determined.
Therefore, identification of the causative Leishmania species is
important for appropriate treatment and a favorable prognosis.

Leishmania species have been classified by multilocus enzyme
electrophoresis (MLEE) as the reference protocol (Rioux et al.,
1990; Cupolillo et al., 1994). This method requires parasite
isolation in culture, which is time-consuming and associated
with risks of contamination with bacteria and fungi on sample
collection, and interfusion of other cultures during long-term
cultivation. Recently, the application of molecular biological
techniques using samples directly obtained from patients’
lesions has facilitated rapid and efficient identification of the
parasite species. Kinetoplast DNA (kDNA) is a unique
mitochondrial structure found in trypanosomatid parasites,
containing 20–50 copies of maxicircle DNA and approximately
10,000 copies of minicircle DNA (Simpson, 1986). Because of the
multicopy property, kDNA is widely used as a target for
detection and identification of Leishmania species. Although
minicircle DNA is more sensitive for detection, it is
heterogeneous in sequence. Therefore, maxicircle genes, such
as cytochrome b (cyt b), cytochrome c oxidase subunits, and
NADH dehydrogenase subunits, are preferentially used as targets
for species identification; cyt b gene sequence analysis is widely
used and accepted as a reliable marker for this purpose (Luyo-
Acero et al., 2004; Asato et al., 2009; Kato et al., 2010; Kato et al.,
2011; Leelayoova et al., 2013; Kato et al., 2016a; Kato et al.,
2019a). Similarly, among nuclear DNA (nDNA) targets, internal
transcribed spacer (ITS) regions of ribosomal RNA and heat
shock protein 70 (hsp70) are commonly used for species
identification, due to their sensitivity for detection of
interspecific sequence divergence (da Silva et al., 2010; Talmi-
Frank et al., 2010; de Almeida et al., 2011; Fraga et al., 2012;
Montalvo et al., 2012). Generally, genetic analysis of a single
target is considered acceptable for reliable identification at the
species level; however, analysis of multiple targets may increase
accuracy. Furthermore, analysis of single targets may not detect
strains that are the product of recombination between
different species.

Recently, countrywide surveillances were performed in
Ecuador and Peru using cyt b gene analysis, and geographic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
distributions of Leishmania species were identified (Kato et al.,
2010; Kato et al., 2016a; Kato et al., 2019a). Furthermore,
comparative analyses of kDNA and nDNA revealed the
prevalence of genetically complex Leishmania including
hybrids and strains with mismatches between these genes,
known as mito-nuclear discordance, at an unexpectedly high
rate (~10%) in these countries (Kato et al., 2019b; Tabbabi et al.,
2020). In this review, we describe the genetic complexity of
Leishmania strains found in Ecuador and Peru that showed
hybrid and mito-nuclear discordance characteristics, and discuss
where and how such genetic exchange occurs, and its influence
on disease severity and expansion of potential vector species.
LEISHMANIASIS IN ECUADOR AND PERÚ,
AND IDENTIFICATION OF CAUSATIVE
SPECIES BASED ON CYTOCHROME B
GENE ANALYSIS

Ecuador is a relatively small country located on the Equator in
northwestern South America. The country includes four
ecological regions, each with a unique biodiversity and
ecosystem: the Pacific coast subtropical areas, Andean
highlands, Amazonian rainforest, and Galapagos Islands.
Leishmaniasis is endemic in the first three regions (Hashiguchi
et al., 2017). Up to the present, eight Leishmania species: L. (V.)
guyanensis, L. (V.) panamensis, L. (V.) braziliensis, L. (V.) naiffi,
L. (V.) lainsoni, L. (L.) mexicana, L. (L.) amazonensis, and L. (L.)
major-like, have been recorded as responsible for cutaneous
leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL)
(Kato et al., 2016a; Hashiguchi et al., 2017; Kato et al., 2019b)
(Figure 1). On the Pacific coast, L. (V.) guyanensis is the
dominant causative agent, and infections by L. (V.) panamensis
and L. (V.) braziliensis also have been reported. In addition, the
distribution of L. (L.) amazonensis has been recorded in certain
areas, although infection by it has not been reported recently
(Kato et al., 2016a; Hashiguchi et al., 2017). In Amazonian areas,
CL and MCL caused by L. (V.) guyanensis and L. (V.) braziliensis
have been widely recorded, and CL caused by L. (V.) naiffi and L.
(V.) lainsoni was recently reported in several areas (Kato et al.,
2013; Kato et al., 2016a; Kato et al., 2016b). In the Andean
highlands, areas endemic for CL are limited to the mid-
southwestern part of Ecuador, and L. (L.) mexicana is
currently the major causative species, whereas infection by L.
(L.) major-like was reported previously (Kato et al., 2016a;
Hashiguchi et al., 2017; Hashiguchi et al., 2018) (Figure 1). In
addition, a hybrid of L. (V.) guyanensis and L. (V.) braziliensis
was recorded in southern parts (Bañuls et al., 1997). The
observed variety in species and hybrids that cause CL in this
relatively small country may reflect the extensive ecological and
biological diversities, including among sand fly vectors and
reservoir animals. In Ecuador, CL is the most frequently
observed form of leishmaniasis, most commonly presenting as
an ulcer, followed by popular, nodular, and atypical forms,
including diffuse and disseminated lesions, and recidiva cutis
(Hashiguchi et al . , 2016; Hashiguchi et al . , 2017).
February 2021 | Volume 11 | Article 625001

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Kato et al. Genetically Complex Leishmania Strains
The characteristic presenting symptoms have not been defined
for all infecting species, however, diffuse and disseminated forms
of leishmaniasis are caused by L. (L.) mexicana and L. (V.)
guyanensis, respectively (Hashiguchi et al., 2017).

Peru, a larger country located to the south of Ecuador,
similarly includes Pacific coast, Andean highland, and
Amazonian rainforest regions. Peru is one of the most highly
endemic countries for CL, which occurs throughout the country
from highlands to lowlands. In contrast, MCL is endemic to
Amazonian areas (Kato et al., 2010; Kato et al., 2019a). Six
Leishmania species and several hybrids have been recorded as
responsible for leishmaniasis (Kato et al., 2010; Kato et al., 2019a;
Tabbabi et al., 2020) (Figure 1). Of these, the main causative
agents are L. (V.) peruviana, L. (V.) braziliensis, and L. (V.)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
guyanensis, mainly circulating in the Andean highlands, tropical
rainforest, and northern to central rainforest areas, respectively
(Kato et al., 2010; Kato et al., 2019a) (Figure 1). In addition to
the three dominant species, L. (V.) lainsoni and L. (L.)
amazonensis have been reported to be cause disease in lower
rainforest areas, and L. (V.) shawi was recently identified as a rare
and sporadic species responsible for CL based on cyt b gene
sequence analysis (Kato et al., 2010; Kato et al., 2019a) (Figure
1). Furthermore, a hybrid of L. (V.) braziliensis and L. (V.)
peruviana first recorded in 1995 in a central area, was recently
reported in northern Peru (Dujardin et al., 1995; Koarashi et al.,
2016; Kato et al., 2019a) (Figure 1). Unlike Ecuador, CL is highly
endemic throughout Andean areas in Peru. Additionally, the
cutaneous lesions of patients in the Peruvian Andes were
FIGURE 1 | Geographic distribution of Leishmania species in Ecuador and Peru. Leishmania species in clinical samples were identified by sequence analysis of
kinetoplast DNA and PCR-RFLP and sequence analyses of nuclear DNA. (Adapted from maps available at https://commons.wikimedia.org/wiki/File:Peru_physical_
map.svg and https://commons.wikimedia.org/wiki/File:Ecuador_relief_location_map.svg).
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commonly larger and more severe when compared with those of
patients in the Ecuadorian Andes (Hashiguchi et al., 2018).
COMPARATIVE NUCLEAR AND
KINETOPLAST DNA ANALYSES REVEAL
GENETICALLY COMPLEX LEISHMANIA
STRAINS WITH HYBRID AND MITO-
NUCLEAR DISCORDANCE

Sequence analysis targeting kDNA and nDNA is a powerful and
reliable tool for the identification of infecting Leishmania species;
however, it requires costly reagents and equipment. Therefore,
cost-effective alternatives are preferable for more practical use
applicable in less-equipped laboratories/countries. Of these,
PCR-restriction fragment length polymorphism (RFLP)
analysis is a promising candidate. In addition, PCR-RFLP
allows analysis of heterozygous multicopy regions. For this
purpose, nDNA is considered to be a more suitable target than
kDNA, due to the potential effect of polymorphisms in the
kDNA sequences of both minicircle and maxicircle genes on
restriction fragment patterns. To date, ITS regions of ribosomal
RNA and the hsp70 gene have been widely used as targets due to
their sensitivity, specificity, and reliability (Garcia et al., 2004;
Rotureau et al., 2006; Spanakos et al., 2008; Fraga et al., 2012;
Khanra et al., 2012; Fraga et al., 2013; Mouttaki et al., 2014). In
addition, PCR-RFLP analyses targeting leishmanial mannose
phosphate isomerase (mpi) and 6-phosphogluconate
dehydrogenase (6pgd) genes, both of which have been used for
multilocus sequence typing (MLST), were recently established,
and their reliability for species identification was confirmed
(Kato et al., 2019b).

In recent studies, PCR-RFLP analyses of nDNA were applied
to 92 and 134 clinical samples from Ecuador and Peru,
respectively, and the results were compared with those
obtained by kDNA sequence analyses (Kato et al., 2019b;
Tabbabi et al., 2020). Interestingly, results that were consistent
between the two analyses were obtained only for about 90% of
samples each, from Ecuador and Peru (90.2 and 87.3%,
respectively). On the other hand, five Ecuadorian samples
showed hybrid patterns by PCR-RFLP, and were identified as
hybrid strains of L. (V.) guyanensis/L. (V.) braziliensis and L. (V.)
guyanensis/L. (V.) panamensis (Kato et al., 2019b). Similarly, six
Peruvian samples showing hybrid RFLP patterns were identified
as hybrids of L. (V.) braziliensis/L. (V.) peruviana and L. (V.)
peruviana/L. (V.) lainsoni (Tabbabi et al., 2020) (Figure 1).
Furthermore, these studies unexpectedly identified strains
showing incompatibility between kDNA and nDNA, known as
mito-nuclear discordance, which had not been reported
previously in protozoa, in five Ecuadorian (5.4%) and eleven
Peruvian (8.2%) samples (Kato et al., 2019b; Tabbabi et al., 2020).
These samples were identified as hybrids of L. (V.) guyanensis/L.
(V.) panamensis with L. (V.) braziliensis kDNA, L. (V.)
guyanensis with L. (V.) braziliensis kDNA, and L. (V.)
panamensis with L. (V.) braziliensis kDNA in Ecuador, and of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
L. (V.) guyanensis with L. (V.) braziliensis kDNA, L. (V.)
braziliensis with L. (V.) shawi kDNA, L. (V.) braziliensis with
L. (V.) lainsoni kDNA, and L. (V.) lainsoni with L. (V.)
braziliensis kDNA, in Peru. Interestingly, strains with mito-
nuclear discordance were detected from geographically
separate areas, rather than from delimited areas in both
countries (Figures 1 and 2). The distribution of unexpectedly
high rates of hybrid or mito-nuclear discordance strains in both
Ecuador and Peru indicates that the genetic structure of
Leishmania is more complex than expected. In addition, these
results suggest that interspecific genetic exchange occurs at a
certain frequency in nature. It is important to note that all strains
with mito-nuclear discordance are associated with L. (V.)
braziliensis, suggesting that the species may have characteristics
promoting genetic exchange with other species.
WHERE AND HOW DOES GENETIC
EXCHANGE OCCUR?

Hybrids of Leishmania species such as L. (V.) braziliensis/L. (V.)
guyanensis, L. (L.) infantum/L. (L.) major, and L. (L.) donovani/
L. (L.) aethiopica have been reported in other countries (Delgado
et al., 1997; Ravel et al., 2006; Odiwuor et al., 2011). Recently,
genome-scale analyses provided evidence of meiotic-like
recombination between Leishmania species, resulting in full-
genome hybrids (Van den Broeck et al., 2020). Interestingly,
this study also showed that the mitochondrial genome of hybrid
strains consisted of homogeneous uniparental maxicircles,
whereas minicircles originated from both parental species (Van
den Broeck et al., 2020).

The mechanisms of genetic exchange in Leishmania resulting
in the formation of hybrid and mito-nuclear discordance, and
where and how they occur, are still unclear. In Peru, the natural
hybridization between L. (V.) braziliensis and L. (V.) peruviana is
hypothesized to be associated with a massive migration of people
and animals between highland and lowland areas, due to the
deterioration and recovery of the political and security situation
(Kato et al., 2016c; Van den Broeck et al., 2020). A resulting
increased risk for infection by multiple Leishmania species in
humans and animals, is thought to give rise to the emergence and
establishment of hybrid strains. A hybrid of Leishmania can be
generated experimentally in sand fly vectors by co-infecting them
with two different strains of the same Leishmania species
(Akopyants et al., 2009; Sadlova et al., 2011; Calvo-Álvarez
et al., 2014), and in vitro by co-culture of different strains of L.
(L.) tropica promastigotes, a stage in the sand fly vector lifecycle
(Louradour et al., 2020). In addition, direct evidence of sexual
recombination in natural populations was provided by whole
genome sequencing of Leishmania isolated from sand flies
(Rogers et al., 2014). The midgut adhesion molecule of sand
flies is believed to be a major determinant of parasite-vector
specificity by supporting species-specific parasite attachment and
their growth (Kamhawi et al., 2004). Therefore, interspecific
hybrid formation is considered to occur within sand flies if the
February 2021 | Volume 11 | Article 625001
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two parasite species share the midgut molecule for their
attachment, which may be possible between closely-related
species such as L. (V.) braziliensis and L. (V.) peruviana, and
L. (V.) guyanensis and L. (V.) panamensis. However, genetic
exchange will not occur between more distantly-related
Leishmania species within a sand fly, when its affinities differ
for those Leishmania species. Therefore, the potential for genetic
exchange within reservoirs with subsequent hybrid formation
should be considered.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
MITO-NUCLEAR DISCORDANCE

In addition to hybrid species, recent studies have reported the
presence of Leishmania strains showing discordance between
kDNA and nDNA at a relatively high rate; this represents the
first report of mito-nuclear discordance in protozoan parasites
(Kato et al., 2019b; Tabbabi et al., 2020). It is not known where
and how such incompatibility occurs, or whether the mechanism
is the same as for the hybrid formation of nDNA.
A

B

FIGURE 2 | Discordance between cytochrome b and mannose phosphate isomerase gene sequences in clinical samples. Leishmanial cytochrome b (A) and
mannose phosphate isomerase (B) genes were determined from clinical samples of patients with cutaneous leishmaniasis (HU2, AA2, and Cal1), and phylogenetic
analyses were performed by the maximum likelihood method together with those sequences from 13 Leishmania species. The scale bar represents 0.02%
divergence. Bootstrap values are shown above or below branches. Parasites were identified as Leishmania (Viannia) guyanensis with L. (V.) braziliensis kDNA, L. (V.)
lainsoni with L. (V.) braziliensis kDNA, and L. (V.) shawi with L. (V.) braziliensis kDNA in clinical samples, HU2, AA2, and Cal1, respectively.
February 2021 | Volume 11 | Article 625001
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Mitochondrial and nuclear genomes co-exist in each cell;
however, the rate of evolution of mitochondrial DNA
(mtDNA) is more rapid than that of nDNA (Toews and
Brelsford, 2012). Incompatibility between mtDNA and nDNA
has been reported in various organisms including mammals,
birds, reptiles, amphibians, fish, insects, and yeasts (Toews and
Brelsford, 2012). It has also been reported in helminth parasites,
between Schistosoma turkestanicum populations (Lawton et al.,
2017), between Taenia solium lineages (Yanagida et al., 2014),
and between T. saginata and T. asiatica (Yamane et al., 2012;
Yamane et al., 2013; Sato et al., 2018). Mito-nuclear discordance
is considered to result from various processes such as adaptive
introgression of mtDNA, demographic disparities, sex-biased
asymmetries, hybrid zone movement, an intracellular bacteria,
Wolbachia infection in insects, and human actions (Toews and
Brelsford, 2012). It is well known that mitochondria play essential
roles in cellular energy production, cellular proliferation, and
many other metabolic functions (McBride et al., 2006). Although
mitochondria contain their own DNA independently, the
interaction between mitochondrial and nuclear genomes is
important for biological functions of the cell (McBride et al.,
2006; Ali et al., 2019). Therefore, it is considered that exchange of
kDNA possibly affects pathogenicity and transmission potential
by sand flies of Leishmania protozoa, as suggested in a hybrid
strain (Cortes et al., 2012). Further studies that involve isolating
parasite strains with mito-nuclear discordance are expected to
elucidate these issues and provide further insight into the
mechanism of genetic exchange between Leishmania protozoa.
CONCLUDING REMARKS

This review describes the genetic exchange that results in the
establishment of hybrid strains and mito-nuclear discordance in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Leishmania under natural conditions. Formation of a hybrid
strain was suggested to increase the severity of disease when
compared with parental species in an experimental animal
model (Cortes et al., 2012). In addition, hybrid strains can
increase the potential for sand fly transmission (Volf et al.,
2007; Seblova et al., 2015). It is not yet well-established
whether strains showing mito-nuclear discordance have
increased pathogenicity or vector range. Isolation of strains
with mito-nuclear discordance and further studies on the
infection in animals and sand flies will be necessary to clarify
these issues. Since mitochondria are organelles that are essential
for cell energy supply, differentiation, and growth, (McBride
et al., 2006), the genetic exchange resulting in mito-
nuclear discordance could affect disease progression, as well as
modify the potential for transmission by sand flies. Finally,
the development of hybrids and strains with mito-nuclear
discordance may have biological significance for parasite
evolution and adaptation.
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