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Mycobacterium tuberculosis (Mtb) causes chronic granulomatous lung disease in
humans. Recently, novel strategies such as host-directed therapeutics and adjunctive
therapies that enhance the effect of existing antibiotics have emerged to better control Mtb
infection. Recent advances in understanding the metabolic interplay between host
immune cells and pathogens have provided new insights into how their interactions
ultimately influence disease outcomes and antibiotic-treatment efficacy. In this review, we
describe how metabolic cascades in immune environments and relevant metabolites
produced from immune cells during Mtb infection play critical roles in the progression of
diseases and induction of anti-Mtb protective immunity. In addition, we introduce how
metabolic alterations in Mtb itself can lead to the development of persister cells that are
resistant to host immunity and can eventually evade antibiotic attacks. Further
understanding of the metabolic link between host cells and Mtb may contribute to not
only the prevention of Mtb persister development but also the optimization of host anti-
Mtb immunity together with enhanced efficacy of existing antibiotics. Overall, this review
highlights novel approaches to improve and develop host-mediated therapeutic strategies
against Mtb infection by restoring and switching pathogen-favoring metabolic conditions
with host-favoring conditions.

Keywords: Mycobacterium, metabolism, immune cells, adjuvant therapy, host-directed therapy
INTRODUCTION

Despite several decades of progress in controlling infectious diseases, tuberculosis (TB) remains the
leading cause of death caused by pathogenic bacteria in humans (Floyd et al., 2018; WHO, 2019). TB
is a chronic granulomatous disease, occurring mainly in the lungs (Elkard et al., 2016), and caused
by the bacterium Mycobacterium tuberculosis (Mtb), which is pathogenic to humans. Mtb can be
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latent in the lung tissues of the host and persist throughout the
lifetime of a patient. If the host immune response is disturbed,
latent TB can be reactivated, which can lead to active
transmission of the pathogen (Tufariello et al., 2003). During
Mtb infection, host immune cells undergo significant metabolic
alterations, and invoke a range of immune responses to defend
against the infection (Shi et al., 2019a). The pathogen can survive
in the host for a long time, using diverse pathways to escape the
host immune system (Qualls and Murray, 2016). Investigating
metabolic interactions between the host and mycobacterial
pathogens is important in the development of strategies to
strengthen the host defense system, and is critical for
understanding the fundamental alterations which occur in the
host immune system, from the establishment of infection to the
disease outcome.

Recent advances in understanding host-pathogen interactions
using multiple-omics analysis have provided insights into several
pathways that may be novel therapeutic targets for TB treatment
(Zimmermann et al., 2017; Serafini et al., 2019). Regulation of host
anti-TB immunity, such as host-directed therapy (HDT) and
adjunctive therapies, enhances the efficacy of existing antibiotics
(Rayasam and Balganesh, 2015; Tobin, 2015). However, there are
relatively few studies focusing on metabolic pathways that regulate
host immune responses and boost antibiotic effects by effectively
targeting Mtb. The development of new therapeutic strategies
against Mtb infection requires an understanding of the immune
cell functions and the major regulatory mechanisms of these
immune functions (Liu et al., 2017).

We also need to understand the metabolic pathways that make
Mtb refractory to anti-TB drugs. Bacteria can form persister cells by
metabolic alteration, or induce drug resistance by genetic alteration
of the bacteria in order to survive the stresses arising from the host
environment and drug treatment (Jung et al., 2019). Persister cells,
which are characterized by a decrease in the metabolism of the
bacterium, are one of the causes of chronic infectious diseases,
leading to the abuse of antibiotics (Jung et al., 2019) and the
emergence of antibiotic-resistant bacteria (Defraine et al., 2018).
Therefore, understanding the mechanisms of Mtb persistence and
resistance can lead to the development of effective strategies for
antibiotic use, targeting bacterial metabolic pathways.

In this review, we address the immune metabolic mechanisms
used by the host to control Mtb infection, and the mechanisms
by which Mtb evades the host immunity. We focus on metabolic
networks in which Mtb survives in human tissues by being
refractory to anti-TB drugs. Based on this understanding, we
propose a better control strategy for developing HDT against
Mtb infection.
OVERVIEW OF METABOLIC
INTERACTIONS BETWEEN HOST IMMUNE
CELLS AND MTB

Understanding immunometabolism and associated bioenergetic
pathways is critical in elucidating the relationships between
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metabolic status and the functional roles of immune cells
(Howard and Khader, 2020; Kornberg, 2020). Unlike other
cells, immune cells must maintain homeostasis under normal
physiological conditions, while being readily equipped to achieve
a rapid and appropriate response during infection (Shi et al.,
2016). Metabolic remodeling of theWarburg effect, characterized
by increased glucose uptake and lactate production in the
presence of oxygen in host immune cells, occurs in response to
early Mtb infection (Cumming et al., 2020). The immune cells
are characterized by the immune responses that occur during
infection (Shi et al., 2019a). During early Mtb infection, classical
M1 cells exhibit pro-inflammatory properties and T helper type 1
(Th1)-biased immunostimulatory properties that mediate
antimicrobial defenses (Mantovani et al., 2004; Fan et al., 2015;
Khan et al., 2019). M1 macrophages are characterized by the high
production of pro-inflammatory cytokines [interleukin (IL)-1b,
IL-6, IL-12, IL-23], antimicrobial peptides (cathelicidin, LL37),
nitric oxide (NO), and reactive oxygen species (ROS) (Verreck
et al., 2004; van der Does et al., 2010; Atri et al., 2018; Khan et al.,
2019). In addition, M1 macrophages produce several
inflammatory molecules that play an essential role in the host
defense system, such as type I interferon (IFN), inducible nitric
oxide synthase (iNOS), nitric oxide synthase 2 (NOS2), CXCL
(1-3, 5-8), and CCL (2-5, 11) (Palomino and Marti, 2015; Bailey
et al., 2019; Khan et al., 2019; Shi et al., 2019a). However, Mtb can
survive and persist in the host by interfering with the host
immune cell Warburg effect or by altering the M1/M2
polarization balance (Shi et al., 2016). In the early stages of
Mtb infection, M1 polarization is dominantly involved, but as the
infection progresses, the tricarboxylic acid cycle (TCA cycle) and
oxidative phosphorylation (OXPHOS) in Mtb-infected
macrophages are restored. Thus, M2 polarization eventually
becomes a dominant characteristic (Shi et al., 2019a). The anti-
inflammatory microRNA-21 (miR21) is induced, which limits
glycolysis by inhibiting phosphofructokinase muscle (Hackett
et al., 2020). IFN-g has antagonistic effects against miR21, which
supports host glycolysis to generate IL-1b. In addition, Mtb heat-
shock protein 16.3 (Hsp16.3), a member of the a–crystal
superfamily, is expressed during late Mtb infection. Hsp16.3
induced a M2-like phenotype in macrophages via CCRL2 and
CX3CR1 and signal transduction of AKT/ERK/p38-MAPK
(Zhang et al., 2020). The Early Secreted Antigenic Target 6
kDa (ESAT-6), which is a virulent Mtb factor, has been
implicated in macrophage differentiation toward the M1
phenotype during early infection and the subsequent switch to
an M2 phenotype during late infection (Refai et al., 2018). The
M2 phenotype includes anti-inflammatory and angiogenic
forms of non-classically activated macrophages that exhibit
Th2-oriented regulatory immune properties (Khan et al., 2019).
The polarization of M2 macrophages is mediated by anti-
inflammatory cytokines such as IL-4, IL-10, and IL-13
(Martinez et al., 2009), and is characterized by the upregulation
of several surface molecules such as dectin‐1, macrophage
scavenger receptor (CD163 and CD204), CCR2, CXCR1, and
CXCR2 (Gordon, 2003; Mantovani et al., 2004; Martinez et al.,
2009; Khan et al., 2019) (Figure 1).
March 2021 | Volume 11 | Article 635335

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Park et al. Metabolic Intervention for Mtb Control
Mtb uses lipid bodies accumulated in macrophages and lactic
acid produced by glycolysis as nutrient sources for their survival.
Therefore, cholesterol synthesis, which produces a component of
the lipid droplets (LD) required to maintain Mtb, may be a target
to inhibit Mtb growth. In a recent study, simvastatin, a statin-
based drug, showed anti-tubercular activity by inhibiting
cholesterol biosynthesis (Bruiners et al., 2020). In another
study, inhibiting the cholesterol biosynthetic pathway and
mevalonate (MVA) pathway with statin drugs was proposed as
an HDT for host protection against Mtb infection. (Parihar et al.,
2014) (Chen et al., 2008). Therefore, studies targeting the host
metabolism reprogrammed by Mtb infection may help in
developing new HDT strategies.

Immune cells such as macrophages and T cells are important
for anti-mycobacterial host defense, and tightly regulated T cell
responses are fundamental to host survival against Mtb infection
(Russell et al., 2019). The development of HDT for improving the
regulation of immune metabolism in T cells has recently aroused
considerable interest. In TB lesions, T cell mediated immunity is
essential to the adaptive immune response, but the regulation of
immune metabolism related to T cell response is less understood
than the role of macrophages. The generation of adenosine
triphosphate (ATP) in naïve T cells depends on oxidative
phosphorylation (OXPHOS), and activated T cells reprogram
their metabolism towards aerobic glycolysis to produce ATP
(Buck et al., 2015). It has been reported that cyclophilin D
(CypD), a mitochondrial matrix protein, affects T-cell
metabolism and mitochondrial function. In CypD-deficient T
cells, both glycolysis and OXPHOS were enhanced compared
with control cells furthermore, there was increased generation of
mitochondrial ROS. It is considered that increased ROS
production leads to metabolic dysfunction, thereby increasing
the proliferation of T cells. The inhibition of ROS generation
with antioxidants reversed T cell proliferation to the control
level. CypD inhibition increased the proportion of T cells with
the phenotype of activated metabolism and enhanced
proliferation, but the cells became highly susceptible to Mtb
infection along with pulmonary immunopathology (Tzelepis
et al., 2018). These results are contrary to the fact that the
inhibition of CypD in macrophages reduced Mtb growth (Gan
et al., 2005). Thus, intense T cell responses during Mtb infection
are not necessarily beneficial, suggesting that dysregulated T cell
responses may increase bacterial burden and susceptibility
(Tzelepis et al., 2018). As Mtb infection progresses, CD8+ T
cells impair mitochondrial function and increase dependence on
glycolysis, but immune disruption occurs due to bioenergy
deficiency. In a recent study, the expression of the inhibitory
receptors PD-1 and CTLA-4 was significantly increased in Mtb-
specific CD8+ T cells 12 weeks after H37Rv Mtb infection in
mice. Analysis of the extracellular flux of CD8+ T cells revealed
that CD8+ T cells were dysfunctional due to a metabolic
“quiescence” state 12 weeks after infection (Russell et al.,
2019). The use of metformin, developed as an anti-diabetic
drug, in combination with anti-Mtb targeting drugs, restored
the bioenergetic metabolism of CD8+ T cells in Mtb infected
mice (Russell et al., 2019) and reduced the bacillary burden
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(Singhal et al., 2014). Therefore, it is possible to shorten the
treatment period by improving the adaptive immune response of
T cells to tuberculosis, through the development of HDT directed
at T cell responses. In order to achieve this goal, greater
knowledge of the adaptive immune response to TB is required
(Cumming et al., 2020).

Additionally, Mtb may develop resistance to host immunity
or antibiotic therapy via its own metabolism. Mtb metabolism
provides diverse pathogenicity through various roles beyond
replicative fuel, which helps maintain survival by resisting
antibiotics and establishing chronic infection in host cells (Ehrt
et al., 2018). Various lipid species present in the Mtb cell wall can
be used to induce host pathological reactions, disrupt protective
mechanisms or provide defense against antibiotic attacks. For
example, by masking pathogen-related molecular patterns with
phthiocerol dimycocerosates (PDIM) and suppressing Toll-like
receptor 2 with sulfoglycolipids, innate immune signaling is
inhibited. In addition, phosphatidylinositol mannosides (PIMs)
contribute to the low permeability of the mycobacterial cell
envelope and provide intrinsic antibiotic resistance (Dulberger
et al., 2020). As such, the Mtb cell wall is regulated during human
infection, thereby affecting the immune response and
determining the sensitivity to antibiotics. Therefore, studying
mycobacteria cell wall biosynthesis may help improve
antibiotic sensitivity.

Another study revealed that mutation in tuberculosis
transcription factor, prpR, in Mtb alters propionyl-CoA
metabolism, which confers tolerance to the three most effective
drugs: isoniazid, ofloxacin, and rifampin. Targeting gene
alterations and subsequent metabolic mechanisms that affect
Mtb drug sensitivity will help prevent tolerant strains and
improve treatment outcomes (Hicks et al., 2018).

Host Defense Mechanism by Glycolysis
Metabolism of Macrophages Following
Mtb Infection
Whenmacrophages are activated to the M1 phenotype, they alter
pro-inflammatory immune responses and metabolism such as
the Warburg effect, which is characterized by a high glycolytic
rate with increased lactate secretion in tumors and M1
macrophages (Warburg, 1956; Huang et al., 2014). In general,
the major metabolic features in M1 macrophages are
characterized by increased glycolytic flux and lactate
formation, along with decreased pyruvate oxidation, TCA cycle
activity, and oxidative phosphorylation, resulting in
downregulated mitochondrial oxidative metabolism. This
condition is responsible for Hif1a upregulation. HIF-1a is
responsible for the Warburg effect, which promotes glycolytic
flux by activating various genes encoding the main Warburg
effect enzymes, such as glucose uptake transporter 1,6
(GLUT1,6), hexokinase 1,2 (HK1,2), the phosphofructokinase-
1 (PFK-1) family, the phosphofructokinase 2 (PFK-2) family,
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFKFB3), and the major lactate secretion transporter member 4
(MCT4, also known as SLC16A3) (Semenza et al., 1996; Nizet and
Johnson, 2009; Semenza, 2010).
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FIGURE 1 | M1-to-M2 transition of Mtb-infected macrophages with metabolic reprogramming. In the early stage of Mtb infection, macrophages activate into pro-
inflammatory M1 macrophages with metabolic reprogramming called the “Warburg effect.” Mtb-infected M1 macrophages have increased glycolytic capacity with
excessive glucose entry through glucose transporters (GLUT). After glycolysis, glucose is degraded into pyruvate, which is used for the TCA cycle in mitochondria.
Following M1 activation, the TCA cycle is blocked, which is accompanied by aconitate and succinate accumulation. Itaconate, which is driven by aconitate in Mtb-
infected M1 macrophages, has anti-mycobacterial effects. Excessive succinate levels inhibit HIF prolyl-hydroxylases (PHD) and stabilization of HIF-1a. NOS2, a
marker of M1 macrophages, is also expressed in Mtb-infected M1 macrophages to produce nitric oxide (NO) through arginine metabolism. Increased nitric oxide
inhibits the ETC and activates reactive oxygen/nitrogen species (ROS/RNS). HIF-1a is also activated by ROS and RNS. Activated HIF-1a induces the transcription of
glycolytic genes and Il-1b for boosting glycolysis, lactate production, and anti-mycobacterial immune responses, respectively. Intracellular Mtb induces miR-21
expression for inhibiting both glycolysis and IL-1b secretion by repressing Pfk-m transcription. When pyruvate is converted to citrate, citrate is further metabolized to
acetyl-coenzyme A (AcCoA), which acts backbone for ketogenesis and de novo lipogenesis. During ketogenesis, D-3-hydrobutyrate (3HB) is generated from AcCoA
and stimulates GPR109A for inducing de novo lipogenesis. Elevated de novo lipogenesis in Mtb-infected M1 macrophages generates the accumulation of lipid
bodies, which are closely associated with intracellular Mtb. Thus, lipid-laden cells, which have a bubble-like morphology in the cytosol, are called “foamy”
macrophages. In the late stage of Mtb infection, Mtb-infected M1 macrophages transition into anti-inflammatory M2 macrophages via mycobacterial components
such as ESAT-6 and HSP16.3. These Mtb-infected M2 macrophages secrete anti-inflammatory cytokines such as IL-10 and TGF-b. Arginase, which is a marker of
M2 macrophages, is also expressed in Mtb-infected M2 macrophages and acts on arginine metabolism to reduce NO generation. PGC-1b modulates mitochondrial
biosynthesis to promote OXPHOS. PPARa induces the transcription of genes encoding lipid transporters and scavenger receptors to increase exogenous lipid
utilization. Exogenous lipids are internalized by scavenger receptors in Mtb-infected M2 macrophages and generate free fatty acids, which are converted to fatty acyl
CoA and translocated into the mitochondria in a carnitine palmitoyltransferase (CPT)-dependent manner. In Mtb-infected M2 macrophages, mitochondrial respiration,
including b-oxidation and OXPHOS, are upregulated to maintain anti-inflammatory responses. Collectively, Mtb infection elicits metabolic reprogramming and
modulates immune responses via M1-to-M2 macrophage transition.
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Park et al. Metabolic Intervention for Mtb Control
In the early stage of infection, Mtb could elicit metabolic
reprogramming of host cells, which is cognate with
immunometabolism of M1 macrophages (Gleeson et al., 2016;
Qualls and Murray, 2016). In metabolite studies of Mtb-infected
macrophages, human alveolar macrophages, human monocyte-
derived macrophages, and murine bone marrow-derived
macrophages (BMDMs) showed MOI-dependent increased
lactate production 3 h post-infection (Gleeson et al., 2016).
Since lactate is produced from pyruvate reduction as the end
product of glycolysis, increased lactate levels reflect an increase in
intracellular glycolytic activity. Recent studies showed that HIF-
1a expressed in Mtb-infected mouse BMDMs upregulates lactate
dehydrogenase (LDH), an enzyme that converts pyruvate to
lactate. In Hif-1a WT mouse BMDMs, pyruvate was converted
to lactate by the increased LDH 12 h after Mtb infection,
resulting in lower pyruvate concentrations. However, in Hif1a
KO mice, pyruvate was not converted to lactate due to the
absence of LDH, resulting in increased pyruvate levels. In
addition, evidence that Mtb grows faster when pyruvate is the
sole carbon source, rather than glucose, supports that pyruvate is
utilized as an energy source for Mtb survival and replication.
Therefore, lowering the pyruvate levels through increased LDH,
which is upregulated by HIF-1a in macrophages, is crucial for
the host defense mechanism against Mtb infection (Osada-Oka
et al., 2019). Another recent study showed that HIF-1a activity is
necessary for the control of pathological lung inflammation and
long-term host survival during chronic Mtb infection
(Braverman et al., 2016). Baay-Guzman et al. (2018)
demonstrated the importance of HIF-1a activation in host
defenses against Mtb by showing that blocking HIF-1a during
early Mtb infection in BALB/c mice exacerbates the disease.
Interestingly, it was shown that blocking HIF-1a with 2-
methoxyestradiol during late TB infection eliminated the
bacteria. By blocking HIF-1a during late TB, foam-like
macrophages that resist apoptosis become susceptible to
apoptosis, and the bacterial load is reduced (Baay-Guzman
et al., 2018). However, even with a reduced Mtb load, HIF-1a
plays a major role in regulating the pathological pneumonia
during chronic Mtb infection. Thus, further study of HIF-1a
blockade in late infection is necessary. In addition, treating
murine BMDMs with 2-deoxyglucose (2DG), a glycolysis
inhibitor, 24 h after Mtb H37Ra infection, significantly reduced
the levels of IL-1b, a proinflammatory cytokine, and increased
bacillary replication by macrophages (Gleeson et al., 2016). HIF-
1a induces the transcription of IL-1b, a major pro-inflammatory
cytokine (Tannahill et al., 2013), and mediates the Warburg
effect, which is thought to contribute to the antimicrobial
response during Mtb infection. Macrophages infected with the
highly virulent pathogenic Mtb strain, H37Rv, showed increased
glucose uptake. Further, the macrophage glycolytic flux induced
by virulent Mtb is perturbed to synthesize ketone body D-3-
hydrobutyrate (3HB) from AcCoA, which contributes to LD
accumulation (Mehrotra et al., 2014). Similarly, macrophages at
the center of lung granuloma of mice infected by Mtb showed a
significantly lower Warburg effect than that of peripheral lung
granuloma macrophages, but HIF-1a expression and glucose
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
metabolism were higher. In summary, Mtb inhibits the immune
activation of macrophages by reducing the Warburg effect and
enhancing the macrophage glycolytic flux, thus funneling the
carbon flux (Shi et al., 2016). Therefore, enhancing the Warburg
effect, which is perturbed in macrophages during Mtb infection,
may improve immune cell function. In addition, blocking HIF-
1a using drugs such as 2-methoxyestradiol, which blocks HIF-
1a in late TB infection, and co-treatment with antibiotics may
improve the efficiency of TB treatment (Figure 2) (Table 1).

TCA Cycle Metabolism-Mediated Host
Defense Against Mtb Infection
The TCA cycle is a metabolic pathway in the mitochondrial
matrix that catabolizes acetyl-coenzyme A (AcCoA) through
cascade reactions of various enzymes. Citrate, the intermediate
product of the TCA cycle, is converted to cis-aconitate by
mitochondrial aconitase 2. Cis-aconitate is converted to
itaconate by immune response gene 1 (IRG1) and to a-
ketoglutarate by isocitrate dehydrogenase 2. In addition,
succinate is oxidized to fumarate by succinate dehydrogenase
(SDH) and converted to malate (Diskin and Pålsson-
McDermott, 2018). When macrophages are stimulated by
lipopolysaccharide (LPS) or other inflammatory signals, the
accumulation of mitochondrial metabolites such as citrate,
itaconate, and succinate occurs in the TCA cycle. This
remodeling of the TCA cycle is a metabolic adaptation
occurring in inflammatory macrophages that can lead to
significant functional changes in immune cells (Lampropoulou
et al., 2016; Diskin and Pålsson-McDermott, 2018).

During virulent Mtb infection, citrate, a TCA cycle
intermediate, is released from the mitochondria into the
cytosol (Mehrotra et al., 2014). Citrate is metabolized to
AcCoA, which acts as a precursor of various inflammatory
mediators of macrophages such as NO, ROS, and
prostaglandin E2 (PGE2), which are related to macrophage
activation (Infantino et al., 2011; Infantino et al., 2013;
Infantino et al., 2014; Howard and Khader, 2020). In addition,
citrate is used as a precursor of itaconate, which is an anti-
inflammatory agent, and connects many metabolic and cellular
processes, indicating that citrate metabolism is critical in the
immune response (Williams and O’Neill, 2018).

Growing evidence suggests that Mtb-infected macrophages
display disrupted TCA cycles leading to succinate accumulation,
which functions as a signal linking metabolism and immunity
(Tannahill et al., 2013; Mills and O’Neill, 2014; Shi et al., 2019a).
Elevated glycolysis flux in early Mtb infection is due to succinate
accumulation of (Tannahill et al., 2013; Mills and O’Neill, 2014).
Succinate increases HIF-1a activity by inhibiting HIF prolyl
hydrolase (Howard and Khader, 2020) and inducing IL-1b
production (Tannahill et al., 2013), thereby limiting the anti-
inflammatory response in activated macrophages. Succinate-
induced IL-1b is crucial in controlling Mtb infection
(Jayaraman et al., 2013; Gleeson et al., 2016; Ogryzko et al.,
2019). In murine macrophages infected with Mtb, sdh was
downregulated, which may contribute to succinate
accumulation (Shi et al., 2019a; Howard and Khader, 2020).
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FIGURE 2 | Metabolism of macrophages is beneficial to host defense or pathogen survival of during Mtb infection. HIF-1a, which is expressed in macrophage
infected with Mtb, lowers the level of pyruvate by upregulating lactate dehydrogenase-A (LDH) and producing lactate. Pyruvate is a carbon source for Mtb and is
used for proliferation. Thus, lowering the pyruvate level is advantageous for host defense. The glycolysis induced by Mtb infection limits Mtb survival through IL-1b
induction. Elevated glycolytic flux and downregulated succinate dehydrogenase (SDH) in Mtb-infected macrophages triggers succinate accumulation. Succinate
exhibits a pro-inflammatory reaction by inducing HIF-1a activation and IL-1b production. The pro-inflammatory mitochondrial ROS produced by succinate oxidation
can limit necroptosis and Mtb replication by lowering ROS levels with nicotinamide adenine dinucleotide (NAD+) supplements. The enzymes participating in the TCA
cycle and oxidative phosphorylation (OXPHOS) of macrophages infected with Mtb are downregulated. Itaconate inhibits SDH-mediated oxidation to increase
succinate levels and induce IRG1-mediated anti-inflammatory responses. Arginase-1 (Arg1) contributes to the survival of pathogens in the early stages of infection,
but controls infections during chronic infection. In macrophages, IDO-mediated tryptophan depletion induces immune tolerance, whereas inhibition of tryptophan
synthesis using a specific gene deficiency in Mtb has a synergistic effect on Mtb growth inhibition. Macrophages infected with Mtb promote intracellular lipid
metabolism to promote lipid droplet (LD) formation and differentiation into “foamy” macrophages, a characteristic of granulomas. This process is dependent on de
novo cholesterol and fatty acid synthesis (FAS). Autophagy inhibited by the miR-33 locus blocks lipid catabolism and promotes cellular lipid accumulation. LD
components, such as triacylglycerol (TAG) and cholesterol ester (CE), are nutrient sources for Mtb. Statins that inhibit cholesterol biosynthesis in hosts with chronic
Mtb infection can be a host-directed drug target. Since the production of lipoxin A4 (LXA4) in Mtb-infected macrophages induces necrosis and prostaglandin E2
(PGE2) induces apoptosis, preferential PGE2 synthesis in the host may be an important host-directed therapy (HDT) for antimycobacterial responses. The blue
pathway should be enhanced, and the red pathway weakened in favor of the host. In the immune metabolism of host cells infected by Mtb, increased expression
and activity are green, and decreased expression and activity are purple.
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TABLE 1 | Metabolic reprogramming in host cells during Mtb infection.

Pathway Metabolite Molecule Model Outcomes and
interpretation

Effect on host
immune cells

Proposed HDT strategy Ref.

Glycolysis Lactate Human AM,
human MDM,
murine BMDM

• Increased lactate
• Activation of

intracellular glycolytic
flux

Glycolysis
upregulation is
critical for host
defense

LDH upregulated by HIF-a and
induction of efficient Warburg effect
are important in host immunity

(Gleeson et al.,
2016)

Lactate,
pyruvate

HIF-1a,
LDH

Mouse BMDM • Increased lactate,
decreased pyruvate

• HIF-1a converts
pyruvate to lactate via
LDH enzyme

Pyruvate
downregulation
is critical for host
defense

(Osada-Oka
et al., 2019)
(Shi et al.,
2015)

Supernatant
fluid of Mtb-
infected human
primary cells
and THP-1 cells

• Decreased lactate,
decreased pyruvate

• Decreased glycolysis
metabolism in late
infection

Destruction of
host adaptive
immune
response by Mtb

(Cumming
et al., 2018)

TCA cycle SDH HEK293 cells Succinate accumulation by
sdh inhibition

Induction of HIF-
1a, Warburg
effect and pro-
inflammatory
response

A treatment strategy is needed to
prevent lung damage by controlling
hyperinflammation through SDH
inhibition

(Shi et al.,
2019a), (Selak
et al., 2005)

Itaconate IRG1 Mouse BMDM • Expression of
itaconate and IRG1

• Irg1 modulates
inflammatory
responses in the lung
after Mtb infection

Irg1 is essential
for host
resistance to
Mtb

Itaconate treatment can be a
treatment strategy to prevent lung
damage during chronic inflammation

(Nair et al.,
2018)

IRG1 Mouse BMDM • Increased itaconate,
succinate

• Succinate increase by
SDH-mediated
oxidation inhibition by
itaconate

IGR1-mediated
anti-inflammatory
response

(Lampropoulou
et al., 2016)

IRG1, ICL Mtb culture Itaconate inhibits Mtb ICL Antimicrobial
activity of
macrophages

(Michelucci
et al., 2013)

Mitochondria
Respiration

ROS TNT Mtb infected
THP-1 cells

• ROS levels are up to
3 times increased

• Mitochondrial ROS is
produced by
dependence on TNT

Mitochondrial
damage induced
by TNT during
macrophage
necroptosis

ROS reduction by NAD+

supplementation is an HDT strategy to
reduce necroptosis and limit Mtb
replication

(Pajuelo et al.,
2020)

Lipid FFA and CL PMA-
differentiated
THP-1 cells

• Increased FFA and
CL

• virMtb infection
stimulates de novo
synthesis of FFA and
CL

Allow Mtb
survival and
persistence in
the host

Inhibition of miR-33 locus expression,
which contributes to LD accumulation
in macrophages, and induction of
PGE2 and LXB4 production support
host immunity

(Mehrotra
et al., 2014)

Fatty acid b-
oxidation

Micro RNA
miR-33
locus in
macrophage

THP-1
macrophage

• Inducing the micro
RNA miR-33 locus

• FAO damage by
expression of micro
RNA miR-33 locus by
Mtb

Enhancement of
lipid store in
hosts preferred
by mycobacteria

(Ouimet et al.,
2016)

Lipid droplet IFN-g,
HIF-1a

Lung lesion of
mice

• IFN-g signaling is
required for LD
formation during Mtb

• IFN-g driven LD
formation supports
the production of host
protective
eicosanoids including
PGE2 and LXB4

LDs support
host immunity in
Mtb infected
macrophages

(Knight et al.,
2018)
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Itaconate, which is overexpressed in Mtb-infected macrophages,
acts as an anti-inflammatory factor that inhibits SDH-mediated
succinate oxidation (Shin et al., 2011; Diskin and Pålsson-
McDermott, 2018). Recent studies have identified SDH
modulators that play an important role in determining the
inflammatory phenotype. Treatment with dimethyl malonate
(DMM), a competitive inhibitor of SDH-mediated succinate
oxidation, produces malonate inside macrophages and results
in increased succinate levels without changing HIF-1a and IL-1b
levels (Nonnenmacher and Hiller, 2018). In addition, BMDMs
from C57BL/6 mice treated with LPS demonstrated attenuated
IL-1b activity and increased IL-10 production. Therefore, SDH
inhibition by DMM results in an anti-inflammatory effect (Mills
and O’Neill, 2014; Mills et al., 2016; Mills and O’Neill, 2016). In
addition, succinate oxidation by SDH can lead to pro-
inflammatory mitochondrial ROS production. Inhibiting ROS
production with rotenone can inhibit the inflammatory
phenotype (Mills et al., 2016). Thus, inhibiting succinate
oxidation with itaconate or DMM could be a potential
treatment to control Mtb infection and immune-mediated
tissue damage through inhibition of ROS production (Figure 2)
(Table 1).

Itaconate, which contributes to succinate accumulation, is
produced by immune response gene1, which is activated by Mtb
infection (Nair et al., 2018). Indeed, itaconate is an antibacterial
metabolite that inhibits isocitrate lyase activity, which supports
the growth of bacterial infections (McFadden and Purohit, 1977).
In addition to its antibacterial function, itaconate inhibits
mitochondrial respiration and inhibits pro-inflammatory
cytokines such as IL1-b, IL6, and IL12p70 in macrophages in
vivo and in vitro (Lampropoulou et al., 2016). In another study,
Irg1-knockout mice display high inflammatory cytokine
production and severe lung disease during Mtb infection, thus
highlighting the importance of Irg1 in host immunity. In other
words, the ability to modulate inflammation by Irg1 expression
in immune cell metabolism can suppress excessive immune
responses, thereby reducing lung disease during infected with
Mtb (Nair et al., 2018). Taken together, succinate-mediated
proinflammatory responses are induced by itaconate
overproduction, while itaconate-mediated anti-inflammatory
responses are produced by IRG1 during Mtb infection, thus
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
preventing damage to host cells from hyperinflammation (Shi
et al., 2019a). Therefore, to limit TB progression from a pro-
inflammatory state to a chronic inflammatory state, a treatment
strategy that prevents lung damage by eradicating Mtb and
revealing the degree of inflammation of TB patients is needed
(Figure 2) (Table 1).

Mitochondrial Respiration of Macrophages
Following Mtb Infection
In the mitochondrial TCA cycle, pyruvate and fatty acid are
oxidized, and nicotinamide adenine dinucleotide (NAD+) is
reduced to nicotinamide adenine dinucleotide hydride
(NADH). Then, NADH is used during OXPHOS to produce
ATP (Cortassa et al., 2019). During Mtb infection and M1
macrophage polarization, Mtb secretes NAD+ glycohydrolase
to deplete NAD+, causing necroptosis of infected cells (Pajuelo
et al., 2018). Additionally, Mtb-infected macrophages express
nicotinamide phosphoribosyltransferase to maintain
homeostasis by increasing NAD synthesis. Nicotinamide
phosphoribosyltransferase is regulated by SIRT6, and SIRT6
prevents excessive inflammatory responses during Mtb
infection and prolongs macrophage survival (Shi et al., 2019a;
Sociali et al., 2019; Howard and Khader, 2020). In the early stages
of Mtb infection, respiratory depression and OXPHOS-related
enzymes are downregulated, and decreased OXPHOS results in
ROS and reactive nitrogen species (RNS) production (Shi et al.,
2015; Howard and Khader, 2020). The origin of ROS and RNS
oxidative stress can be derived from several metabolic processes.
In Mtb-infected murine macrophages, electron transport chain
(ETC) and mitochondrial function are inhibited by NO
generated by highly-expressed NOS2, which may lead to ROS
overproduction. Additionally, NO, which is produced by iNOS/
NOS2, can react with O−

2 to form stronger RNS like ONOO- (Shi
et al., 2019a). RNS also inhibit ETC and mitochondrial function,
reducing redox and increasing ROS (Beltrán et al., 2000; Everts
et al., 2012).

Increased oxidative stress may be a pro-inflammatory
response to combat Mtb infection, but conversely, Mtb may
possess diverse mechanisms that promotes bacterial spread and
replication by inducing macrophage necrosis (Lerner et al.,
2017). The TCA cycle and OXPHOS are upregulated in
TABLE 1 | Continued

Pathway Metabolite Molecule Model Outcomes and
interpretation

Effect on host
immune cells

Proposed HDT strategy Ref.

Amino acid Arginine Arg1 Mouse TB lung
granulomas

Arg1 expression in
hypoxic granulomas
reduces T Cell proliferation

Arg1 inhibits
bacterial growth
in granulomas in
TB

Arg1 expression is important for TB
control in pulmonary granulomas

(Duque-Correa
et al., 2014)

Tryptophan,
kynurenine

IDO TB patient
plasma

In MDR-TB, the IDO
enzyme degrades
tryptophan to increase
kynurenine levels

Patients with
high IDO levels
are at higher risk
for MDR-TB

Prevention of immune tolerance by
blockade of tryptophan catabolism
may be a strategy for HDT for TB

(Shi et al.,
2019b)
March 2021 | Volume 11
AM, alveolar macrophages; Arg1, arginase1; CL, cholesterol; FAO, fatty acid oxidation; FFA, free fatty acids; HIF-1, hypoxia-inducible factor 1; ICL, isocitrate lyase; IDO, indole amine 2,3-
dioxigenase; IFN, interferon; IRG1, immune-responsive gene 1; LD, lipid droplet; LDH, lactate dehydrogenase; LXB4, lipoxin B4; MDM, monocyte-derived macrophages; MDR, multidrug-
resistant; Mtb, Mycobacterium tuberculosis; PGE2, prostaglandin E2; PMA, phorbol 12-myristate 13-acetate; SDH, succinate dehydrogenase; TB, tuberculosis; TCA cycle, tricarboxylic
acid cycle; TNT, tuberculosis necrotizing toxin; virMtb, virulent Mycobacterium tuberculosis.
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murine macrophages 24 h post-Mtb infection. Ultimately,
oxidative metabolism may be increased at a later time-point
during Mtb infection (Howard and Khader, 2020). OXPHOS
upregulation is driven by Pgc1b induction, which encodes
peroxisome proliferator-activated receptor gamma-coactivator-
1b (PGC-1b), a key transcriptional factor in mitochondrial
biogenesis and promotes oxidative metabolism. Transgenic
PGC-1b expression primes M2 macrophage activation and
inhibits pro-inflammatory cytokine production (Lin et al.,
2005; Vats et al., 2006). Inhibiting M1 polarization represents
the transition of Mtb-infected BMDMs to the adaptation/
resolution stage, which may be a mechanism for Mtb to
survive by avoiding the host immune system (Shi et al., 2019a).
In a recent study, it was shown that catalytic activity of TB
necrotizing toxin induces mitochondrial ROS in Mtb-infected
macrophages, causing necroptosis and promoting Mtb
replication. Reducing ROS levels with NAD+ supplementation
protected macrophages from cell death and restricted
mycobacterial replication. Taken together, the immunological
function of ROS production in macrophages during Mtb
infection plays multiple roles, but combining the antioxidant
N-acetyl-cysteine with nicotinamide for NAD+ supplementation
could enhance antibacterial TB chemotherapy (Pajuelo et al.,
2020) (Figure 2) (Table 1).

Formation of LD-Rich Foam-Like
Macrophages Supports Mtb Persistence
Due to Perturbed Lipid Metabolism in Mtb-
Infected Macrophages
Macrophages infected with Mtb increase lipid metabolism,
which results in lipid droplet (LD) formation and further
differentiation into “foamy” macrophages within granulomas
(Hunter et al., 2007; Peyron et al., 2008; Shim et al., 2020).
Mtb and other bacteria are believed to specifically induce LD
formation as a pathogenic strategy for use as a carbon source to
promote intracellular growth (Saka and Valdivia, 2012; Nolan
et al., 2017). Mtb escapes to the cytosol during macrophage
infection and uses cholesterol and fatty acids (FAs) contained in
lipid droplets as a nutrient source. The Mtb triacylglycerol
(TAG) composition is almost the same as that of the host
because Mtb causes TAG accumulation in host cells (Daniel
et al., 2011).

The accumulation of LDs in Mtb-infected macrophages
depends on the induction of de novo cholesterol and fatty acid
synthesis (FAS) by host cells (Mehrotra et al., 2014). Reduced
isocitrate dehydrogenase 2 levels in mitochondria cause
metabolic breakpoints between isocitrate and a-ketoglutarate
production in the TCA cycle, resulting in citrate accumulation
(Jha et al., 2015). Citrate is transported from the mitochondria to
the cytosol by SLC25A1, where it is metabolized to AcCoA and
converted to MVA and malonyl-CoA to support cholesterol and
free fatty acid synthesis, respectively (Mehrotra et al., 2014). In
addition to de novo lipogenesis, LD accumulation also
contributes to the inhibition of lipolysis in Mtb-infected
macrophages. 3-hydroxybutyrate (3HB), which is an end
product of ketone body synthesis that is supplemented with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
excessive glycolysis during Mtb infection, is a G-protein coupled
receptor GPR109a agonist. ESAT-6 protein secreted by H37Rv-
infected macrophages stimulates glucose uptake. This
stimulation increases the glycolysis rate and induces AcCoA
accumulation, and then produces 3HB through the 3-hydroxy-3-
methylglutaryl coenzyme A cycle reaction. Secreted 3HB inhibits
adenylate cyclase through GPR109A activation, which reduces
cAMP levels, weakens PKA activity, and reduces perilipin
phosphorylation. Non-phosphorylated perilipin forms a
protective coating on the LD surface, protecting it from
lipolysis by hormone-sensitive lipase, eventually causing LD
accumulation in macrophages (Singh et al., 2012). In other
words, the activation of GPR109A by 3HB imparts anti-
lipolytic abilities leading to perturbed lipid metabolism and LD
accumulation in Mtb-infected macrophages in an ESAT-6
dependent manner. Inhibiting GPR109A with mepenzolate
bromide effectively reduces the intracellular Mtb bacillary load,
LD accumulation in alveolar macrophages, and the number of
granulomas in vivo (Verma et al., 2019). Indeed, mepenzolate
bromide inhibits the 3HB/GRP109A feedback loop activated by
intracellular Mtb, thereby interfering with LD accumulation in
macrophages. Thus, mepenzolate bromide is a candidate anti-TB
drug targeting the host lipid metabolism pathway (Figure 1).

In addition to perturbations in lipid metabolism induced by
Mtb-induced GPR109A activation, a mechanism of autophagy
evasion through miR-33 expression has been reported. Inducing
miR-33 expression inhibits autophagy and reprograms host lipid
metabolism for increasing intracellular bacterial loads.
Autophagy plays a role in promoting lipid catabolism by
delivering TAG and cholesterol esters stored in LDs to
lysosomes, whereas autophagy inhibited by the miR-33 locus
blocks lipid catabolism and promotes cellular lipid accumulation.
Eventually, Mtb induces miR-33 expression during macrophage
infection to inhibit autophagy, thereby avoiding bacterial
degradation (xenophagy) and accumulating LDs that provide a
nutrient-rich environment for replication. In contrast, genetic
and pharmacological miR-33 silencing promotes AMPK-
dependent activation of FOXO2 and transcription factor EB,
which engages lipid catabolism. Thus, suppressing miR-33
expression locus in host cells could be a strategy to inhibit Mtb
survival by maintaining autophagy, lysosome function, and lipid
homeostasis, which are also crucial for host innate immunity
(Ouimet et al., 2016). Taken together, understanding the
immunometabolism of foamy macrophages is necessary to
establish the novel HDT strategies that inhibit LD
accumulation and boost anti-TB immune responses to improve
TB treatments (Figure 2) (Table 1).

Regulation of Immune Responses
by Arginine Metabolism of
Mtb-Infected Macrophages
iNOS expressed in pro-inflammatory macrophages catalyzes NO
production using arginine as a substrate (Mattila et al., 2013). NO is
a major anti-mycobacterial molecule, and in addition to
microbicidal activity, it regulates IFN-g-mediated anti-Mtb activity
and inflammatory responses during infection (Lee and Kornfeld,
March 2021 | Volume 11 | Article 635335
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2010; Herbst et al., 2011). The host protective immunity against TB
releases IFN-g from T cells to induce NOS2 expression and enhance
NO production, which prevents Mtb growth and subsequent
inflammatory responses (Jamaati et al., 2017). In addition,
inhibition of the nod-like receptor family, pyrin domain
containing 3 (NRP3) inflammasome factor by NO plays a role in
preventing Mtb growth and subsequent pathology by reducing IL-
1b expression, eventually preventing neutrophil recruitment to
infection sites (Mishra et al., 2017). TB patients are deficient in L-
arginine, the NO precursor, and vitamin D, which emphasizes the
importance of NO in the development of TB (Ralph et al., 2008).
Because NO bioavailability is significantly lower in people with
severe TB, increasing NO delivery to the lungs of pulmonary TB
patients may decrease infectivity in people with drug-resistant TB
(Ralph et al., 2013; Jamaati et al., 2017). Therefore, developing a
method to deliver high levels of NO to macrophages may prevent
excessive inflammation in lungs infected with Mtb in TB patients
(Figure 2).

Arginase 1 (Arg 1) is expressed in anti-inflammatory
macrophages, where it competes with NOS for arginine to
produce ornithine, which is synthesized as proline, and can
promote collagen synthesis (leading to fibrosis) in tuberculous
granulomas. Arg1 is primarily present in M2 macrophages
localized around granulomas (Mattila et al., 2013) and is
associated with the host anti-inflammatory response (Yang and
Ming, 2014). In addition, inducting Arg1 expression in
macrophages may inhibit antimicrobial activity by
downregulating NO and reactive RNS production (Kumar et al.,
2019). Conversely, other studies have suggested that Arg1 may
play a crucial role in host protection by regulating inflammation
and necrosis in hypoxic granulomas (Duque-Correa et al., 2014).
Because TB granulomas are often hypoxic, killing bacteria through
NOS may not be optimal. However, arginine metabolism using
Arg1 does not require oxygen and may play an important role in
controlling TB in pulmonary granulomas that occur during Mtb
infection. In a TB murine granuloma model without NOS2, Arg1
contributed to the inhibition of T cell proliferation in the hypoxic
granuloma region, reduced the incidence and expansion of
necrosis, and controlled Mtb growth and pathology (Duque-
Correa et al., 2014). Thus, in hypoxic conditions such as TB
granulomas, Arg1 likely plays a key role in Mtb control. In other
words, for a protective immune response to Mtb, pro-
inflammatory macrophages with bactericidal activity and anti-
inflammatory macrophages that limit immunopathology are
required. Therefore, to apply NOS or Arg1, which regulate the
inflammatory macrophage response, as HDT targets, the
inflammatory state and lung pathology of TB patients must be
considered (Figure 2) (Table 1).

Immune Suppression by Tryptophan
Catabolism in Host Cells Infected
With Mtb
As another pathway that regulates host inflammation and
immunity, tryptophan metabolism has also been extensively
studied. Tryptophan metabolism regulates hyperinflammation
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
and induces long-term immune tolerance (Sorgdrager et al.,
2019). The enzyme indoleamine 2,3-dioxygenase (IDO), which
catalyzes the first and rate-limiting step of conversion from
tryptophan to kynurenine, has been studied in terms of various
inflammatory diseases (Moffett and Namboodiri, 2003;
Sorgdrager et al., 2019; Gostner et al., 2020). IDO is activated
in response to IFN-g and Th1 cytokines released during
inflammation, creating a local or systemic environment with
high kynurenine and low tryptophan, and altering the function
of neighboring cells (Sorgdrager et al., 2019). Tryptophan
catabolism plays a pivotal role in regulating the immune
response through a mechanism that slows T cell proliferation
by reducing the tryptophan supply (Moffett and Namboodiri,
2003). Moreover, kynurenine triggers regulatory T cells (Treg)
development, while 3-hydroxyanthranilic acid and quinolinic
acid inhibit specific immune cells by selectively inducing Th1 cell
apoptosis (Fallarino et al., 2002; Moffett and Namboodiri, 2003).
In summary, tryptophan catabolism can promote immune
tolerance through mechanisms that inhibit T cell proliferation
and promote apoptosis, and IDO activity can contribute to
immune suppression in patients with an activated immune
system, especially in chronic disease states (Moffett and
Namboodiri, 2003). In fact, plasma kynurenine levels are high
and tryptophan levels are low in patients with MDR-TB, and the
risk of MDR-TB was higher as the plasma IDO level increased
(Shi et al., 2019b). In addition, in macaques with suppressed IDO
activity, host survival was increased by reducing bacterial
burden, pathology, and clinical signs of TB. This increased
protection was accompanied by the translocation of more T
cells to the lesion core within the granuloma organization. In
summary, the inhibition of IDO activity enables T cells to access
the lesion core and alters the granuloma organization, thereby
promoting bacterial killing (Gautam et al., 2018). In other words,
preventing immune tolerance by blocking tryptophan catabolism
in the host may be a new HDT strategy for clinical application of
immunotherapy in TB treatment. In addition, IDO-mediated
tryptophan depletion may have anti-microbial properties against
pathogens that may require tryptophan nutrients (Munn and
Mellor, 2013). However, since Mtb synthesizes tryptophan on its
own, IDO-mediated tryptophan depletion does not have a direct
effect on anti-bacterial activity (Zhang et al., 2013).

When intracellular IDO is induced by CD4+ T cell-mediated
IFN-g in response to Mtb infection, intracellular tryptophan is
reduced. In this case, Mtb synthesizes mycobacterial tryptophan
to maintain survival in macrophages. The trpE-deficient Mtb is
particularly sensitive to CD4+ T cell-mediated stress, thereby
inhibiting bacterial growth. The combined effect of 2-amino-6-
fluorobenzoic acid (6-FABA), a small molecule that inhibits
TrpE, and IFN-g showed clear 40-fold synergy in mice and
nine-fold synergy in human macrophages (Zhang et al., 2013).
As such, tryptophan depletion, which is a host immune response
mechanism, and disruption of tryptophan synthesis using a
specific gene deficiency in Mtb can synergistically inhibiting
Mtb growth. Thus, this combined approach may be an effective
method for TB treatment (Figure 2) (Table 1).
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METABOLIC PATHWAYS IN MTB AND
IMPLICATIONS FOR SURVIVAL TACTICS

Understanding of the metabolic alterations in Mtb has
progressed recently, and much information has been reported
on the maintenance of Mtb cell wall biosynthesis (Daffe et al.,
2014; Jackson, 2014; Jankute et al., 2015), energy metabolism and
respiration (Cook et al., 2014; Cook et al., 2017), central carbon
metabolism (Baughn and Rhee, 2014; Ehrt et al., 2018), nitrogen
metabolism (Gouzy et al., 2013a; Gouzy et al., 2013b; Gouzy
et al., 2014a; Gouzy et al., 2014b), sulfur metabolism (Hatzios
and Bertozzi, 2011; Zeng et al., 2013), metallobiology (Marcela
Rodriguez and Neyrolles, 2014; Chao et al., 2019) and nucleic
acid metabolism (Ditse et al., 2017).

According to a recent study, one metabolic pathway that is
essential for Mtb growth is aspartate synthesis coupled to
glutamine-mediated assimilation. Rv3722c serves to balance
anaplerosis and cataplerosis of the Mtb TCA cycle and is
involved in the transfer of assimilated nitrogen from glutamate
to aspartate. Metabolites that are dependent on aspartate are
inosine-5’-monophosphate and AMP, which are related to
purine metabolism. In vitro, aspartate supplementation in Mtb
lacking Rv3722c restores bacterial metabolic activity and growth,
and Mtb growth is further increased when hypoxanthine, a
purine salvage pathway intermediate, is added. Rv3722c is the
primary Mtb aspartate amino transferase (AspAT) and is
important for Mtb growth (Jansen et al., 2020).

In addition, bacterial pathogens, including Mtb, use various
adaptive strategies to survive during antibiotic treatment (Eisenreich
et al., 2015; Ehrt et al., 2018). For example, trehalose is a core
component of theMtb cell surface, but MDR-Mtb has a mechanism
to maintain ATP levels by biosynthesizing central carbon
metabolism intermediates using trehalose as an internal carbon
source. Thus, by remodeling trehalose metabolism, Mtb can enter a
drug-resistant state and reduce the efficacy of bedaquiline (BDQ), a
species-selective Mtb ATP synthase inhibitor (Lee et al., 2019).
Trehalose can be regenerated through a recycling pathway that
turns over the cell wall glycolipid trehalose monomycolate. This
process is necessary to establish infection in mice by reprograming
Mtb lipid metabolism. As such, Mtb uses intracellular and
extracellular carbon sources for growth, replication, and antibiotic
resistance. Various metabolic regulation mechanisms have been
proposed during infection (Ehrt et al., 2018) (Table 2).

Mycobacterial Metabolism for Survival
Strategies in Host Target Cells
Mycobacterial central carbon metabolism is a major determinant
of virulence (Weiner et al., 2018). The lipids that comprise the
bacterial cell wall are sufficient to activate the host immune
response (Queiroz and Riley, 2017). In addition, for
Mycobacterium to cause disease in the host, its metabolism
must be reprogrammed to resist host defense mechanisms and
to gain nutrients from the host (Beste et al., 2013).

Itaconate, a macrophage metabolite produced during Mtb-
infected host inflammatory responses, inhibits bacterial isocitrate
lyase, a key enzyme in the glyoxylate cycle of mycobacteria
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(McFadden and Purohit, 1977; Michelucci et al., 2013; Moynihan
and Murkin, 2014). However, a recent report found that Mtb
participates in the itaconate dissimilation pathway and leucine
catabolism to overcome host protective immune responses and to
use host-derived antibacterial molecules as a nutrient source (Wang
et al., 2019a). Mtb Rv2498c is a bifunctional enzyme that 1)
dissimilates itaconate to produce AcCoA and pyruvate, and 2)
catabolizes leucine to produce AcCoA and acetoacetate. In addition,
Rv2498c deletion from the Mtb genome causes defects in the
establishment of murine infection, indicating that dissimilation
and catabolism by Rv2498c is critical for Mtb survival (Wang
et al., 2019a). Additionally, a double mutant strain with Rv2498c
(CitE1) and Rv3075c (CitE2) deletions, the b-subunits of citrate
decomposition enzymes, showed a decrease in its growth in the lung
and spleen of guinea pigs, indicating that the CitE enzyme may be a
useful drug target (Arora et al., 2018). Collectively, researching how
to inhibit the ability of Mtb to utilize host-derived molecules as a
nutrient source could be a strategy to eliminate pathogens from the
host (Figure 3) (Table 2).

Mtb Persistence Mechanisms for Survival
Strategies in the Host
In addition to antibiotic resistance and biofilm formation, the
bacteria’s survival strategy form drug-resistant persistent cells to
survive hostile environments or antibiotic stress (Fisher et al., 2017;
Defraine et al., 2018). Mtb forms drug-resistant persistent cells to
survive antibiotic stress (Torrey et al., 2016). Since virtually all
antibiotics preferentially kill fast-replicating bacteria (Tomasz et al.,
1970; Gomez and McKinney, 2004), quiescent metabolic activity
and reduced growth contribute to “antibiotic-tolerance” (Baek et al.,
2011; Harms et al., 2016). The reduction in metabolism of Mtb that
contributes to the drug resistance phenotype is associated with the
production of TAG (Baek et al., 2011). The tgs1 of Mtb expressed
during infection appears to have limited TCA cycle activity by using
the acetyl-CoA carbon pool for TAG synthesis (Garton et al., 2008;
Shi et al., 2010). When the citA gene is overexpressed, it competes
effectively with acetyl-CoA, and when the TCA cycle is activated,
TAG does not accumulate and the bacteria continue to grow (Baek
et al., 2011). Additionally, whole genome sequencing and
transcriptome analysis of a high persister Mtb mutant revealed
that Mtb persister formation is related to genes in several pathways
such as lipid biosynthesis, carbon metabolism, toxin-antitoxin
systems, and transcriptional regulators (Torrey et al., 2016). In
particular, Mtb in hypoxia conditions forms intracytoplasmic lipid
inclusions (ILIs) using host-derived lipids to support persistence.
ILIs serve to provide a carbon-based energy source that promotes
dormancy in mycobacteria. Moreover, studies using two
mycobacterial species with distinct lifestyles confirmed that a
nitrogen-deficient and ILI-rich phenotype is associated with
increased tolerance to several drugs used to treat mycobacteria
infection (Santucci et al., 2019). Mtb can therefore play a role in
controlling growth, metabolic rate, and antibiotic susceptibility by
redirecting cellular carbon fluxes, as well as by providing a carbon
storage function in preparation for long-term inactivity, by
accumulating TAG (Daniel et al., 2004; Baek et al., 2011).
Proteins other than those involved in bacterial metabolism are
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TABLE 2 | Metabolic strategies of Mtb for survival within macrophages.

Category Bacterial
factors

Biological process Molecular function Implications Ref.

Survival
factors

Central
carbon
metabolism

Glycolysis, PPP, TCA cycle, glyoxylate shunt,
methylcitrate cycle, gluconeogenesis

Core feature to provide
energy

The main metabolic network that
sustains Mtb survival

(Baughn and
Rhee, 2014)
(Hards et al.,
2020)

Virulence
factors

Various
genes and
proteins

Lipid and fatty acid metabolism, Cell envelope proteins,
proteins inhibiting antimicrobial effectors of the
macrophage, protein kinases, proteases, metal-
transporter proteins, gene expression regulators

Evolution of various
virulence factors to
modulate host immune
response

Essential bacterial genes/proteins
for the virulence of MTBC species

(Forrellad
et al., 2013)
(Zondervan
et al., 2018)
(Orgeur and
Brosch, 2018)

Growth factor Rv3722c Aspartate-dependent nitrogen metabolism Rv3722c as primary
aspartate
aminotransferase
mediates nitrogen
distribution

The gene rv3722c is essential for
Mtb growth

(Jansen et al.,
2020)

Drug
resistance
factor

TreS Trehalose metabolism remodeling PLB and MDR-Mtb use
trehalose to maintain
ATP levels

Reduce the efficacy of BDQ by
remodeling trehalose metabolism

(Lee et al.,
2019)

glpK Glycerol-3-kinase required for glycerol catabolism Variation in the glpK
coding sequence
produces a drug-
tolerant phenotype

Reduction of antibiotic efficacy and
resistance by metabolic mutation of
glycerol catabolism

(Bellerose
et al., 2019)

prpR Alteration of propionyl-CoA metabolism prpR enriched in drug
resistant strains

Confers conditional drug tolerance
of prpR mutations by altering
propionyl-CoA metabolism

(Hicks et al.,
2018)

PptT
(encoded by
rv2794c)
PptH
(encoded by
rv2795c)

PptT is involved in AcCoA metabolism to synthesize
cell wall lipid

PptH mutations that
deactivate the PptT
reaction cause
antimycobacterial
resistance

Inducing antibiotic resistance
mechanism through self-destructive
reaction of Mtb

(Ballinger
et al., 2019)

tgs1 Accumulation of TAG Quiescent metabolic
activity by limitation of
TCA cycle activity

Mtb of drug-resistant persister cells
with accumulated TAG

(Garton et al.,
2008; Shi
et al., 2010;
Baek et al.,
2011)

Immune
regulation
factor

TDM,
Ac2SGL,
PIM, LM

Rich cell wall lipids Enhanced
immunopathology

Modulation of host immune
pathological response by Mtb cell
wall lipid

(Queiroz and
Riley, 2017)

PDIM, MA,
SL-1, LAM,
Man-LAM,
DAT, PAT

Dampened
immunopathology

LD
accumulation
in
macrophage
for Mtb
persistence

Mtb induces
FM formation
in
macrophage

• Mtb converts the glycolytic pathway of host cell
metabolism into 3HB synthesis

• Accumulation of LD by anti-lipolytic ability of 3HB

LDs serve as nutrients
and secure niche for
Mtb

Targeting host lipid metabolic
pathways perturbed by Mtb may
provide TB chemotherapy

(Singh et al.,
2012)

Mtb
modulates
autophagy
and LD
accumulation

miR-33, expressed during macrophage infection by
Mtb, inhibits autophagy, lysosomal function, and FAO

Mtb persists by
avoiding lysosome
degradation and
establishing a lipid
riche niche

(Ouimet et al.,
2016)

Mtb factor
using host
metabolites as
nutrients

Rv2498c • Dissimilation of itaconate to produce AcCoA and
pyruvate

• Catabolism of leucine to produce AcCoA and
acetoacetate

Rv2498c as a
bifunctional b-
hydroxyacyl-CoA lyase

• MTB mechanism for resistance
to itaconate, an antimicrobial
agent in the host and a
modulator of the inflammatory
response

• Using host-derived molecules
as nutrients by functional
enzyme in Mtb

(Wang et al.,
2019a)
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3HB, 3-hydroxybutyrate; Ac2SGL, diacylated sulphoglycolipid; ATP, adenosine triphosphate; BDQ, bedaquiline; CoA, coenzyme A; DAT, diacyltrehalose; FAO, fatty acid oxidation; FM,
foamy macrophage; LAM, lipoarabinomannan; LD, lipid droplet; LM, lipomannan; MA, mycolic acids; Man-LAM, mannose-capped lipoarabinomannan; MDR, multidrug-resistant; MTBC,
Mycobacterium tuberculosis complex; PAT, polyacyltrehalose; PDIM, phthiocerol dimycocerosate; PIM, phosphatidyl inositol; PLB, Mtb persister-like bacilli; PPP, pentose phosphate
pathway; PptH, ppt hydrolase; PptT, phosphopantetheinyl transferase; SL-1, sulpholipid-1; TDM, trehalose dimycolate.
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FIGURE 3 | Mtb metabolism for survival and antibiotic defense in host cells. The Mtb survival strategy using host metabolism is shown as a red line. Mtb
preferentially utilizes host pyruvate for intracellular proliferation. Similarly, lactate produced by glycolysis in the host is used for pathogens. Mtb Rv2498c decomposes
itaconate to produce AcCoA and pyruvate, and leucine decomposes to produce AcCoA and acetoacetate, which are used as a nutrient source for Mtb. Lipid bodies
in macrophages mainly consist of triacylglycerol (TAG) and cholesterol esters (CE) and can be a source of nutrients and components for Mtb. Inhibition of Mtb
growth is shown as a blue line. Itaconate, a macrophage metabolite produced during the inflammatory response of Mtb-infected hosts, inhibits bacterial isocitrate
lyse (ICL), a key enzyme in the glyoxylate cycle of mycobacteria. Antibiotic-resistant bacteria inhibit metabolism in antiseptic antibiotic treatment, but antibiotic
susceptibility can be improved by using metabolic adjuvants to activate central carbon metabolism. Antibiotic resistance from altered Mtb metabolism and
metabolism-related genes are shown as purple lines. Mutations in the glpk coding sequence reduce antibiotic efficacy and contribute to a drug-tolerant phenotype.
PrpR mutations alter propionyl-CoA metabolism, resulting in attenuated antibiotic efficacy and induced multiple drug resistance. The Mtb killing effect is enhanced by
an enzyme encoded with Ppt hydrolase (pptH) that hydrolyzes phosphopantetheinyl transferase (PptT) present in the CoA pathway. However, rv2795c loss-of-
function mutations in Mtb confer resistance to antibiotics.
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involved in the formation of persister cells of Mtb. The toxin-
antitoxin (TA) system, widely distributed in Mtb, may be a
promising therapeutic target, as it is an operon that modulates the
adaptive response to the stress associated with the host environment
and drug therapy (Solano-Gutierrez et al., 2019). Taken together, a
new approach to eradicating persistent bacterial infection could be
developed if the mechanism underlying persister cell formation and
regrowth is better understood.

Mtb Resistance Mechanisms for Survival
Strategies in the Host
Unlike drug-tolerant persister cells, which are physiologically
dormant, resistant strains may survive antibiotic treatment by
having antibiotic resistance genes. In particular, mutations in
genes related to Mtb metabolism can serve as a mechanism for
responding to antibiotics by inducing Mtb persistence and drug
resistance (Hicks et al., 2018; Bellerose et al., 2019). For example,
glpk encodes the glycerol-3-kinase enzyme required for glycerol
catabolism. Glycerol catabolism uses the lower glycolytic pathway to
integrate into the anabolic pathway and spontaneously degrades
methylglyoxal. glpkmutations are specific markers of multiple drug
resistance in Mtb, and glpk-mutant strains contribute to Mtb
persistence, drug-tolerance, and reduced antibiotic efficacy during
treatment. (Bellerose et al., 2019). The synthesis of the Mtb cell wall
and lipids important for toxicity relies on phosphopantetheinyl
transferase (PptT) encoded by Rv2794c, so Mtb can be killed by
inhibiting PptT. Mycobactericidal amidino-urea 8918 inhibits PptT,
which is involved in the synthesis of cofactors such as CoA, by
displacing the Ppt arm of CoA in the Ppt pocket. 8918 reduces the
CFU of Mtb H37Rv in vitro and in vivo in mice, and exhibits
antimycobacterial activity. In addition, the Mtb killing effect is
enhanced by an enzyme encoded with Ppt hydrolase (PptH) that
hydrolyzes PptT in the CoA pathway. However, loss-of-function in
Rv2795c, which encodes PptH, confers resistance to 8918. As such,
a mechanism that reduces PptT function in CoA metabolism using
a PptHmutation in Mtb may be a mechanism that causes antibiotic
resistance through a self-destructive reaction (Ballinger et al., 2019).
In addition, mutations in the transcription factor prpR were found
in drug resistant Mtb strains. PrpR mutations alter propionyl-CoA
metabolism, resulting in attenuated antibiotic efficacy and multiple
drug resistance. Furthermore, 1-5% of prpR mutations are present
in drug-sensitive strains in various countries. Thus, even in the
absence of drug resistance, prpR mutations could contribute to
treatment failure (Hicks et al., 2018) (Figure 3) (Table 2).
USING METABOLIC PATHWAYS
TO DEVELOP NOVEL
THERAPEUTIC STRATEGIES

HDT Against Mycobacterial Infection by
Controlling Metabolic Pathways
Since host cells and Mtb are extensively dependent on lipid and
carbohydrate metabolic pathways, these metabolic pathways can
be used as treatment targets (Shim et al., 2020). Formation of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
host foamy macrophages can persist during bacterial infection
and contribute to the cavitation and release of infectious bacilli in
patients with active disease (Pandey and Sassetti, 2008; Griffin
et al., 2012). The ability to maintain chronic Mtb infection is
associated with the ability of the host to use cholesterol. Statins
inhibit MVA pathways in the host cholesterol biosynthesis
pathway and enhance phagosomal maturation and autophagy
(Parihar et al., 2014). Thus, statins can be targeted by host-
directed drugs that induce protection against TB (Figure 2).

Macrophages infected with the virulent Mtb H37Rv strain
preferentially synthesize lipoxin A4 (LXA4) using the precursor
arachidonic acid, but do not synthesize PGE2. In contrast,
macrophages infected with the Mtb H37Ra strain produce
more PGE2, but less LXA4. Macrophages infected with the Mtb
H37Rv strain that produce high LXA4 and low PGE2 undergo
necrosis. In contrast, PGE2 production prevents necrosis and
macrophage apoptosis. Infecting prostaglandin E synthase
(PGES)-deficient macrophages in vitro with H37Rv shows a
higher bacterial burden compared to wild-type macrophages.
In addition, PGES-/- mice showed significantly higher Mtb lung
burden after infection with virulent Mtb. These results indicate
that PGE2 plays a key role in inhibiting Mtb replication (Chen
et al., 2008). Therefore, inhibiting the macrophage LXA4

synthesis pathway and inducing preferential PGE2 synthesis
can inhibit Mtb replication in the host (Figure 2).

Arginine is beneficial as an adjuvant therapy in human
immunodeficiency virus-negative patients with active TB. In
the early stages of active TB treatment, arginine plays a role in
enhancing human antimycobacterial defenses via increased
iNOS-mediated NO production (Schon et al., 2003). Just as the
adjuvant arginine improves the clinical outcome of TB patients,
the development of HDT using metabolites may be a promising
treatment for TB.

Development of Metabolic Adjuvant
Therapy to Enhance the Efficacy of
Existing Antibiotics
Developing drug combinations based on bacterial metabolism is
a predominant strategy to increase therapeutic efficacy, reduce
drug toxicity, and prevent drug resistance. The TB drug BDQ is a
species-selective Mtb ATP synthase inhibitor. The Mtb enzyme
that responds most to ATP level was identified as glutamine
synthetase (GS). The BDQ-mediated killing effect was increased
by inhibiting Mtb GS. However, chemical supplementation with
exogenous glutamine did not affect the antimycobacterial activity
of BDQ. In other words, GS is not a direct antimycobacterial
target, but a prime collateral vulnerability factor provided by
BDQ. Thus, BDQ synergy combined with glutamine synthetase
inhibitors presents a promising combinatorial approach to fight
Mtb infection (Wang et al., 2019b).

Inhibiting bacterial metabolism using metabolite adjuvant
can enhance the sensitivity of antibiotic resistant bacteria. To
reduce aminoglycoside resistance in E. coli and Staphylococcus
aureus populations, gentamicin was combined with metabolites
found in upper glycolysis (glucose, mannitol, and fructose) and
pyruvate. Indeed, gentamicin combined with the metabolite
March 2021 | Volume 11 | Article 635335
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killed E. coli persister cells more effectively than gentamycin
alone. These metabolites enhance aminoglycoside uptake by
increasing proton-motive force by activating the electron
transport chain (Allison et al., 2011). In another study, treating
antibiotic-resistant Psuedomonas aeruginosa cells with a
combination of various TCA cycle intermediates and tobramycin
was reported to kill P. aeruginosa with increased efficacy (Meylan
et al., 2017). Thus, developing metabolic adjuvants that enhance
antibiotic effects by regulating bacterial metabolism using
exogenous supplementation of certain metabolites may be a
promising way to treat mycobacteria infections.

Clinical Implications of Metabolism
in TB Biomarkers
The development of biomarkers can help improve treatment and
reduce medical costs. If a correlation between a disease and a
biomarker can be established, the ability to diagnose and treat the
disease will be greatly improved (Poste, 2011). For example, the
American Society of Clinical Oncology estimates that testing
colorectal cancer patients for the K-RAS tumor gene will save at
least $600 million annually (Poste, 2011). Diagnosing diseases by
metabolic profiling of patient biological samples and predicting
the risk of disease progression can inform disease prevention and
early treatment strategies (Feng et al., 2015; Lau et al., 2015; Cho
et al., 2020). Certain metabolites in the plasma of patients with
active TB have potential as biomarkers, and may reveal pathways
involved in TB development and resolution (Weiner et al., 2018).
In addition, metabolic markers in the altered host after
completion of TB treatment may be associated with
subsequent recurrent TB, and markers of host responses to
treatment can facilitate the development of HDTs that can
improve treatment efficacy (Qian et al., 2016).

Metabolites have long been clinically used as molecular
markers (Yin and Xu, 2017). Since thousands of metabolites
can be measured in an efficient and sensitive manner,
metabolomics is used as a tool for the discovery of disease
biomarkers (Dang et al., 2015). For example, metabolomics
analysis can distinguish between Mtb and non-tuberculous
mycobacterial infection by detecting six mycocerosates in
patient sputum (Dang et al., 2015). In addition, methods for
directly detecting Mtb-derived lipid components in sputum have
been studied as diagnostic TB markers (Mourao et al., 2016),
(Shui et a l . , 2012) . However , people with human
immunodeficiency virus or children have difficulty producing
sputum samples (Kendall, 2017). In addition, individuals with
asymptomatic TB, such as incipient or subclinical TB, do not
cough and thus have difficulty in sputum-based testing (Drain
et al., 2018).

Characteristic biomarkers or biometric detection methods are
preferred for detecting active TB in non-sputum samples (Kik
et al., 2014). Studies that distinguish active TB groups from
controls show that metabolic pathways involving fatty acids,
amino acids, and lipids in serum can identify active TB. In
particular, a combination of lysophosphatidylcholine (18:0),
behenic acid, threonyl-g-glutamate, and free squalene
diphosphate represents the biomarkers that are best suited to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
distinguish patients with TB activity from control subjects (Feng
et al., 2015). In another study using patient plasma, 12R-
hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid, ceramide (d18:1/
16:0), cholesterol sulfate, and 4a-formyl-4b-methyl-5a-cholesta-
8-en-3b-ol levels were significantly higher in TB patients those in
community-acquired pneumonia patients or controls (Lau et al.,
2015). In addition, glutamate, sulfoxy methionine, and aspartate
levels were higher, while glutamine, methionine, and asparagine
levels were lower in the serum of TB patients than in individuals
with latent TB infection or healthy controls. However, there were
no significant differences in these metabolites according to the
degree of disease or risk of relapse in patients with active TB
(Cho et al., 2020). Since metabolism in the blood of a TB
progressor significantly changes over time compared to that in
the control group, the progression from infection to active TB
can be predicted. Cortisol, kynurenine, glutamine, and histidine
levels in the blood of TB progressors began to deviate from the
control group approximately 6-12 months before active TB. In
other words, it will be possible to prevent TB progression and
transmission by analyzing the metabolic changes related to early
symptoms observed up to 12 months before TB diagnosis. Thus,
the temporal change in metabolite levels between TB progressors
and the control group is important to identify patients with TB in
progress (Weiner et al., 2018).

Additionally, bradykinin (BK) and desArg9-bradykinin
(DABK) have been discovered as potential surrogate host
response markers during early and late anti-TB treatment.
Serum BK levels decrease during the early stages of anti-TB
treatment and remain below baseline after the completion of
treatment, while DABK levels tend to increase during the
induction phase and decrease post-treatment. Elevated BK and
DABK levels after the completion of treatment in TB patients
may be associated with subsequent recurrent TB (Qian et al.,
2016) (Table 3).
CONCLUSIONS AND PROSPECTIVE

Recent advances in the field of host–pathogen interactions have
emphasized the importance of mutual metabolic reprogramming,
not only to understand themechanisms of drug tolerance but also to
develop effective therapeutic strategies. Metabolic modulation of
immune cells by infection with mycobacterial pathogens may be a
crucial decision-making step, eventually leading to differential
disease outcomes from pathogen clearance to severe disease
progression by regulating host-favoring or pathogen-favoring
conditions. Thus, mycobacterial pathogenicity may be directly
associated with the ability to shift host metabolism towards
pathogen-favoring conditions by reprogramming not only
pathogenic factors, but also glycolysis, the TCA cycle, fatty acid
metabolism, and nitrogen metabolism in host immune cells.

This review focuses primarily on the metabolism of immune
cells and Mtb and provides a general overview of Mtb
pathogenesis and progression through studies of its role in
metabolic reprogramming. Macrophages infected with Mtb
may activate immune responses and metabolic programming
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to defend against pathogens, but these changes also lead to
immune-resistant pathogens. Pathogenic bacteria use various
adaptation strategies, such as using host-derived metabolites as
nutrients to survive inside host cells or regulating bacterial and
host metabolism to resist antibiotics. Although it is becoming
increasingly apparent that proper metabolic activation of
macrophages is necessary to control Mtb infection, research
into strategies to improve treatment outcomes using bacterial
and host metabolic regulation is still ongoing. For innovative
development of therapeutic agents to treat infectious Mtb
diseases, it is necessary to understand the metabolism crucial
for the protection of hosts infected with mycobacteria versus
the metabolism that favors pathogen survival. Developing
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
HDT using immunomodulatory control to protect an infected
host and improve the ability to diagnose and treat disease is a
major attempt to improve clinical outcomes in the treatment of
lung infections. Mtb has a strategy of forming persister cells
that can survive exposure to antibiotics by maintaining a low
metabolic state. Further ways to improve the metabolic activity
and drug sensitivity by redirecting the bacterial TAG synthesis
pathway to the TCA cycle to avoid this quiescent metabolic
activity is a major goal of TB research. In addition, attempts
to increase antibiotic efficacy using metabolic adjuvant therapy
to control host and resistant bacterial metabolism when an
antibiotic is given to an infected host may help design new
treatment strategies.
TABLE 3 | Metabolic biomarkers of mycobacterial infection.

Biomarker Study subjects Purpose Implications Ref.

C26 and four mycocerosates Sputum of 112 patients with TB TB diagnosis Positive correlation with TB patients (Mourao
et al.,
2016)

Six mycocerosates Sputum of 32 patients with TB from South Africa Positive correlation with TB patients (Dang
et al.,
2015)

MAs Sputum of 70 patients with pulmonary TB Positive correlation with TB patients (Shui
et al.,
2012)

Trehalose-6-mycolate,
phosphatidylinositol, resolvins

Plasma of 17 patients with TB disease and an
asymptomatic
household contact without TB disease

Largely upregulated in patients with TB
disease

(Frediani
et al.,
2014)

LAM Urine of 48 patients with TB Positive correlation with TB patients (Paris
et al.,
2017)

Tryptophan/kynurenine ratio with ADA Serum of 156 patients with tuberculous pleurisy or
malignant pleurisy

Distinguish
TPE from
MPE diseases

Lower tryptophan level and higher level
of kynurenine in TPE

(Che
et al.,
2018)

Lipid metabolites including PG (16:0/18:1),
LPI (18:0) and Ac1PIM1 (56:1)

Plasma of 17 adults with active pulmonary TB disease
and 16 adults without active TB

TB diagnosis Significantly increased in the active TB
patients

(Collins
et al.,
2018)

3D, 7D, 11D-Phytanic acid, behenic acid,
threoninyl-g-glutamate

Serum of 146 patients with lung diseases that were
due to non-TB conditions, and 120 patients with
clinical signs of TB, 105 healthy

TB diagnosis Decreased in active TB patients (Feng
et al.,
2015)Kynurenine, quinolinic acid, presqualene

diphosphate
Significant upregulation in patients with
active TB

12(R)-HETE, ceramide (d18:1/16:0),
cholesterol sulfate, and 4a-formyl-4b-
methyl-5a-cholesta-8-en-3b-ol

Plasma of 46 patients with TB, 30 patients with
community-acquired pneumonia, 30 controls without
active infection

Diagnosis of
TB

Significantly higher levels in TB patients
than those in CAP patients and
controls

(Lau
et al.,
2015)

Glutamate, sulfoxy methionine, and
aspartate

Serum of 21 patients with active pulmonary TB, 20
subjects with LTBI, 28 healthy controls

Diagnosis of
TB

Higher serum levels of metabolites in
active TB patients than in LTBI
subjects or healthy controls

(Cho
et al.,
2020)

Glutamine, methionine, and asparagine Lower serum levels of metabolites in
active TB patients than in LTBI
subjects or healthy controls

Cortisol, kynurenine Blood of GC6-74 healthy, 4462 HIV-negative healthy
household contacts of index TB progressors

Predicts TB
progression

Higher abundances in the progressor
group

(Weiner
et al.,
2018)Glutamine, histidine Lower abundances in the progressor

group
BK and DABK Serum of 13 HIV-negative adults with microbiologically

confirmed active TB
TB treatment
response

Elevated BK and DABK levels after
treatment completion

(Qian
et al.,
2016)
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12(R)-HETE, 12R-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid; Ac1PIM1, acylphosphatidylinositol mannoside; ADA, adenosine deaminase; BK, bradykinin; DABK, DesArg9-bradykinin;
CAP, community-acquired pneumonia; GC6-74, the grand challenges in global health GC6-74 project; HIV, human immunodeficiency virus; LAM, lipoarabinomannan; LPI,
lysophosphatidylinositol; LTBI, latent tuberculosis infection; MAs, mycolic acids; MPE, malignancy pleural effusion; PG, phosphatidylglycerol; TB, tuberculosis; TPE, tuberculous
pleural effusion.
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