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The human protozoan parasite Entamoeba histolytica can live in the human intestine for
months or years without generating any symptoms in the host. For unknown reasons,
amoebae can suddenly destroy the intestinal mucosa and become invasive. This can lead
to amoebic colitis or extraintestinal amoebiasis whereby the amoebae spread to other
organs via the blood vessels, most commonly the liver where abscesses develop.
Entamoeba nuttalli is the closest genetic relative of E. histolytica and is found in wild
macaques. Another close relative is E. dispar, which asyptomatically infects the human
intestine. Although all three species are closely related, only E. histolytica and E. nuttalli are
able to penetrate their host’s intestinal epithelium. Lineage-specific genes and gene
families may hold the key to understanding differences in virulence among species. Here
we discuss those genes found in E. histolytica that have relatives in only one or neither of
its sister species, with particular focus on the peptidase, AIG, Ariel, and BspA families.

Keywords: Entamoeba, peptidases, virulence, AIG, Ariel, BspA
INTRODUCTION

The intestinal protozoan Entamoeba histolytica is an important human parasite. Recent data clearly
indicate that the life-threating amoebic liver abscess (ALA) continues to be a common clinical
complication of amoebiasis infection in Asian, African and Latin American countries with
estimated 26700 death in 2016 (Collaborators, 2018; Shirley et al., 2019). E. histolytica can
become invasive and cause amoebic colitis or amoebic liver abscess (ALA) formation. The life
cycle of this parasite consists of infectious cysts that survive outside the host and vegetative
trophozoites that proliferate in the human gut. In general, trophozoites persist asymptomatically for
months or years in the human intestine. However, in 10% of cases, the trophozoites become, under
as yet unknown circumstances, invasive and induce extraintestinal amoebiasis. Invasion into the
intestinal mucosa can lead to induction of amoebic colitis, whereas dissemination to the liver can
result in ALA formation (Blessmann et al., 2003). A related species, E. dispar, is microscopically
indistinguishable from E. histolytica and occurs only as a harmless commensal in the human
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intestine. A key question in amoebic research is the elucidation of
the mechanisms of E. histolytica invasion and tissue destruction.
For decades, attempts have been made to identify the virulence
factors of E. histolytica by comparative studies of both organisms
at both biological and molecular level. These studies, and those
that compared pathogenic and non-pathogenic E. histolytica
isolates, have led to the identification of a number of
virulence factors.

Three protein families (Gal/GalNAc lectins, cysteine
peptidases and amoebapores) are of particular interest. The
first step in the invasion process is to overcome the protective
mucus barrier. Here, cysteine peptidases play an important role,
along with a number of other molecules (Lidell et al., 2006;
Thibeaux et al., 2013). Subsequently, the adhesion of amoebae to
target epithelial cells via the galactose/N-acetyl-D-galactosamine
lectin (Gal/GalNAc) (Tannich et al., 1991; Petri and Schnaar,
1995). The Gal/GalNAc lectin is a 260 kDa heterodimer
consisting of a disulfide-linked 170 kDa heavy chain (Hgl) and
a GPI-anchored 35 kDa light chain (Lgl) (Petri et al., 2002). After
establishing contact, amoebae can secrete amoebapores. These
mediate a contact-dependent lysis of the target cells (Leippe,
1997). E. histolytica has three amoebapores (A, B and C), which
are all characterized by a pore-forming activity. They are also
capable of killing gram-positive bacteria by destroying bacterial
cytoplasmic membranes. Thus, the functionality of these
molecules is two-fold: they confer cytolytic activity to amoebae
as well as an intracellular antimicrobial effect against
phagocytosed bacteria (Leippe et al., 1994). Amoebae whose
amoebapore expression is inhibited have a reduced
antimicrobial activity and are non-pathogenic, i.e. they are not,
or are only to a small extent, able to form ALAs in hamsters
(Bracha et al., 1999; Bracha et al., 2003). Important for mucus
degradation, invasion, as well as for the process of tissue
degradation, are the cysteine peptidases (CPs) of E. histolytica.
In the genome of E. histolytica 35 genes coding for CPs of the C1
papain superfamily can be identified. However, only four CPs
(EhCP-A1, -A2, -A5, -A7) can be detected at the protein level in
the trophozoite stage (Tillack et al., 2007; Irmer et al., 2009).
These have previously been located in lysosomal-like vesicles,
and some of them were found to be membrane-associated
(Jacobs et al., 1998). The importance of CPs, particularly
EhCP-A5, in ALA formation is evident in infections of
laboratory animals, where overexpression of CPs leads to an
increase in ALA size (Tillack et al., 2006). Conversely, reduced
CP activity leads to a decrease in ALA formation ability in E.
histolytica (Li et al., 1995; Stanley et al., 1995). In addition, an
increase in the expression of some ehcp genes during ALA
formation has previously been described, while non-pathogenic
amoebae can be converted to pathogenic amoebae, simply by
overexpression of some of specific ehcp genes (Matthiesen
et al., 2013).

Homologs of the Gal/GalNAc lectins, cysteine peptidases and
amoebapores are also present in non-pathogenic E. dispar
(Nickel et al., 1999; Tillack et al., 2007; Weedall et al., 2011).
Nevertheless, it has been shown that the CP activity of E. dispar is
about 10-1000 times lower than that of E. histolytica and that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
genes corresponding to ehcp-a1 and ehcp-a5 are absent or
degenerated in E. dispar (Bruchhaus et al., 1996; Willhoeft
et al., 1999b; Que and Reed, 2000). A lower amount of
amoebapores and therefore reduced pore-forming activity was
found in E. dispar in comparison to E. histolytica (Nickel et al.,
1999). However, it is not yet clear whether these differences alone
determine pathogenicity, whether additional genetic differences
are involved, or whether pathogenicity is a result of complex
interactions between various proteins.

In addition to the cysteine peptidases and the amoebapores,
the AIG, BspA and Ariel families are always mentioned in
connection with the virulence of E. histolytica. For members of
the AIG family, a differential expression between pathogenic and
non-pathogenic E. histolytica isolates could be shown (Biller
et al., 2010). BspA-like molecules have also been described in T.
vaginalis and are thought to play an important role in
pathogenesis (Noel et al., 2010). The Ariel proteins are an E.
histolytica-specific protein family that has not yet been found in
any other Entamoeba species so far. Therefore, it is postulated
that these molecules may have a role in virulence. However, the
functions of the members of all three protein families are
largely unclear.

Besides the characterization of individual proteins, one
straightforward method for the identification of pathogenicity
factors is a direct comparison of pathogenic and non-pathogenic
E. histolytica isolates using comparative genomic, transcriptomic
and proteomic approaches (Davis et al., 2006a; MacFarlane and
Singh, 2006; Ehrenkaufer et al., 2007; Biller et al., 2010; Meyer
et al., 2016; Nakada-Tsukui et al., 2018). Unfortunately, two
isolates with very different genetic backgrounds were used in the
majority of the studies cited (pathogenic isolate HM-1:IMSS and
non-pathogenic isolate Rahman) (Davis et al., 2006a;
MacFarlane and Singh, 2006; Davis et al., 2007; Ehrenkaufer
et al., 2007). The non-pathogenic Rahman isolate has several
serious functional defects (e.g. defective phagocytosis, reduced
cytotoxicity, inability to grow in animals, and a truncated glycan
chain of the proteophosphoglycan coating surface) (Davis et al.,
2006a). The genomic differences between HM-1:IMSS and
Rahman are small, however, DNA fragment duplications have
been detected (Weedall et al., 2012). An alternative approach
compared the transcriptomes of pathogenic and non-pathogenic
clones derived from the isolate HM-1:IMSS were compared
(Biller et al., 2009; Biller et al., 2010; Meyer et al., 2016). In
total, approximately 90 genes are differentially expressed between
the investigated non-pathogenic and pathogenic clones
(Meyer et al., 2016). Based on transfectants, in which the
identified genes were either overexpressed or silenced, it was
possible to identify another pathogenicity factor, namely the
hypothetical protein EHI_127670. When EHI_127670 is silenced
in pathogenic amoebae their ability to form ALAs is reduced. On
the other hand, overexpression of EHI_127670 in non-
pathogenic amoebae leads to restoration of ALA formation
ability (Meyer et al., 2016; Matthiesen et al., 2019). However,
nothing is yet known about the function of the protein and it is
not yet known with certainty that the RNA actually encodes
a protein.
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Using a transcriptome approach, Naiyer and colleagues were
able to identify downstream regulatory motifs in very highly
expressed E. histolytica genes that are very likely important for
gene expression. These motifs were also detected in various genes
encoding virulence factors, which are also highly expressed
under axenic conditions. It can therefore be assumed that
corresponding encoded proteins are important for optimal
growth, but in addition also play a role in tissue invasion and
virulence (Naiyer et al., 2019b). Comparative transcriptome
analysis also makes it possible to better understand the biology
of E. histolytica in general. With the help of this method, it is
possible to identify molecules that play a role in phagocytosis, the
stress response, the enzyme station and the excystation, among
others [for review (Naiyer et al., 2019a)].

Besides E. histolytica and E. dispar, the genus Entamoeba
includes many other species, some of which colonize the human
intestine (E. moshkovskii, E. bangladeshi, E. polecki, E. coli, and E.
hartmanni). However, in humans a severe course of disease with
extraintestinal abscesses has so far only been described for E.
histolytica. Pathogenic amoebae have also been described in
reptiles (E. invadens) and macaques (E. nuttalli). E. nuttalli is
the species most closely related to E. histolytica. Different species
of wild macaques, as well as other non-human primates kept in
captivity, have been identified as hosts for E. nuttalli (Tachibana
et al., 2007; Tachibana et al., 2009; Levecke et al., 2010; Wei et al.,
2018; Tanaka et al., 2019). In addition to the genomes of E.
histolytica and E. dispar, the genome of E. nuttalli was recently
sequenced and all genomes are available on AmoebaDB (Tanaka
et al., 2019). The ability to compare the genomes of E. histolytica,
E. dispar and E. nuttalli now opens up the possibility of
identifying additional molecules responsible for the
development of extraintestinal amoebiasis in human or non-
human primates.
IDENTIFICATION OF HOMOLOGOUS
PROTEINS UNIQUE TO PATHOGENIC
E. HISTOLYTICA AND E. NUTTALLI

Recently, using an OrthoMCL approach, Wilson and colleagues
studied the genetic diversity and gene family expansions for E.
histolytica, E.dispar, E. moshkovskii and E. invadens. They
identified 984 genes that were unique to E. histolytica (Table
S8) (Wilson et al., 2019). Here, this list was used as a basis for a
BlastP approach to analyze whether homologous proteins are
found in E. nuttalli. Additionally, E. dispar was again included in
this analysis. Pseudogenes were not included in the analysis and a
sequence identity of ≥ 50% was assumed to be a functionally
homologous protein. In a BlastP analysis of all 927 translatable
“unique” E. histolytica genes, 309 of them had homologs in E.
dispar and E. nuttalli with an identity of ≥ 50% (Figure 1, Table
S7) (Wilson et al., 2019). Another 376 “unique” E. histolytica
genes encode for proteins with homologs in E. dispar but not in
E. nuttalli (Figure 1, Table S3). A further 67 putative proteins
share ≥ 50% identity only with E. nuttalli proteins (Figure 1,
Table S6). Only 175 genes remain, whose encoded proteins do
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
not show homology with proteins of E. dispar or E. nuttalli
(Figure 1, Table S1). That many of the proteins encoded by the
“unique” E. histolytica genes were also found in E. dispar was
very surprising. However, looking at the genomic organization
on AmoebaDB, one finds that many of the “unique” E. histolytica
genes are located at the edge of contigs and therefore do not
contain the complete gene sequence (Wilson et al., 2019).
PROTEINS THAT COULD ONLY BE
DETECTED IN E. HISTOLYTICA

Almost all 175 proteins found to be unique for E. histolytica are
hypothetical proteins (Table S1). However, 18 genes encoding
the asparagine-rich E. histolytica antigens (Ariel) could be
identified (including two genes with an incomplete sequence)
(Figure 1, Table S2) (Mai et al., 2000; Wilson et al., 2019). The
fact that Ariel proteins are encoded by an E. histolytica-specific
multicopy gene family was described by Willhoeft and colleagues
20 years ago (Willhoeft et al., 1999a). No homologous proteins
can be detected in E. dispar or E. invadens (Wilson et al., 2019).
However, one homologous protein (ENU1_012640) is found in
E. nuttalli, with 92% identity to EHI_005260/EHI_188600.
Except for the Ariel proteins EHI_057430 and EHI_172730,
which did not contain a signal peptide, and EHI_131360 and
EHI_185110 which did not contain a transmembrane domain,
an N-terminal signal peptide and a C-terminal transmembrane
domain can be predicted for all other Ariel proteins. Therefore, a
surface localization can be postulated, however it is unknown
whether the protein is a deterministic factor in the virulence of
E. histolytica.

Two further genes unique to E. histolytica unique genes
(EHI_107560 and EHI_157010) encode for proteins with
approximately 55% sequence identity to aldo-keto reductases
of plant chloroplasts and are annotated as alcohol
dehydrogenases. However, both genes are located at the edges
of contigs and are thus only partially represented in the genome
assembly. EHI_107560 (187 aa) is located at the edge of contig
DS571548, while EHI_157010 (158 aa) is located at the edge of
contig DS571869 (AmoebaDB, release 48 beta, 20 Aug 2020).
BlastP analysis of these proteins revealed two genes
(EHI_029620, EHI_039190) in the genome of E. histolytica
encoding the same protein sequence of 305 amino acids,
termed aldolase reductase. If these proteins are used as a
template for a search in the Entamoeba genomes, a protein
with a sequence identity of 55% was also found in pathogenic E.
invadens (EIN_497000), along with one with 73% sequence
identity in E. dispar (EDI_260680). A phylogenetic analysis
using the online tool Clustal Omega with the respective
protein sequences as input (Sievers et al., 2011), showed the
closest relationship to Dictyostelium discoideum and plant
chloroplastic-like aldo-keto reductases (Figure 2). In various
Kinetoplastidae such as Trypanosoma and Leishmania, genes
encoding chloroplast-like proteins were identified. It is assumed
that the organelles were taken up by endosymbiosis before
divergence. Later, the organelles were lost, but several genes
March 2021 | Volume 11 | Article 641472
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from these organelles were integrated into the genome (Hannaert
et al., 2003). Horizontal gene transfer has also been described for
Entamoeba. However, almost all identified genes could be traced
back to bacteria (mainly Bacterioidetes) so far (Romero et al.,
2016). Comparison of the amino acid sequences revealed that E.
dispar EDI_260680, contains a deletion of about 50 aa.
Comparison of the sequence with those of plant aldo-keto
reductases shows that this area contains amino acids that are
important for the enzymes’ activity (Sengupta et al., 2015). In
plants aldo-keto reductases play a role in stress response and
detoxification of toxic aldehydes among other things (Sengupta
et al., 2015). Since nothing is known about the function of the
protein in E. histolytica, no statement can be made as to whether
the deletion present in E. dispar has an influence on its activity.
PROTEINS OCCURRING IN E.
HISTOLYTICA AND E. DISPAR, BUT NOT
IN E. NUTTALLI

In the gene set of E. histolytica “unique” genes underlying this
work, 37 genes encoding members of the BspA family (leucine-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
rich repeat protein) were identified (Wilson et al., 2019). BlastP
analysis of the proteins encoded by bspa showed that for all but
two (EHI_098720/EHI_173850: 49% identity), homologous
proteins (in total 22 members) with an identity of ≥ 50% could
be detected in E. dispar (Figure 1, Tables S3 and S4). However,
no homologous proteins could be found in E. nuttalli. The length
of bspa-encoded proteins listed here ranges from 101 to 447 aa. It
is striking that almost all bspas are found on very short contigs
and then often on the edge of the contigs. Therefore, it is not
clear whether all of these are really full-length proteins since,
with a few exceptions, the BspA proteins characterized so far
have an average length of about 550 amino acids (Davis et al.,
2006b). For some members of the BspA family a surface
localization was described, although neither signal sequences
nor transmembrane domains were detected (Davis et al., 2006b,
Silvestre et al., 2015). However, the phenomenon of a surface
localization without the detection of protein domains that would
allow membrane anchoring has been described for a number of
other proteins (Biller et al., 2014). It has been shown that BspA-
like proteins are involved in adhesion to extracellular
membranes, epithelial cell invasion and fibronectin and
fibrinogen binding (Mengaud et al., 1996; Sharma et al., 1998;
Inagaki et al., 2006). A BspA-like gene family could also be
FIGURE 1 | Comparative blastp analysis of 927 proteins identified as unique for E. histolytica (Wilson et al., 2019). Shown is the comparison of E. histolytica with E.
nuttalli and E. dispar as a venn diagram. The three protein families Ariel, AIG and BspA as well SAPLIP1 are shown separately. The proteins found in E. histolytica are
boxed in red, those of E. dispar in blue and those of E. nuttalli in green.
March 2021 | Volume 11 | Article 641472
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identified in Trichomonas vaginalis (Hirt et al., 2002; Noel et al.,
2010). The BspA proteins of T. vaginalis are believed to play
various and important roles in the pathobiology of this parasite
by contributing to invasion and long-term infections of the
urogenital tract (Noel et al., 2010). However, the exact
functions of the proteins in T. vaginalis as well as in E.
histolytica and E. dispar are not yet deciphered. As these are
large gene families, it can be assumed that they play an important
role in the life cycle of the amoebae. It is therefore all the more
surprising that homologous proteins are not detectable in the
closest relative of E. histolytica, E. nuttalli.

Wilson and colleagues found 17 members of the AIG family
that were “unique” to E. histolytica (Wilson et al., 2019).
However, by BlastP analysis 8 AIG proteins were identified in
E. dispar, showing 49 – 77% homology to the 17 different E.
histolytica AIG1 proteins. Eight of the E. histolytica AIGs are
most similar (53 – 63% identity) to E. dispar EDI_185310. For
only one AIG1, EHI_126560, homologs were identified in both
E. dispar (EDI_274460, 77% identity) and E. nuttalli
(ENU1_158210, 97% identity)(Tables S3, S5). In addition to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
the 17 genes, 26 more genes encoding AIG proteins can be
identified in the E. histolytica genome. For all these proteins,
homologs with a sequence identity between 53 and 83% can be
detected in E. dispar. However, seven E. histolytica AIGs each
show the highest homology to only two E. dispar AIGs
(EDI_036000 and EDI_243490). Furthermore, two more AIGs,
ENU1_161270 and ENU1_207600, are found in E. nuttalli,
which are homologous to AIGs from E. histolytica
(EHI_180390, 95% identity, and EHI_191790, 98% identity,
respectively) (Figure 1, Table S5).

AIGs belong to the GTPases, were originally isolated from
Arabidopsis thaliana and are thought to confer resistance to
bacterial infections. It is also believed that AIG proteins are
involved in the development of A. thaliana and its response to
environmental stimuli (Reuber and Ausubel, 1996). Orthologous
proteins are also found in mammals and play a role in B-cell and
T-cell development via interaction with proteins of the Bcl2
family (Nitta et al., 2006; Nitta and Takahama, 2007). However,
very little is known about the function of AIG proteins in E.
histolytica. In a comparative genome analysis of E. histolytica
isolated from a patient presenting with diarrhea and an
asymptomatic patient, it was shown that one aig gene from a
tandem array of three aig genes was deleted by homologous
recombination in the isolate from the asymptomatic patient.
Overexpression of this aig (EHI_176590) resulted in increased
formation of cell surface protrusions and increased adhesion to
human erythrocytes. Furthermore, the gene EHI_176590 was
detected in approximately 60% of stool samples from
symptomatic patients, but only in 15% of stool samples from
asymptomatic individuals infected with E. histolytica. It is
therefore postulated that the AIG protein plays a central role
in the virulence of E. histolytica by regulating host cell adhesion
(Nakada-Tsukui et al., 2018). In addition, a quantitative real-
time PCR approach showed that 18 of 34 investigated aig genes
are increasingly expressed in pathogenic compared to non-
pathogenic HM-1:IMSS cell lines (Biller et al., 2010). But as
with the Ariel family and the BspA family, the function of the
AIG family is not yet clear.
PROTEINS OCCURRING IN E.
HISTOLYTICA AND E. NUTTALLI,
BUT NOT IN E. DISPAR

In the set of “unique” E. histolytica genes on which this work is
based, 67 had homologs in E. nuttalli but not in E. dispar (Figure
1, Table S6) (Wilson et al., 2019). As already described for the
other comparisons, these are mostly hypothetical proteins.
However, the list also contains the non-pathogenic pore-
forming peptide EHI_169350. EHI_169350 (entbd24tf or
SAPLIP1) belongs to a family of 15 saposin-like proteins
(SAPLIPs) which were first identified by Bruhn and Leippe
(Bruhn and Leippe, 2001; Winkelmann et al., 2006). Like
amoebapore A, B and C the SAPLIPs are characterized by a
conserved sequence motif consisting of six cysteine residues.
FIGURE 2 | Phylogram of aldose reductases. The aldose reductases
sequences of E. histolytica, E. dispar, E. nuttalli were compared for
homologous sequences using BlastP. The best scoring 10 proteins as well as
three aldose reductase sequences used as outgroups were used to generate
a phylogram using the online tool Clustal Omega (Sievers et al., 2011).
Sequences used: E. histolytica aldose reductase (EHI_029620/EHI_039190),
E. invadens aldo_ket_red domain-containing protein (EIN_497000), E. dispar
NADPH-dependent alpha-keto amide reductase (EDI_260680), Piromyces
finnis_aldehyde reductase_(ORX59359), Ricinus communis_NADPH-
dependent aldo-keto reductase, chloroplastic_(XP_002529872), Manihot
esculenta_NADPH-dependent aldo-keto reductase, chloroplastic-like_
(XP_021619253), Hevea brasiliensis_NADPH-dependent aldo-keto reductase,
chloroplastic-like (XP_021670007), Momordica charantia_NADPH-dependent
aldo-keto reductase, chloroplastic-like_(XP_022143954), Dictyostelium
discoideum_aldehyde reductase_(XP_628918), Malus domestica NADPH-
dependent aldo-keto reductase, chloroplastic-like (XP_008369945), Spinacia
oleracea_NADPH-dependent aldo-keto reductase, chloroplastic-like
(XP_021845528), Panicum hallii aldo-keto reductase family 4 member C10-
like isoform X2 (XP_025809823), Rosa chinensis_NADPH-dependent aldo-
keto reductase, chloroplastic-like (XP_024188589), Escherichia coli aldo-keto
reductase (E0IVZ7), Saccharomyces cerevisiae NADPH-dependent aldose
reductase (P38715), Sporidiobolus salmonicolor aldehyde reductase
(P27800).
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Interestingly, of the entire SAPLIP family, only EHI_169350 can
be clearly assigned to the amoebapore subfamily, with the largest
sequence identity of about 65% shared with amoebapore A
(Bruhn and Leippe, 2001). Only two members of the SAPLIP
family including EHI_169350 possess a typical signal peptide
and only EHI_169350 resembles amoebapores in its net charge
and dispersed charge distribution, with the greatest similarity
being to amoebapore C. However, EHI_169350 lacks the typical
C-terminal histidine residue of amoebapores, which is essential
for oligomerization during channel formation (Andra and
Leippe, 1994). EHI_169350 has an asparagine residue at
position 90 instead. It can therefore be assumed that
EHI_169350 has no pore-forming activity (Bruhn and Leippe,
2001). No statement can therefore be made about the function of
EHI_169350 especially concerning its role in pathogenicity.
THE PEPTIDASES OF E. HISTOLYTICA,
E. DISPAR AND E. NUTTALLI

As described above, CPs play an important role in the
destruction and invasion of human tissue. This has been
demonstrated in a variety of in vitro and in vivo studies
(Bruchhhaus and J, 2015; Gilmartin et al., 2020). A new in
silico analysis of the genome of E. histolytica (AmoebaDB, release
48 beta, 27 Aug 2020) revealed a total of 33 genes encoding CPs
of clan CA, C1 (papain-like) family (Table S9). Twelve of the
CPs could be assigned to the CP-A family, ten to the CP-B family
and eleven to the CP-C family. In E. dispar there are only nine
members of the CP-A family. Genes coding for EdCP-A1, -A5,
-A7 are not present or are present as pseudogenes. The CP-B
family consists of seven members; here the genes coding for
EdCP-B1, -B8 and -B9 are missing. The EdCP-C family has
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
eleven members, like the EhCP-C family. In E. nuttalli there are
no homologous proteins to EhCP-A1, -A6, -A7, and -A8; thus
the EnCP-A family comprises eight members. The EnCP-B
family consists of nine members (EnCP-B2 is missing here),
and EnCP-C5 is missing in the CP-C family, so there are ten
members in total (Figure 3, Table S9).

Only for four of the CP encoding genes (ehcp-a1, -a2, -a5
and -a7) could it be shown that they are highly expressed in E.
histolytica under the standard axenic culture conditions
(Bruchhaus et al., 2003; Clark et al., 2007; Tillack et al., 2007).
Interestingly, the ability to disrupt a cell monolayer (cytopathic
ac t iv i ty) was dramat ica l ly increased for amoebae
overexpressing ehcp-a5, whereas it showed only a moderate
increase in transfectants overexpressing ehcp-a1 or ehcp-a2.
Furthermore, the overexpression of ehcp-a1 and ehcp-a2 in E.
histolytica trophozoites did not increase ALA formation in
gerbils, whereas overexpression of ehcp-a5 resulted in
significantly larger ALAs compared to controls. If the ehcp5 is
overexpressed in the HM-1:IMSS derived G3 isolate, in which
the amoebapore a gene is silenced and therefore has only low
virulence, this is sufficient to compensate for the reduction in
virulence (Hellberg et al., 2001; Tillack et al., 2006). In previous
studies EhCP-A5 was also believed to play an important role in
intestinal invasion. EhCP-A5 has been shown to interact
directly with the integrins on the surface of human colon
epithelial cells and induce the secretion of pro-inflammatory
cytokines (Hou et al., 2010). Thus, amoebae silenced for ehcp-a5
expression do not trigger an inflammatory response of the host
and do not induce the collagen remodeling required for
invasion. Further investigations showed that CP-A5 can
convert the pro-matrix metalloproteinase (MMP)-3 into its
active form, which in turn activates pro-MMP-1 (Bansal
et al., 2009; Thibeaux et al., 2012; Thibeaux et al., 2014). The
FIGURE 3 | Cysteine, asparagine, serine and metallopeptidases of E. histolytica, E. dispar and E. nuttalli (for more details see Table S9).
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observation that CP-A5 occurs in the two pathogenic amoeba
species E. histolytica and E. nutalli, but not in the non-
pathogenic species E. dispar, supports the significance of this
peptidase as an important pathogenicity factor (Figure 3, Table
S9). However, a CP-A5 homologue is not detectable in the
genome of the reptile pathogen E. invadens.

In the genome of E. histolytica another twelve genes
encoding CPs can be identified and assigned to five different
families (C2, C19, C48, C54, C65; all clan CA) (Figure 3,
Table S9). Except for the Ulp1 protease Ulp1-3 (C48 family)
in E. nuttalli, homologs for all CPs in E. dispar and E. nuttalli
could be found.

Homologs for the four members of the aspartic peptidase
family (clan AD, family A22, A) of E. histolytica are found in
both E. dispar and E. nuttalli. However, nothing is known about
the function of these peptidases (Figure 3, Table S9).

Nine serine peptidases can be detected, which can be assigned
to four families (clan SC, family S9, C; Clan SF, family S26, B;
Clan SC, S28; clan ST, family S54) (Figure 3, Table S9). For the
serine peptidases EhSP26-2, EhSP28-1 and EhSP28-2 no
homologs can be detected in E. nutalli. Functional analysis has
only been performed for the S28 and rhomboid proteases. Both
are found associated with the amoeba membrane and the
rhomboid protease probably plays an important role in
mobility and adhesion of amoebae to the host tissue
(Barrios-Ceballos et al., 2005; Baxt et al., 2008; Rastew et al.,
2015; Welter et al., 2020).

A total of 21 metallopeptidases belonging to eleven
different families were identified in the genome of E.
histolytica (Figure 3, Table S9). Only for 2 of them no
homologous proteins can be identified in E. dispar. These
are MP8-1 (cell surface protease gp63) and U48-1, a CAAX
prenyl protease. In E. nuttalli the two peptidases can be
detected, just like in E. histolytica. For EhMP8-1, Teixeira
and colleagues showed that it is a functional metallopeptidase
localized on the surface of E. histolytica trophozoites. By
silencing ehmp8-1 expression, the adherence of trophozoites
to cells was increased, while the surface staining of several
antigens, including the Gal/GalNAc lectin, remained
unchanged. Amoebae which were silenced for ehmp8-1
expression also showed decreased cytopathic activity and
reduced mobility, but phagocytic activity was increased
(Teixeira et al., 2012). In contrast to the EhMP8-1 there is
unfortunately very little information about the EhMP8-2. The
ehmp8-2 gene is approximately 150 times more highly
expressed in non-pathogenic amoebae than in pathogenic
amoebae. Furthermore, it was shown that overexpression of
ehmp8-2 in pathogenic amoebae significantly reduced ALA
formation in the mouse model. Thus, the presence of EhMP8-
2 leads to a non-pathogenic phenotype of the amoebae (Meyer
et al., 2016). Another peptidase, which is found only in E.
histolytica and E. nuttalli, but not in E. dispar, is a CAAX
prenyl protease of unknown function in the U48 family. The
question arises for EhMP8-2 as well as for EhU48-1 whether
the absence of these molecules has an influence on the
virulence of amoebae.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
CONCLUSION

Unfortunately, the majority of proteins found exclusively in
pathogenic E. histolytica, or in E. histolytica and E. nuttalli but
not non-pathogenic E. dispar, lack functional annotations. With
Ariel, BspA and AIG, E. histolytica has three large protein
families whose members are repeatedly discussed as virulence
factors. The Ariel family, consisting of 18 members, is almost
exclusively found in E. histolytica. Only one member was
detected in E. nuttalli. In contrast, proteins of the BspA family
are found in E. histolytica and E. dispar, and members of the
AIG family in all three organisms. However, it is noticeable that
E. histolytica contributes the most members to each of these
protein families. One reason for this observation could be that,
in analyses like these, incomplete or fragmented genome
assemblies may contain gaps and genes may be missing in the
annotated gene set rather because of this than because of the
actual absence of these genes. For example, the lysine and
glutamic acid-rich protein KERP1 is a virulence factor that is
active in the development of amoebic liver abscesses (Seigneur
et al., 2005; Santi-Rocca et al., 2008). Originally, it was assumed
to be absent in the genome of E. dispar, but in fact it is present
but only partially represented in the genome assembly
(Weedall, 2020). Such a situation is probably a factor in
defining genes as lineage-specific. It is probably also a wide-
ranging confounding factor for Entamoeba genomes, which are
particularly difficult to assemble for a number of reasons
(Weedall and Hall, 2011), and is likely to have a greater
impact on genome assemblies with low coverage such as E.
dispar. Therefore, the correctness of the genome assembly
should first be verified before further investigations on the
influence of the E. histolytica-unique proteins on virulence
are performed.
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