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Malaria remains a major public health issue in Nigeria, and Nigeria is one of the main
sources of imported malaria in China. Antimalarial drug resistance is a significant obstacle
to the control and prevention of malaria globally. The molecular markers associated with
antimalarial drug resistance can provide early warnings about the emergence of
resistance. The prevalence of antimalarial drug resistant genes and mutants, including
PfK13, Pfcrt, Pimdr1, Pfdhfr, and Pfdhps, was evaluated among the imported
Plasmodium falciparum isolates from Nigeria in Henan, China, from 2012 to 2019.
Among the 167 imported P. falciparum isolates, the wild-type frequency of PfK73,
Pfert, Pimdr1, Pfdhfr, and Pfdhps was 98.7, 63.9, 34.8, 3.1, and 3.1%, respectively.
The mutation of PfK73 was rare, with just two nonsynonymous (S693F and Q613H) and
two synonymous mutations (C469C and G496G) identified from four isolates. The
prevalence of Pfcrt mutation at codon 74-76 decreased year-by-year, while the
prevalence of pfmdr1 86Y also decreased significantly with time. The prevalence of
Pfdhfr and Pfdhps mutants was high. Combined mutations of Pfdhfr and Pfdhps had a
high prevalence of the quadruple mutant I51RsgN40g-Gagz7 (39.0%), followed by the octal
mutant I51RsgN108-Vaz1A136Ga37Gsg1S613 (17.0%). These molecular findings update the
known data on antimalarial drug-resistance genes and provide supplemental information
for Nigeria.

Keywords: Plasmodium falciparum, drug resistance, PfK13, Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Nigeria

INTRODUCTION

Globally, malaria incidence and mortality have substantially reduced since 2010, and an increasing
number of countries are moving toward malaria elimination. In 2016, the World Health
Organization (WHO) identified 21 countries that had the potential to eliminate malaria by 2020,
including China (WHO, 2018). In Henan Province, there has been no local malaria case since 2012
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(Liu et al., 2014), while in 2017, no indigenous malaria cases were
reported in China for the first time (Zhang et al., 2018). However,
malaria remains the major public problem in sub-Saharan
Africa, and Nigeria had the greatest burden of global malaria
cases (27%) and malaria deaths (23%) worldwide in 2019
(WHO, 2020).

Efficacious antimalarial medicines are critical to malaria control
and elimination. However, the emergence of antimalarial drug
resistance increases the burden of malaria, and is one of the
recurring challenges in the global fight against malaria.
Monitoring antimalarial drug efficacy is necessary to provide
information for treatment policies, as well as to mitigate the
impact of resistance and prevent its spread. Therapeutic efficacy
studies (TESs) and integrated drug efficacy surveillance (iDES) are
common and reliable measures to obtain data on treatment efficacy,
and the molecular markers associated with parasite resistance can
provide supplemental information for TESs and iDES.

Chloroquine (CQ), as the first-line therapy for Plasmodium
falciparum malaria, was the most common antimalarial in Africa
from the 1940s to the 2000s (Nuwaha, 2001). CQ was replaced by
artemisinin-based combination therapies (ACTs) in most African
countries from the late 1990s to 2000s with the spread of
chloroquine resistance (Flegg et al., 2013). However, CQ remains
the first-line treatment for P. vivax in most endemic countries
(WHO, 2019), while ACTSs have been recommended by the WHO
as the first-line treatment for uncomplicated P. falciparum malaria
in nearly all areas, as well as for chloroquine-resistant (CQR) P.
vivax malaria (WHO, 2015). Artemether-lumefantrine (AL),
artesunate-amodiaquine (AS-AQ), and dihydroartemisinin-
piperaquine (DHA-PPQ) are used as the first-line treatment for
P. falciparum in most African countries (WHO, 2019). Sulfadoxine-
pyrimethamine (SP) is recommended for the intermittent
preventive treatment of malaria in pregnant women and infants
(IPTp and IPTi) by the WHO (WHO, 2010).

CQR was first reported at the Thailand-Cambodia border in
1957 (Mehlotra et al.,, 2001; Ridley, 2002) and then confirmed in
Africa in 1979 (Campbell et al., 1979). The emergence of
artemisinin resistance (ART-R) in P. falciparum was first reported
in Cambodia and later became widespread in the Greater Mekong
sub-region (GMS) (Noedl et al., 2008; Dondorp et al., 2009; Yeung
etal,, 2009). Currently, resistance to the partner drugs of artemisinin
(ART) is also common in the GMS, which affects the efficacy of
ACTs. The P. falciparum chloroquine resistance transporter gene
(Pfcrt) is the most reliable molecular marker of CQR, and has also
been considered to be associated with resistance to ACT partner
drugs, such as piperaquine (Ross et al., 2018), amodiaquine (Sa et al.,
2009), lumefantrine (Sisowath et al., 2009), and mefloquine (Picot
et al, 2009). The polymorphism of the Kelch 13 (K13) propeller
domain in P. falciparum has been identified as a molecular marker
of partial ART resistance (Ariey et al, 2014). Many non-
synonymous mutations in PfKI3 have been identified (WHO,
2018); however, only a few PfKI13 mutations have been validated,
and all of them have been identified in the GMS in Southeast Asia
(Meénard et al., 2016). Some mutations in PfK13 were also identified
in Africa, although these have not been validated in vivo or in vitro
(Taylor et al., 2014). A recent study confirmed the de novo

emergence and clonal expansion of an ART-R PfKI13 R561H
lineage in Rwanda (Uwimana et al, 2020). These findings have
substantial implications for the treatment and control of malaria in
Africa. P. falciparum multidrug resistance 1 gene (PfmdrI) has been
linked with the efficacy of chloroquine, mefloquine, amodiaquine,
lumefantrine, artemisinin, and others (Humphreys et al., 2007;
Some et al, 2010). The polymorphisms of Pfindrl at codons
N86Y, Y184F, S1034C, N1042D, and D1246Y have also been
shown to be linked with antimalarial drug resistance (Picot et al,
2009; Kamugisha et al,, 2012). The Pfmdrl mutations N86Y and
D1246Y, together with the Pfcrt mutations, can reduce the efficacy
of CQ (Sa et al., 2009). The mutations of P. falciparum dihydrofolate
reductase (Pfdhfr) at codons A16V, N51I, C59R, S108N/T, and
I164L have been reported to be related with pyrimethamine
resistance (McCollum et al., 2006). Moreover, polymorphisms of
P. falciparum dihydropteroate synthase (Pfdhps) at codons S436A/F,
A437G, K540E, A581G, and A613S/T are considered to be
associated with sulphadoxine resistance (Vinayak et al., 2010).
The quintuple mutation composed of the pfdhfr triple mutant
51I59R108N and the Pfdhps double mutant 437G540E has been
reported to reduce the efficacy of SP in IPTp and IPTi (Gosling et al,,
2009; Nankabirwa et al., 2010).

In Nigeria, ACTs have been recommended by the National
malaria drug policy since 2005 because of the failure of CQ
treatment (FMoH, 2005). However, CQ is still used to treat
malaria because it is both accessible and cheap. Currently, AL
and AS-AQ, as the recommended ART-based combinations, are
adopted for the treatment of uncomplicated malaria in Nigeria,
and the most recent TES showed that the cure rate was more
than 95% (Sowunmi et al., 2017). At present, pregnant Nigerian
women are also recommended to receive 3+ doses of SP to
prevent malaria (NPC and ICF, 2019).

Nigeria is one of the main sources of imported malaria in
China. It is important to understand the efficacy of antimalarial
drugs for these imported cases. Therefore, in this study, we
performed molecular surveillance of antimalarial drug-resistant
genes in P. falciparum isolates imported from Nigeria in Henan
Province, China, to determine their haplotypes and prevalence.

MATERIALS AND METHODS

Sample Characteristics

All of the information on imported malaria cases in Henan
Province was collected from the Disease Surveillance
Information Report Management system of China Center for
Disease Control and Prevention. A total of 1,522 imported
malaria cases were reported in Henan Province during 2012-
2019, with no indigenous cases. Nigeria is one of the main
sources of imported malaria in Henan Province, and 201 of the
total cases originated from here. Among these 201 cases, 167
cases were infected with P. falciparum. With the exception of one
patient who was Nigerian working in China, the other 200 cases
were Chinese people who traveled to Nigeria and returned with
malaria infection. One case was female, and the others were male.
The youngest was 19 years old and the oldest was 62 years old.
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The average age was 38.11 + 9.188 years, and most cases were
concentrated in the 21-50 years age group (86.6%, 174/201).
Most of the patients were migrant workers (84.6%, 170/201).

DNA Extraction and Amplification

The patients were diagnosed with malaria initially by blood smear
microscopy and/or rapid diagnosis test (RDT) in the local hospital
or County Centers for Disease Control and Prevention. The whole
blood and blood smear samples of the cases were collected before
antimalarial treatment and deposited in the Sample Resource
Library in Henan Provincial Reference Laboratory for Malaria
Diagnosis. All of the cases were confirmed to be infected with
malaria parasite species using nested polymerase chain reaction
(PCR) and blood smear microscopy performed at the Henan
Provincial Reference Laboratory for Malaria Diagnosis (Yin et al.,
2015). The genomic DNA was extracted from blood samples using
QIAamp DNA Blood Mini Kits (Qiagen, USA) following the
manufacturer’s instructions.

The target genes of PfK13, Pfcrt, Pfimdr1, Pfdhfr, and Pfdhps were
amplified using nested PCR previously described (Zhou et al., 2016;
Zhou etal., 2019). The primer sequences and conditions are shown
in Supplementary Material. The amplification of the Pfcrt gene
amplified covered the codons C72S, V73V, M741, N75E, and K76T.
The Pfmdrl gene contained the codons N86Y, Y184F, S1034C,
N1042D, and D1246Y. The Pfdhfr gene was amplified to identify the
polymorphism at codons A16S, N511, C59R, S108N, and 1164L.
The Pfdhps gene covered the codons [431V, S436A, A437G, K540E,
A581G, and A613S. Bidirectional sequencing of the secondary PCR
products was performed by Sangon Biotech Co Ltd
(Shanghai, China).

Data Analysis

ChromasPro software v. 1.5 (https://technelysium.com.au/wp/
chromaspro/) was used to assemble the forward and reverse
sequences of the genes. MEGA7 (Molecular Evolutionary Genetics
Analysis, https://www.megasoftware.net/show_eua) software was
used to identify the mutations by comparing with their reference
genomes. The reference genomes of PfK13, Pfcrt, Pfmdr1, Pfdhfr,and
Pfdhps were from the P. falciparum 3D7 strain obtained from
Genbank (Genbank ID: Pf3D7_1343700, Pf3D7_0709000,
Pf3D7_0523000, PF3D7_0417200, and PF3D7_1324800,
respectively). The data were analyzed using SSPS v.21.0 (Statistical
Product and Service Solutions). The difference was compared using
Chi-square or Fisher’s exact test, and a two-sided p value of <0.05 was
considered statistically significant.

RESULTS

K13-Propeller

The 850 bp fragments of the K13-propeller domain were successfully
sequenced from 157 samples among 167 P. falciparum isolates. Two
non-synonymous and two synonymous mutations were identified
from four isolates: S693F, Q613H, C469C, and G496G. The total
mutant prevalence was 2.5% (4/157). Two synonymous mutations
were detected in 2014 and 2016, and one non-synonymous mutation
was identified in 2017 and 2019.

Pfcrt

A total of 158 out of 167 isolates were successfully sequenced on
Pfcrt. The codons 72 and 73 were all wild type. The mutant
prevalence of codons 74, 75, and 76 was 36.1% (57/158), 36.1%
(57/158), and 35.4% (56/158), respectively, during 2012-2019
(Table 1). Four haplotypes of Pfcrt were identified, wild-type
CVMNK (63.9%, 101/158), CVIET (32.3%, 51/158), CVIEK
(0.6%, 1/158), and CV M/I N/E K/T (3.2%, 5/158) (Table 2).
The mutant prevalence of Pfcrt 741, 75E, and 76T decreased with
time, and the differences showed statistical significance (741 and
75E: > = 9.837, p = 0.020; 76T: 3> = 8.260, p = 0.041) (Figure 1A).

Pfmdr1

The fragments of Pfmdrl were successfully obtained from 158
isolates. No mutation was found at codons 1034 and 1042, and
only two isolates had mutation at codon D1246Y. One T1192L
mutant was identified for the first time in our study. The mutant
prevalence of N86Y and Y184F was 13.9% (22/158) and 63.3%
(100/158), respectively, during 2012-2019 (Table 1). Five
haplotypes of Pfmdrl were found, including wild-type NYSND,
two single mutant haplotypes NFSND and NYSND-T1192L, and
two double mutant haplotypes YESNLD and YYSNY (Table 2).
The mutant prevalence of Pfmdrl 86Y decreased significantly
with time (3> = 23.704, p = 0.000) (Figure 1B).

Pfdhfr

Pfdhfr was successfully amplified from 159 P. falciparum isolates.
Only five isolates were wild type, and the other 154 isolates had
mutations among five codons N511I, C59R, S108N, S120R, and
I164L. The mutations at codons N51I, C59R, and S108N were
common, accounting for 91.8% (146/159), 92.5% (147/159), and
96.9% (154/159), respectively (Table 1). The Pfdhfr S120R and
I164L mutants were identified from just one isolate each. The
Pfdhfr S120R mutant was newly identified in this study. No
Pfdhfr A16V mutant was found, although there was no statistical
difference in the mutant prevalence among these codons during
2012-2019 (Figure 1C). Seven haplotypes of Pfdhfr were found,
including wild-type, single, double, triple, and quadruple mutant
haplotypes. However, the triple mutation, Is;Rs9N;0g haplotype,
was the most common, accounting for 88.1% (140/159)
(Table 2).

Pfdhps

Among the 159 successfully sequenced samples, five isolates were
free of mutations, and the other 154 isolates had mutations
among six codons E424G, 1431V, S436A/F, A437G, A581G, and
A613S. There were two types of mutations at codon 436, S436A
(75 isolates), and S436F (4 isolates). The mutant S436F always
appeared with Pfdhps 613S. No Pfdhps K540E mutant was found.
The mutation at codon A437G (86.2%, 137/159) was the most
prevalent, followed by S436A/F (49.7%, 79/159), A613S (28.9%,
46/159), 1431V (27.0%, 43/159), and A581G (21.4%, 34/159)
(Table 1). Only one E424G mutant was found and was newly
identified in this study. There was statistical difference about the
mutant prevalence at codon S436A/F during 2012-2019 (y* =
13.152, p = 0.004) (Figure 1D). The prevalence of Pfdhps A613S
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TABLE 1 | Mutant prevalence of the Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes detected in Plasmodium falciparum isolates returned from Nigeria during 2012-2019.

Gene SNP Prevalence of mutation® (%)
Total 2012 2013 2014 2015 2016 2017 2018 2019
Pfert M74l 36.1 (57/158) 72.2(13/18) 35.7 (6/14) 42.3 (11/26) 38.5 (5/13) 20.0 (3/15) 34.6 (9/26) 26.7(4/15) 22.6(7/31)
N75E 36.1 (57/158) 72.2(13/18) 35.7 (5/14) 42.3 (11/26) 38.5 (5/13) 20.0 (3/15) 34.6 (9/26) 26.7(4/15) 22.6(7/31)
K76T 35.4 (56/158) 66.7(12/18) 35.7 (5/14) 42.3 (11/26) 38.5 (5/13) 20.0 (3/15) 34.6 (9/26) 26.7(4/15) 22.6(7/31)
Pfmdr1® N86Y 13.9 (22/158) 38.9 (7/18) 28.6 (4/14) 23.1 (6/26) 23.1 (3/13) 6.7 (1/15) 0 (0/26) 0(0/15) 3.2(1/31)
Y184F 63.3 (100/158)  77.8 (14/18) 64.3 (9/14) 61.5(16/26)  76.9 (10/13) 53.3 (8/15) 50 (13/26) 60.0(9/15) 67.7(21/31)
D1246Y 1.3 (2/158) 0 (0/18) 7.1 (1/14) 3.8 (1/26) 0(0/13) 0 (0/15) 0 (0/26) 0(0/15) 0(0/31)
Pfahfr® N511 91.8 (146/159) 100 (18/18) 78.6 (11/14) 100 (26/26)  84.6 (11/13)  86.7 (13/15) 100 (27/27)  86.7(13/15)  87.1(27/31)
C59R 92.5 (147/159) 100 (18/18)  92.9 (13/14)  96.2 (25/26) 69.2 (9/13) 93.3 (14/15)  96.2 (26/27)  86.7(13/15)  93.5(29/31)
S108N 96.9 (154/159) 100 (18/18)  92.9 (13/14) 100 (26/26)  92.3 (12/13) 100 (15/15) 100 (27/27)  93.3(14/15)  93.5(29/31)
1164L 0.6 (1/159) 5.6 (1/18) 0(0/14) 0 (0/26) 0(0/13) 0 (0/15) 0 (0/27) 0(0/15) 0(0/31)
Pfdhps® 1431V 27.0 (43/159) 22.2 (4/18) 28.6 (4/14) 19.2 (5/26) 23.1 (3/13) 26.7 (4/15) 37.0 (10/27) 33.3(5/15) 25.8(8/31)
S436A 47.2 (75/159) 38.9 (7/18) 64.3 (9/14) 15.4 (4/26) 30.8 (4/13) 60 (9/15) 66.7 (18/27) 53.3(8/15) 51.6(16/31)
S436F 2.5 (4/159) 5.6 (1/18) 0(0/14) 7.7 (2/26) 0(0/13) 0 (0/15) 0 (0/27) 0(0/15) 3.2(1/31)
A437G 86.2 (137/159)  77.8 (14/18)  85.7 (12/14)  84.6 (22/26) 100 (13/13)  78.3(11/15)  88.9 (24/27) 100(15/15)  83.9(26/31)
A581G 21.4 (34/159) 16.7 (3/18) 14.3 (2/14) 11.5 (3/26) 23.1 (3/13) 26.7 (4/15) 25.9 (7/27) 33.3(5/15) 22.6(7/31)
AB13S 28.9 (46/159) 22.2 (4/18) 14.3 (2/14) 19.2 (5/26) 30.8 (4/13) 33.3 (5/15) 33.3 (9/27) 40.0(6/15) 35.5(11/31)

including the mixed mutation.

bT1192L mutant was identified from one isolate in 2019.
©S120R mutant was identified from one isolate in 2015.

9E424G mutant was identified from one isolate in 2015.

TABLE 2 | Haplotypes of Pfcrt, Pimdr1, Pfdhfr, and Pfdhps genes detected in
Plasmodium falciparum isolates returned from Nigeria during 2012-2019.

Gene (No.) Haplotypes No. (%)
Pfert (n=158) Wild-type C72V73M74N75K76 101 (63.9)
Double mutant haplotype CVIEK 1(0.6)
Triple mutant haplotype CVIET 51 (32.3)
Mixed triple mutant haplotype CV M/I N/E K/T 5 (
Pfmdr1 (n=158)  Wild-type NgeY184S1034N1042D1246 55 (34.8)
Single mutant haplotype NFSND 80 (50.6)
Single mutant haplotype NYSND-T1192L 1(0.6)
Double mutant haplotype YFSND 20 (12.7)
Double mutant haplotype YYSNY 2(1.3)
Pfdhfr (n=159) Wild-type A1gNs1Cs9S108l164 5(3.1)
Single mutant haplotype ANCNI 1(0.6)
Double mutant haplotype AICNI 5(3.1)
Double mutant haplotype ANRNI 6 (3.8)
Double mutant haplotype ANCNI-S120R 1(0.6)
Triple mutant haplotype AIRNI 140 (88.1)
Quadruple mutant haplotype AIRNL 1(0.6)
Pfdhps (n=159)  Wild-type la31SazsA137Ksa0As81A613 5@.1)
Single mutant haplotype ISGKAA 70 (40.0)
Single mutant haplotype IAAKAA 11 (6.9)
Double mutant haplotype IAGKAA 11 (6.9)
Double mutant haplotype VAAKAA 2(1.3)
Double mutant haplotype IFAKAS 4 (2.5)
Double mutant haplotype ISGKGA 2 (1.3
Triple mutant haplotype VAGKAA 8 (5.0
Triple mutant haplotype VSGKGA 1(0.6)

Triple mutant haplotype IAGKAS 12 (7.5)
Triple mutant haplotype ISGKGA-E424G 1(0.6)
Quadruple mutant haplotype VAGKGA 2(1.3)
Quadruple mutant haplotype VAGKAS 2(1.3)
Quadruple mutant haplotype VSGKGS 1(0.6)
Quintuple mutant haplotype VAGKGS 27 (17.0)

increased yearly, but there was no significant difference (x> =
4.100, p = 0.251). In addition to the wild type (ISAKAA), there
were 14 mutant types, including two single mutant haplotypes

(ISGKAA, TAAKAA), four double mutant haplotypes (IAGKAA,
VAAKAA, IFAKAS, ISGKGA), four triple mutant haplotypes
(VAGKAA, VSGKGA, TAGKAS, ISGKGA-E424G), three
quadruple mutant haplotypes (VAGKGA, VAGKAS,
VSGKGS), and one quintuple mutant haplotype (VAGKGS).
The single mutant haplotype ISGKAA (40.0%) was the most
common, followed by the quintuple mutant haplotype VAGKGS
(17.0%), and the triple mutant haplotype IAGKAS (7.5%)
(Table 2).

Combined Haplotypes of Pfdhfr and Pfdhps
Among the 167 P. falciparum isolates, 159 samples were
successfully sequenced for Pfdhfr and Pfdhps. The results of
sequencing demonstrated that only one isolate was free of
mutations, and eight isolates had single-gene mutations, Pfdhfr
or Pfdhps. The other 150 isolates (94.3%) had mutations in two
genes simultaneously. The most frequent mutation was the
quadruple mutant I5;Rs9Njog- Gyz;, accounting for 39.0%,
followed by Is;Rs9Nijgs- Vi31A436Ga37Gss1S615 (17.0%) and
I5;R5oN0g- Ayzg (6.9%). As no Pfdhps K540E mutants were
detected, the combination of the Pfdhfr triple mutant Is;R5oN g
and the Pfdhps double mutant Gus;Ess was not observed
(Table 3).

DISCUSSION

ACTs are currently considered the most effective treatment for
uncomplicated falciparum malaria globally. However, the
emergence and radical spread of ACT resistance represents a
significant threat to malaria control and elimination. Until now,
previously validated PfK13 mutants, including F446I, N485Y,
M476], Y493H, R539T, 1543T, P553L, R561H, and C580Y (the
most common), have been mainly identified in Southeast Asia
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(WHO, 2018). Meanwhile, a few PfK13 mutations have been
reported in African P. falciparum isolates, including A557S,
V5661, A567T, S576L, A578S, and L589I; however, none of
them conferred the ART-R in vivo or in vitro (Taylor et al,
2014). The confirmation of PfK13 R561H in Rwanda would have
an important impact on the ART-R in Africa (Uwimana et al.,
2020). Moreover, delayed clearance of ACTs has been reported
among a few cases in Nigeria (Ajayi and Ukwaja, 2013;
Wundermann and Osiki, 2017). Several mutations of PfK13
have also been described in Nigerian isolates, including one
non-synonymous mutation G665C discovered in southwestern
Nigeria (Oboh et al., 2018), and six mutations (E433G, F434],
F434S, 1684N, 1684T, and E688K) identified in northern Nigeria,
among which E433G and E688K were identified from isolates
with the delayed clearance (Abubakar et al., 2020). The study
performed in southwestern Nigeria in 2014 identified eight non-
synonymous mutations in PfK13, including G496S, R539F,
1543V, V566K, D584I, C580Y, and a deletion variant A557; the
C580Y mutant was suspected by allelic discrimination in two
samples with mixed genotypes (Tola et al., 2020). In this study,
two non-synonymous mutations, S693F and Q613H, were

identified in two isolates. However, none of these mutations
detected in Nigerian isolates has been fully validated in vivo or in
vitro for resistance to ART. Given the cases with delayed
clearance to ACTs, and the fact that the PfKI3 C580Y
mutation has been reported in Nigeria, urgent monitoring of
the efficacy of antimalarial drugs is required to obtain an early
warning signal, update the treatment policy and stop the spread
of ACTs-resistance.

An increasing number of studies have shown that CQ
sensitivity is recovered as a consequence of CQ withdrawal
(Mwanza et al., 2016; Lu et al,, 2017; Ndam et al,, 2017). In
Nigeria, CQ was replaced with ACTs in 2005 (FMoH, 2005). In
this study, the prevalence of the Pfcrt mutation reduced from
72.2% in 2012 to 22.6% in 2019, and decreased steadily, and
significantly year-by-year (Figure 1A). The study of Tola et al.
reported that the prevalence of mutant Pfcrt (CVIET) was 45% in
2014 in southwestern Nigeria (Tola et al., 2020), and Lu et al.
reported that the prevalence of Pfcrt 76T was 46.9% in Nigeria
during 2011-2014 (Lu et al., 2017), and the prevalence of mutant
Pfert was 41.9% in Nigeria during 2012-2015 in our published
study (Zhou et al, 2016), the results of the three studies
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TABLE 3 | Combination of the Pfdhfr and Pfdhps genes detected from
Plasmodium falciparum isolates returned from Nigeria during 2012-2019.

Haplotypes No. (%)
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performed in Nigeria were similar. However, there are few recent
data on the prevalence in Nigeria. In this study, the molecular
monitoring of Pfcrt took place over an 8-year period, from 2012
to 2019, and provided sufficient information to observe the
reversal of CQR in Nigeria. It is possible that the mutant
prevalence of Pfcrt will reduce further, leading to full recovery
of the sensitivity to CQ. Moreover, the dynamics of population
genetics may also account for the recovered sensitivity of CQ, in
that as the corresponding antimalarial drug is withdrawn, the
wild type gene might segregate and increase in population.
Pfmdrl gene is considered to be associated with the efficacy of
multiple antimalarial drugs. Meanwhile, Pfmdrl and Pfcrt are
assumed to be associated with resistance to ACT partner drugs,
such as amodiaquine, lumefantrine, and mefloquine (Otienoburu
et al,, 2019). Pfmdrl has also been found to be closely associated
with chloroquine resistance, especially between the Pfindrl N86Y
and Pfcrt K76T (Duraisingh and Cowman, 2005), and the
prevalence of Pfmdrl 86Y reduced with the withdrawal of
chloroquine (Gupta et al., 2018). Indeed, in this study, a
significant decrease in the prevalence of Pfmdrl 86Y was
observed from 38.9% in 2012 to 3.2% in 2019. The literature
review also reported that the prevalence of Pfindrl 86Y reduced
significantly in all of the studied countries (Otienoburu et al.,
2019), which was confirmed by the current study. The prevalence
of Pfimdrl 184F was high in this study, at 63.3% during 2012-2019.
The study performed in 2007-2008 showed that the frequency of
184F was 69.0% in Nigeria (Oladipo et al., 2015). Therefore, it can
be considered that the prevalence of Pfmdrl 184F might be

maintained at a certain level for a long time in Nigeria. The
prevalence of Pfindrl 86Y and 184F obtained from isolates
imported from Angola was 11.7 and 30.9%, respectively, during
2012-2017 (Zhou et al., 2019). In Mozambique, the frequency of
Pfmdrl 86Y and 184F was 3.1 and 46.7%, respectively, in 2015
(Gupta et al., 2018). In other countries, the prevalence of Pfmdrl
86Y has been shown to be lower, whereas that of Pfmdr] 184F has
been found to vary considerably; these observations may be related
to the medication strategy of individual countries.

Pfdhfr and Pfdhps were used to monitor resistance of SP, and the
level of SP resistance was considered to be related to the number of
combined mutations within the two genes. The level of resistance
can be divided into three groups: the quadruple mutant, Pfdhfr
I5;RsoNyos-Pfdhps Gusz, is considered to be “partially resistant,” the
quintuple mutant, Pfdhfr 1s;RsoNos-Pfdhps Gas;Es40, is considered
to be “fully resistant,” and the sextuple mutant, Pfdhfr Is;RsoNgg-
Gy37E540Gs81/S613, is considered to be “super resistant” (Naidoo
et al, 2013). In this study, Pfdhfr 15;RsoN;os Was very common
(88.1%); meanwhile, the Pfdhps gene had 15 haplotypes, among
which the single mutant Gy3; had the highest prevalence, followed
by the quintuple mutant V3;A436G437Gsg1S613- No Pfdhps K540E
mutants were found. The combined mutants of the two genes
showed that the quadruple mutant, Pfdhfr 15;RsoN;o-Pfdhps Gz,
was common (39.0%) and classified as “partially resistant.” Because
the Pfdhps K540E mutant was not identified in this study, the
quintuple mutant Pfdhfr I5;RsoNyos-Pfdhps GaszEsso was not
identified. However, 17.0% of isolates in Nigeria comprised the
octal mutant Pfdhfr 151R59N108-Pfdhp5 V431A435G437G5818613.
Moreover, the Pfdhps 1431V mutant was discovered recently and
it has been identified in Nigeria, Cameroon, and Equatorial Guinea
(Chauvin et al., 2015; Oguike et al., 2016). It has also been reported
that the prevalence of Pfdhps 431V is 8.3, 16.7, and 6.3% in Nigeria,
Cameroon, and Equatorial Guinea, respectively (Xu et al., 2019).
However, the frequency of Pfdhps 431V reached 27.0% in this study.
Pfdhps 431V has always been found together with other mutants,
among which Pfdhps V 431A436G437Gsg15613 Was the most common.
The effects of Pfdhps 431V on SP resistance need further study.
Although no data were obtained from pregnant women or children,
our findings provide supplementary information for SP resistance in
Nigeria. It is necessary to monitor SP resistance continuously using
the two genes to guide the IPT strategy.

There are some limitations to this study. First, the samples were
passively obtained from migrants returning from Nigeria; thus, the
sampling was not planned, and the sample size was not controlled.
Second, the exact information about which part of Nigeria these
individuals worked/lived in was unavailable. Third, although the
individuals were all cured, detailed information about the treatment
process and the use of antimalarial drugs was not incomplete.
Fourth, the individuals were almost all Chinese people who returned
from Nigeria with malaria; therefore, the prevalence of mutations
among them might differ from those among native Nigerians.

This study evaluated polymorphisms and prevalence of
antimalarial drug-resistance genes in imported P. falciparum
cases from Nigeria to Henan Province, China. The mutation of Pf
K13, associated with ACTs, was rare, and no validated mutation
was found. The prevalence of Pfcrt and Pfmdrl mutants
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associated with the resistance of ACT partner drugs reduced
gradually. Moreover, the prevalence of Pfdhfr and Pfdhps
mutations was high. At present, ACTs are still effective for
those returning from Nigeria with P. falciparum malaria
infected in Henan Province. However, the validated PfKI3
R561H mutation recently observed in Rwanda has substantial
implications for ART-R in Africa (Uwimana et al., 2020). The
routine molecular surveillance of antimalarial drugs is more
important and imperative for the imported malaria cases,
especially those from Africa, and will be helpful to rationalize
drug guidance for local authorities in China.
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