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Viruses are known for their ability to alter host gene expression. Kaposi sarcoma-
associated herpesvirus has two proteins that obstruct host gene expression. KSHV
SOX, encoded by the open reading frame 37 (ORF37), induces a widespread cytoplasmic
mRNA degradation and a block on mRNA nuclear export. The other KSHV protein,
encoded by the open reading frame 10 (ORF10), was recently identified to inhibit host
gene expression through its direct function on the cellular mRNA export pathway. In this
review, we summarize the studies on both SOX and ORF10 in efforts to elucidate their
mechanisms. We also discuss how the findings based on a closely related rodent virus,
murine gammaherpesvirus-68 (MHV-68), complement the KSHV findings to decipher the
role of these two proteins in viral pathogenesis.

Keywords: gammaherpesvirus, Kaposi sarcoma-associated herpesvirus (KSHV), host mRNA nuclear export, mRNA
stability, host gene expression inhibition, virus host interaction
INTRODUCTION

Kaposi sarcoma-associated herpesvirus (KSHV), or the human herpesvirus-8 (HHV-8), belongs to
the gamma subfamily of herpesviruses. KSHV is associated with malignancies and life-threatening
diseases (Chang et al., 1994; Soulier et al., 1995; Brambilla et al., 1996; Cesarman et al., 1996;
Corbellino et al., 1996a; Corbellino et al., 1996b; Dittmer and Damania, 2013; Goncalves et al.,
2017), including Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman’s disease,
and KSHV inflammatory cytokine syndrome. KSHV has two distinct phases in its life cycle: latency
and lytic replication. Latency is considered to be immunologically silent with few viral genes
expressed and no virion production. During lytic replication, over 80 viral genes are expressed in a
cascading order, resulting in the assembly and release of infectious particles, generating new
infections to replenish the pool of latently infected cells.

Restricted host range limits most KSHV studies to molecular biology experiments. Murine
gammaherpesvirus-68 (MHV-68) is closely related to human gammaherpesviruses (Virgin et al.,
1997; Barton et al., 2011). Like KSHV, MHV-68 infection in mice leads to acute lytic viral
replication followed by the establishment of latency in B-cells. 63 out of the 80 MHV-68 open
reading frames (ORFs) share sequence homology with KSHV ORFs with 10-60% shared sequence
identity (Virgin et al., 1997). Unlike KSHV, MHV-68 de novo infection readily leads to lytic
replication. Therefore, MHV-68 provides a valuable model for in vitro and in vivo functional studies
of KSHV viral protein homologs.
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Viruses strategically exploit various cellular mechanisms to
down-regulate host gene expression for their own benefit. The
best studied KSHV protein to inhibit host gene expression is the
shutoff and exonuclease (SOX) protein encoded by KSHV
ORF37 (Glaunsinger and Ganem, 2004), which accelerates
cytoplasmic mRNA degradation. Another common viral
strategy, frequently employed by RNA viruses, targets mRNA
nuclear export to inhibit host gene expression (Yarbrough et al.,
2014). Most RNA viruses synthesize their mRNAs in the
cytoplasm and do not depend on cellular mRNA nuclear
export mechanism. In contrast, DNA viruses, including
herpesviruses, risk hindering the exit of their own mRNAs if
they block mRNA nuclear export. Nevertheless, SOX induces
mRNA hyperadenylations and their nuclear retention due to
global mRNA degradation in the cytoplasm (Kumar and
Glaunsinger, 2010). Moreover, we identified KSHV ORF10 as
another inhibitor of host gene expression by interacting with a
cellular mRNA export factor, Rae1. We review the current
knowledge regarding the molecular mechanisms of SOX and
ORF10 as well as their roles in the context of viral lytic
replication and pathogenesis (Figure 1).
ORF37: A VIRAL SCISSOR FOR MRNA

Herpesviruses undermine mRNA stability through proteins that
possess an endoribonuclease activity (Read, 2013). These include
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the virion host shutoff (vhs) protein encoded by HSV-1 UL41
(Fenwick and McMenamin, 1984; Strom and Frenkel, 1987;
Elgadi et al., 1999) and KSHV SOX (Glaunsinger and Ganem,
2004). Unlike vhs, SOX originates from the herpesviral alkaline
exonuclease protein family involved in viral DNA genome
processing. Only SOX homologs of the gamma subfamily
evolved a separate endonuclease activity causing host shutoff
(Glaunsinger and Ganem, 2004; Rowe et al., 2007; Covarrubias
et al., 2009). The alkaline exonuclease and host shutoff functions
of SOX are genetically separable with specific mutations affecting
only one of the two functions (Glaunsinger et al., 2005).

SOX causes host shutoff through a sequential action with a
cellular 5’-3’ exonuclease, Xrn1 (PACMAN), resulting in
cytoplasmic transcript degradation (Covarrubias et al., 2011). The
current working model is that SOX internally cleaves the target
transcripts in a non-randommanner with preferred sites defined by
a degenerate sequence motif (Gaglia et al., 2015; Mendez et al.,
2018), providing Xrn1 with an entry point to complete degradation.
In addition to site preferences, co-sedimentation of SOX with 40S
ribosomal subunits indicates that SOX targets transcripts early
during translation, further corroborated by SOX’s inability to
initiate degradation of translation-incompetent reporters or RNA
Pol I and Pol III transcripts (Covarrubias et al., 2011).

Remarkably, SOX targets both cellular and viral mRNAs
(Abernathy et al., 2014). The MHV-68 SOX homolog shares
the same host shutoff activity as KSHV SOX (Covarrubias et al.,
2009). When the shutoff function of SOX is disabled in MHV-68,
A
B

FIGURE 1 | The inhibitory mechanisms of SOX and ORF10 proteins on host gene expression. SOX protein targets transcripts for degradation, affecting both the
host and viral transcripts. On the other hand, ORF10 acts solely on cellular transcripts for export inhibition. Interestingly, both SOX and ORF10 cause the
hyperadenylation of transcripts within the nucleus. (A) Cytoplasmic SOX protein, as encoded by ORF37, causes host shut off through its endonuclease activity. The
viral endonucleolytic action on host transcript then triggers the cellular exonuclease, Xrn1, to complete transcript degradation. (B) At the nuclear envelope, ORF10
inhibits only the export of host transcripts by forming a complex with cellular export factor Rae1 and its partnering nucleoporin, Nup98. The hijacking of Rae1-Nup98
leads to nuclear retention of mRNAs. CBC, cap-binding complex; PABPC, cytoplasmic poly(A)-binding protein; PABPN, nuclear poly(A)-binding protein; PAPII, poly
(A) polymerase II. Question marks indicate potential or hypothetical mechanisms and effects within the model.
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the majority of MHV-68 genes have higher mRNA levels
(Richner et al., 2011). Not all MHV-68 genes with increased
transcript levels have higher protein expression. However, this
altered viral protein expression unexpectedly impacts the
composition of virions produced by the SOX mutant without
changing the ratios of particles to plaque forming units. In
addition, the resulting changed virion composition affected
viral entry. Despite enhanced viral gene expression, the SOX
MHV-68 mutant is attenuated in vitro and in vivo. This is a
surprising finding since host shutoff is generally thought to help
viruses seize cellular resources to maximize their own protein
expression for the highest virion production. Instead, SOX
controls the viral gene expression to produce virions with a
proper composition for optimal viral replication.
ORF37: A CYTOPLASMIC TERMINATOR
WITH A NUCLEAR IMPACT ON MRNA
EXPORT

As many RNA-binding proteins are capable of nucleo-
cytoplasmic shuttling, a SOX-mediated massive decrease
in cytoplasmic mRNA can lead to the nuclear relocation of
cytoplasmic RNA-binding proteins (Gilbertson et al., 2018).
PABPC, a predominantly cytoplasmic poly(A) binding protein,
is one such nucleo-cytoplasmic shuttling protein (Afonina et al.,
1998). It interacts with the cap-binding complex, eIF4F, through
subunit eIF4G, to form a closed loop structure (Tarun and Sachs,
1996; Wells et al., 1998), which promotes the recruitment of
ribosome 40S subunit for translation. Upon RNA binding, the
PABPC nuclear import signal is masked, and thus when
cytoplasmic polyadenylated transcripts drop substantially due to
SOX activity, RNA-free PABPC is imported into the nucleus
(Kumar et al., 2011). A SOX mutant that cannot accelerate
mRNA turnover also fails in PABPC1 nuclear relocalization
(Lee and Glaunsinger, 2009). Moreover, overexpression of a
cytoplasmic deadenylase to reduce the abundance of cytoplasmic
poly(A) RNA also induces nuclear import of PABPC1 (Lee and
Glaunsinger, 2009). PABPC nuclear relocalization by SOX is
observed during KSHV lytic replication (Lee and Glaunsinger,
2009). HSV-1 vhs can also cause nuclear accumulation of PABPC1
(Kumar and Glaunsinger, 2010), indicating a common impact in
cytoplasmic mRNA drop. The major consequences of nuclear
relocalization of PABPC1, by SOX, vhs, or the fusion with a
nuclear retention signal (NRS) to PABPC1, are hyperadenylation
of mRNAs and inhibition on their nuclear export (Kumar and
Glaunsinger, 2010). Notably, nuclear PABPC1-NRS does not
destabilize GFP reporter mRNA but diminishes GFP protein
expression (Kumar and Glaunsinger, 2010), perhaps by retaining
the GFP transcript in the nucleus. This indicates that in addition to
cytoplasmic mRNA degradation, the impact of ORF37 on nuclear
export of mRNA due to PABPC nuclear translocation is a critical
part of its host shutoff function.

Nuclear mRNA hyperadenylation has been observed
when RNAs are not exported (Hilleren and Parker, 2001;
Jensen et al., 2001; Hammell et al., 2002; Qu et al., 2009;
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Bresson and Conrad, 2013). Since hyperadenylation and nuclear
export are intimately linked, it is difficult to determine whether a
block on export or hyperadenylation occurs first upon the PABPC
nuclear relocation. SOX-induced hyperadenylation depends on
PABPC1 and poly(A) polymerase, PAPII (PAPa) (Lee and
Glaunsinger , 2009) . The involvement of c leavage/
polyadenylation CPA machinery is assumed. CPA is carried out
by a large complex consisting of multi-subunit of cleavage and
polyadenylation specificity factor (CPSF) and PAP that adds
adenosines to the cleavage fragment (Proudfoot, 1996).
Subsequently, nuclear poly(A)-binding protein (PABPN)
associates with the newly-added poly(A) tail and stimulates
PAPII to produce a long poly(A) tail of ~250 nucleotides
(Bienroth et al., 1993; Kühn et al., 2009; Kühn et al., 2017). It
has been proposed that additional adenosines beyond 250 residues
cannot support a productive CPSF-PAPII complex for efficient
polyadenylation (Wahle, 1995; Kühn et al., 2009). PABPN and
CPSF contribute to the recruitment of nuclear export complex to
mRNA (Shi et al., 2017). The loss of PABPN can lead to a
shortened poly(A) tail and mRNA nuclear retention (Apponi
et al., 2010). It is possible that relocating nuclear PABPC1 replaces
PABPN on the poly(A) tail of mRNAs and prevents RNA export
factor recruitment, interrupting mRNA nuclear export and
causing subsequent hyperadenylation.

Despite a predominant nuclear SOX presence, cytoplasmic
SOX largely mediates the effects of accelerated cytoplasmic
mRNA decay, relocalization of PABC, and nuclear mRNA
hyperadenylation (Covarrubias et al., 2009). SOX degrades
cytoplasmic RNA, causing the PABPC1 nuclear import, which
causes nuclear mRNA hyperadenylation and nuclear retention.
Interestingly, the SOX impact on host gene expression in
uninfected cells is less substantial compared to the extent of
host shut-off during KSHV lytic replication (Clyde and
Glaunsinger, 2011). This suggests that KSHV employs
additional mechanisms beyond SOX to inhibit host gene
expression, as other herpesviruses do (Rivas et al., 2016).
ORF10: AN INHIBITOR IN THE MRNA
NUCLEAR EXIT

Mature mRNA are associated with a variety of proteins to form
export-competent messenger ribonucleoprotein (mRNP)
complexes (Carmody and Wente, 2009; Björk and Wieslander,
2017). Export of mRNPs requires the transit of these mRNPs
through the nucleopore complex (NPC). An NPC consists of ~30
nucleoporins (Nups), with many containing phenylalanine-
glycine (FG) repeats (Strambio-De-Castillia et al., 2010). At the
central channel of nuclear pores, the FG-repeats of Nups form a
permeability barrier (Terry and Wente, 2009). Majority of
mRNA nuclear export through the NPCs involves the TAP-
p15 (or NXF1-NXT1) heterodimer (Conti and Izaurralde, 2001;
Köhler and Hurt, 2007; Carmody and Wente, 2009). The TAP-
p15 heterodimers load mRNPs onto FG-containing Nups (FG-
Nups) (Katahira et al., 1999; Bachi et al., 2000). The interaction
of TAP with the FG repeats overcomes the permeability
April 2021 | Volume 11 | Article 648055

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Pardamean and Wu KSHV and Host Gene Expression
barrier of the nuclear pore, enabling mRNP translocation across
the central channel (Grünwald et al., 2011; Powers and
Forbes, 2012).

Our work identified a novel KSHV post-transcriptional
regulator, encoded by ORF10, as an inhibitor of mRNA
nuclear export (Gong et al., 2016). ORF10 expression leads to
the reduction of cytoplasmic RNA levels for 24% of cellular
genes, indicating a role of ORF10 in suppressing host gene
expression during KSHV replication. While both ORF37 and
ORF10 cause mRNA nuclear retention, ORF10 directly targets
the nuclear export pathway by interacting with Rae1. We and
others have independently identified, through mass
spectrometry, that KSHV and MHV-68 ORF10 interacts with
Rae1 (Davis et al., 2015; Gong et al., 2016), which is a highly
conserved eukaryotic cellular export factor (Bharathi et al., 1997;
Kraemer and Blobel, 1997; Sabri and Visa, 2000). Rae1 is
involved in mRNA export by interacting with Nup98 at NPC
(Pritchard et al., 1999; Blevins et al., 2003). We engineered a
recombinant MHV-68 expressing FLAG-tagged ORF10 and
identified Rae1 and Nup98 as ORF10-interacting proteins in
the context of infection (Gong et al., 2016). Unlike TAP, Rae1
does not interact with the FG repeats of Nup98. Instead, the
interaction is mediated through an evolutionarily conserved
sequence within the Nup116/Nup98 family, referred to as
Gle2-binding sequence (GLEBS) (Bailer et al., 1998; Pritchard
et al., 1999). Rae1 also interacts with TAP (Bachi et al., 2000;
Blevins et al., 2003) and thus, rather than functioning in the
transit of mRNPs through NPCs, Rae1 potentially facilitates the
docking of export-competent mRNPs onto NPCs. KSHV and
MHV-68 ORF10s share 19% amino acid identity, highlighting
the functional importance of Rae1 interaction during
gammaherpesvirus infection. A structural study determined the
MHV-68 ORF10 residues involved in the interactions with the
Rae1-Nup98 complex (Feng et al., 2020). Some residues are
highly conserved across the gammaherpesvirus ORF10
homologs with their mutations impairing interaction with the
Rae1-Nup98 complex, causing the loss of mRNA nuclear
export inhibition.

We have shown that KSHV and MHV-68 ORF10 induce
nuclear accumulation of poly(A) RNA, which is abolished by
mutations that disrupt ORF10-Rae1 interaction or Rae1
knockdown. Additionally, ORF10 is enriched at the nuclear
rim. This localization depends on Rae1 and Nup98. Our
current working model is that ORF10 interacts with Rae1,
which in turn interacts with Nup98, to interfere with the Rae1-
Nup98 complex function in mRNA export. While global mRNA
export is not impacted by the absence of Rae1 (Babu et al., 2003),
expression of the GLEBS domain of Nup98 induces nuclear
accumulation of poly(A) RNA (Pritchard et al., 1999). The
GLEBS domain sequesters Rae1 from binding to the wild type
Nup98 at NPCs. ORF10 does not disrupt the interaction between
Rae1 and Nup98; instead, it undermines the function of the
complex. Both studies support a role of Rae1 in mRNA export,
but the precise mechanism remains unknown. Cell fractionation
combined with RNA sequencing indicates that the ORF10
impact on mRNA export is not global. While a strong
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
correlation was found between RNA abundance and SOX-
mediated degradation (Gilbertson et al., 2018), such correlation
is not seen for ORF10-mediated export inhibition. It is possible
that the Rae1-Nup98 complex is utilized by a subset of mRNAs
for rapid exit of the nucleus. Without Rae1, this subset of
mRNAs can still exit the nucleus albeit less efficiently, which
can only be observed with careful kinetics studies.

Unlike SOX, we did not find viral transcript inhibition by
ORF10. Herpesviral lytic genes are expressed in a cascade order
and classified as immediate early, early and late genes. RNA
sequencing showed that in the absence of ORF10, the
transcription of late genes during KSHV lytic replication was
most impacted, resulting in reduced virion production (Gong
et al., 2016). This phenotype was recapitulated by the null
function ORF10 mutant lacking Rae1 interaction or by Rae1
expression knockdown during KSHV lytic replication. These
results indicate that ORF10 facilitates efficient viral late gene
expression through its Rae1 interaction. Nevertheless, how the
inhibition on nuclear mRNA export by ORF10 affects viral gene
transcription requires further investigations.
RAE1-NUP98: A POPULAR VIRAL TARGET

Gammaherpesviral ORF10 is not the only viral protein targeting
Rae1-Nup98. Vesicular stomatitis virus (VSV) and influenza A
virus (IAV) encode proteins that interact with Rae1 and
inhibit mRNA export (Faria et al., 2005; Satterly et al., 2007),
underscoring the importance of Rae1-Nup98 in viral replication.
Recently, ORF6 encoded by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) was found to interact with Rae1
(Gordon et al., 2020; Li et al., 2020), although the functional
consequence is unknown (Miorin et al., 2020). A structural study
suggests that the matrix (M) protein of VSV prevents Rae1 from
binding to the RNA phosphate backbone, blocking Rae1
function in mRNA export (Quan et al., 2014). MHV-68
ORF10 also binds to a similar interface between Rae1-Nup98
as VSVM (Feng et al., 2020), highlighting a vulnerable structural
aspect for viral exploitation. The C-terminal tail of MHV-68
ORF10 interacts with the RNA-binding groove of Rae1-Nup98
but on a different side from the M protein target. The binding of
VSV M or gammaherpesviral ORF10 is expected to disrupt the
RNA-binding ability of Rae1-Nup98. This prediction is true for
the M-Rae1-Nup98 complex but not the ORF10-Rae1-Nup98
complex (Feng et al., 2020). It appears that ORF10 provides an
alternative RNA-binding surface for the ORF10-Rae1-Nup98
complex. The IAV NS1 protein forms a complex with Rae1
and Tap-p15 heterodimer (Satterly et al., 2007) but currently no
structural information is available on its interaction with Rae1.
Embryonic fibroblasts from heterozygous knockout mice of Rae1
(Rae-/+) or Nup98 (Nup98-/+) or both (Rae-/+Nup98-/+) are more
susceptible to IAV-induced cell death but produced more virions
than the wild type cells (Satterly et al., 2007). This differs from
our Rae1 knockdown results that show Rae1 requirement for
efficient KSHV lytic replication (Gong et al., 2016). The likely
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explanation is that nuclear export of cellular genes is impacted
differently by the Rae1-Nup98 complex with a subset of genes
more dependent than others. mRNAs of several immune-related
genes have higher nuclear to cytoplasmic ratios in Nup98-/+ and
Rae-/+Nup98-/+ cells. Moreover, Nup98 is upregulated by
interferons, and treatment by interferons can overcome VSV
M-mediated inhibition on mRNA export (Enninga et al., 2002).
Certain cellular genes may require the Rae1-Nup98 complex for
exporting their mRNAs into the cytoplasm. Some of these Rae1-
dependent genes may encode antiviral proteins, which accounts
for the increased replication of IAV in the absence of fully
functional Rae1-Nup98. However, there could also be cellular
mRNAs that do not need Rae1 for export but recruit it for rapid
export under special conditions, such as stress (Izawa et al.,
2004). Through Rae1 interaction, ORF10 gains access to Rae1-
regulated mRNAs and inhibits their export to promote
viral replication.
CONCLUDING REMARKS

KSHV encodes SOX and ORF10, known to inhibit host gene
expression through distinct molecular mechanisms. SOX targets
viral transcript for degradation, resulting in reduced viral protein
expression, maintaining virion production with balanced
composition (Abernathy et al., 2014). In contrast, ORF10 does
not seem to impact nuclear export of viral mRNAs but is
required for efficient expression of viral proteins and virion
production (Gong et al., 2016). While SOX and ORF10 are
capable of inhibiting host gene expression, their functions
during gammaherpesvirus infection do not overlap. Moreover,
SOX and ORF10 have different timings of expression during
KSHV lytic replication; the former is an early gene and the latter
is a late gene (Arias et al., 2014). Does ORF37 coordinate with
ORF10 to down-regulate host gene expression for optimal viral
replication or does their inhibition on mRNA export serve
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
different purposes? Investigating the roles of ORF10 and
ORF37 in the context of infection combined with cell
fractionation and RNA sequencing will provide insight into
their impact on host gene expression. Additionally, the impact
of these two viral genes on the host proteome remained to be
determined. Due to the functional conservation of ORF10 and
ORF37 in KSHV and MHV-68, a combination of in vitro
molecular biology and in vivo infection model with MHV-68
will certainly provide a comprehensive overview of their
functions in viral pathogenesis. ORF10 interacts with Rae1 to
achieve export inhibition, yet Rae1 functions in RNA export is
still largely unclear. Therefore, ORF10 also serves as a valuable
tool to understand this cellular pathway that is targeted by
multiple viruses.
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