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Malaria/HIV-1 co-infection has become a significant public health problem in the tropics
where there is geographical overlap of the two diseases. It is well described that co-
infection impacts clinical progression of both diseases; however, less is known about the
impact of co-infection on disease transmission. Malaria transmission is dependent upon
multiple critical factors, one of which is the presence and viability of the sexual-stage
gametocyte. In this review, we summarize evidence surrounding gametocyte production
in Plasmodium falciparum and the development factors and the consequential impact that
HIV-1 has on malaria parasite transmission. Epidemiological and clinical evidence
surrounding anemia, immune dysregulation, and chemotherapy as it pertains to co-
infection and gametocyte transmission are reviewed. We discuss significant gaps in
understanding that are often due to the biological complexities of both diseases as well as
the lack of entomological data necessary to define transmission success. In particular, we
highlight special epidemiological populations, such as co-infected asymptomatic
gametocyte carriers, and the unique role these populations have in a future focused on
malaria elimination and eradication.
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INTRODUCTION

Over the past several decades, malaria/HIV-1 co-infection has become a significant global public
health problem in co-endemic areas of the world. The geographical overlap between both diseases
(Figures 1 and 2) combined with shared social determinants of health may explain the prevalence of
co-infection, especially in sub-Saharan Africa (SSA). The distribution of diseases throughout SSA
varies by country and localities, and can be explained by differing geographical, environmental, and
population behaviors. However, some severely affected countries in SSA have an HIV-1 prevalence
in adults above 10%, with more than 90% of the population exposed to malaria (World Health
Organization, 2004). Numerous models have tried to predict the impact that malaria/HIV-1 co-
infection has on incidence and mortality of each disease (Korenromp et al., 2005) but the biological
dynamics within and between the two diseases are highly complex.
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FIGURE 1 | Incidence of Malaria, 2019. The incidence of all malaria cases per 1,000 people at risk in 2019, extracted from the World Health Organization (WHO)
2020 World Malaria Report.
FIGURE 2 | People Living with HIV in Malaria Endemic Countries, 2019. The number of people living with HIV (per 1,000 population) in 2019 in malaria endemic
countries from the WHO 2020 World Malaria Report. The 2019 HIV data are extracted from the Joint United Nations Programme on HIV/AIDS (UNAIDS) AIDSinfo
data sheet. The 2019 country populations are extracted from the United Nations 2019 World Population Prospects.
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Data across epidemiologic populations of interest have
consistently shown HIV-1-mediated immune deficiency is
associated with higher prevalence of clinical malaria and
increased parasite density (Hewitt et al., 2006; Flateau et al.,
2011). A smaller number of studies have shown an impact of
malaria co-infection enabling the progression of HIV-1, as
measured by increased viral load in co-infected patients
compared to those who were not co-infected (Kublin et al.,
2005; Kiyingi et al., 2010). Critical factors associated with
parasite transmission such as host anemia and gametocyte
density are likely altered when the host is infected with HIV-1
as well. This review focuses on parasite and host factors that
influence malaria parasite transmission and highlights the efforts
being made to elucidate the impact that HIV-1 may have on
malaria transmission potential. Consequently, this review
acknowledges a substantial gap in research and understanding
as the world continues to combat these two major global
health priorities.
BACKGROUND

Overview of Malaria Parasite Transmission
Significant advances have been made in reducing the burden of
malaria through classic vector control, case detection and
treatment strategies; however, in an era focused on malaria
eradication, more attention is being diverted to reduction and
prevention of transmission. For all Plasmodium species,
transmission occurs when the female Anopheles mosquito
vector ingests both male and female gametocytes during a
blood meal from an infected host. While the physical act of
transmission seems simple, the molecular dynamics surrounding
successful transmission are complex. Specific developmental and
metabolic events must occur within the mammalian host before
mosquito infection can occur. Similarly, intricate physiological
events within the mosquito vector are necessary for onward
transmission to a new mammalian host.

Within the mammalian host, the parasite undergoes
gametocytogenesis in which the parasite differentiates between
asexual (associated with symptoms) and sexual (associated with
transmission) replication. Although numerous studies have
expanded upon foundational work by Bruce et al. (1990) to
explain the mechanisms of sexual commitment and
gametocytogenesis, the entirety of the process is not completely
understood. Josling et al. (2018) provides a recent review of the
significant progress in identification of molecular mechanisms
surrounding parasite sexual differentiation. Foundational and
novel studies have identified various factors that correlate with
an increase in gametocytogenesis. These include, but are not
limited to, host immunity (Smalley et al., 1981; Graves et al.,
1988; Motard et al., 1995; Buckling et al., 1999), regulation of the
key parasite genes GDV1 and AP2-G (Day et al., 1993; Eksi et al.,
2012; Brancucci et al., 2014; Coleman et al., 2014; Kafsack et al.,
2014; Filarsky et al., 2018; Josling et al., 2020), host lipid and
biomolecule biosynthesis and metabolism (Gulati et al., 2015;
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Brancucci et al., 2017; Tanaka et al., 2019; Tewari et al., 2020),
fluctuations in host hormone production (Trager and Gill, 1992;
Lingnau et al., 1993), and chemotherapy (Puta and Manyando,
1997; Robert et al., 2000; Tjitra et al., 2002; Hamel et al., 2005;
Elbasit et al., 2006; Schneider et al., 2006). Each of these triggers
may be altered in the context of a co-morbidity such as HIV-1.

Once sexual commitment occurs, individual developing
schizonts produce either all female or all male gametocytes
(Silvestrini et al., 2000; Smith et al., 2000). The quantitative
balance between male and female gametocytes is hypothesized to
contribute to the success of malaria parasite transmission (Mitri
et al., 2009). As reviewed by Henry et al. (2019) several host and
parasite factors can alter the gametocyte sex ratio and ultimately
impact transmission potential. Host factors include anemia and
erythropoiesis (Paul et al., 2000a; Reece et al., 2005; Sowunmi
et al., 2008; Sowunmi et al., 2009; Bousema et al., 2011), changing
immunity (Smalley and Brown, 1981; Reece et al., 2008; Reece
et al., 2009; Ramiro et al., 2011) and alterations in lipid profiles,
each of which are also factors associated with HIV-1 as discussed
below. Parasite factors include parasite density and gametocyte
density (Robert et al., 2003; Talman et al., 2004; Schneider et al.,
2007; Mitri et al., 2009), as well as parasite diversity and
competition (Taylor et al., 1997; Reece et al., 2008; Babiker
et al., 2008; Bousema et al., 2008; Sowunmi et al., 2009; Vardo-
Zalik and Schall, 2009).

Very few studies have extensively and/or thoroughly included
gametocyte and mosquito infectivity data. Successful
transmission occurs only after complete gametocyte
maturation in the host is followed by complete parasite
fertilization and development in the mosquito vector. Results
from Muirhead-Thompson (Muirhead-Thomson, 1954)
cautioned investigators that concluding infectivity/
transmissibility solely by gametocyte count may be misleading,
and encouraged combining gametocyte data with oocyst or
sporozoite enumeration data from mosquito feeding. The
presence of one or more oocysts in the midgut is sufficient for
transmission success.

Other Factors That Influence Transmission
While numerous factors have the potential to influence malaria
parasite transmission, immunogenetics and fluctuations in
immune responses are widely studied topics. It is well
described that in malaria-endemic regions, including SSA,
residents are likely to have innate genetic adaptations and
acquired resistance to malaria (Kwiatkowski, 2005). In 2010,
Lawaly et al. reviewed the role that many of these human genetic
factors play in transmission and highlighted genetic associations
with asymptomatic gametocyte carriers (Lawaly et al., 2010).

A study in an endemic region in West Africa showed the
ability to clear chloroquine-resistant parasites was most strongly
associated with age, hematocrit, and ethnic background (Djimde
et al., 2003; Kamya et al., 2006). Patients over four years of age
had a dramatic increase in the ability to clear parasites,
suggesting repeated exposure to malaria is a dominant factor
in acquired immunity (Djimde et al., 2003). Age as a surrogate
for acquired protective immunity against asexual parasites
April 2021 | Volume 11 | Article 656938
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densities is supported by numerous other studies (Rogerson
et al., 2010). A cross-sectional study in Burkina Faso revealed
that the prevalence of gametocyte-positive carriers decreased
with age. However, this study also revealed that the median
proportion of gametocytes relative to asexual parasites increased
with age (Ouedraogo et al., 2010). These findings suggest that
adults, especially those with acquired immunity and
asymptomatic infections, may be important infectious reservoirs.

In many of the regions where malaria is endemic, co-
infections with other neglected tropical diseases (NTDs) and
non-NTDs such as HIV-1 and tuberculosis are common. Due to
the intense pressure on the host immune system to control
malaria parasite infection, any immune disruption from a
competing infection could adversely affect clinical outcomes
and gametocyte production/clearance. Amongst NTDs,
polyparasitism with Plasmodium spp. provides a minor
protective role (Nacher et al., 2000) but more often increases
severe complications as well as prevalence, density, and
infectivity of asexual parasites and gametocytes (Nacher et al.,
2001; Noland et al., 2007; Nacher, 2011; Ateba-Ngoa et al., 2016;
Moriyasu et al., 2018). Additionally, while many studies seek to
explain how malaria impacts HIV-1 disease progression and
HIV-1 transmission [reviewed in (Flateau et al., 2011)], fewer
studies have been designed to evaluate the converse.
HIV IMPACTS ON MALARIA
PARASITE TRANSMISSION

The impacts/effects of HIV-1 infection on malaria parasite
transmission are often defined as direct or indirect, with the
former being very difficult to identify due to the complexities of
both diseases (Figure 3). An increase in parasitemia or parasite
biomass is the most cited association with malaria/HIV-1 co-
infection, but the direct relation to gametocytemia or
transmission potential is often suggestive or speculative
(Whitworth et al., 2000; Patnaik et al., 2005; Abu-Raddad
et al., 2006; Laufer et al., 2006; Onyenekwe et al., 2007; Van
Geertruyden et al., 2008). There have been various in vivo and
epidemiological studies that seek to further explain the impact of
HIV-1 on gametocytogenesis and gametocytemia, but most
studies detail only indirect effects. Interesting data from a
study of asymptomatic malaria among individuals who were
either HIV-1 negative or positive suggests that HIV-1 positive
individuals have a greater risk of carrying gametocytes than HIV-
1 negative individuals (Stiffler et al., 2020). This study is the first
of its kind designed to evaluate the epidemiological impact of
HIV-1 co-infection on the prevalence of asymptomatic
gametocytemia in the field.

Although there have been advances in humanized mouse
models and non-human primate models for HIV-1 and malaria
co-infection studies (reviewed in (Hatziioannou and Evans,
2012; Vaughan et al., 2012; Beignon et al., 2014)), there has
been little research conducted in the laboratory to directly
investigate co-infection and parasite transmission. In 2009,
Koehler et al. described a non-human primate model for co-
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infection, but the study was not intended to provide any direct
evidence related to malaria parasite transmission. In 2011, Trott
et al. designed a study to evaluate effects of simian
immunodeficiency virus (SIV) co-infection on malaria parasite
transmission in a non-human primate model (Trott et al., 2011).
The study modeled an underlying immunodeficiency virus
infection prior to a subsequent malaria parasite infection by
inoculating rhesus macaques with SIV followed by inoculation of
Plasmodium fragile, approximately 28 days later. Results from
the study showed that co-infection was associated with a
significantly increased risk of malaria parasite transmission and
that SIV had a direct enhancing effect on parasitemia,
gametocytemia and mosquito infectivity (Trott et al., 2011).
The P. fragile model resembles human P. falciparum infections
especially in the context of severe disease and parasite
sequestration (Craig et al., 2012). Additional factors may have
contributed to an indirect effect on increased transmission, such as
immune regulation and reduced hematocrit levels. Additionally,
it is difficult to extrapolate this acutely infected animal model
with the more typical chronically infected situation in humans in
malaria endemic areas.

Host Factors Affected by HIV That Could
Perpetuate Malaria Parasite Transmission
To date, no clinical studies have looked directly at parasite
transmission in HIV-1-infected patients. However, patients
with progressive HIV-1 disease are known to have a number
of disease-related sequelae, including immune deficiency, anemia
and alterations of lipid profiles. Further, HIV-1-positive patients
are commonly prescribed antiretroviral and antifolate
medications. Numerous physiologic changes that occur during
HIV-1 infection independently are known to affect malaria
parasite transmission, some positively and some negatively.
Here we present data from a variety of studies suggesting that
HIV-1-infected patients are at increased risk of being reservoirs
for malaria parasite transmission.

Immune Status
A review by Troye-Blomberg (1994) highlighted the importance
of both cell-mediated and humoral immunity to asexual blood
stages of malaria. A later study by Goodier et al. found that
gametocytes activate a CD4+ T-cell response (Goodier and
Targett, 1997). More recent reviews have confirmed these early
findings, affirming that T-cells and cytokines suppress
gametocyte burden and decrease infectivity to mosquito
vectors (Kengne-Ouafo et al., 2019). When a host mounts a
humoral immune response against gametocyte-specific antigens,
the antibodies produced are taken up during a mosquito blood
meal, and these have been shown to inhibit fertilization and/or
parasite development (anti-gamete immunity) with a
concomitant decrease in mosquito infection (Bousema and
Drakeley, 2011; Stone et al., 2018; Kengne-Ouafo et al., 2019).

These immunologic findings have been supported by
field data on malaria parasite transmission. A study in Gambia
found that the absence of high fever and of high parasite
densities were independent risk factors for gametocytemia
April 2021 | Volume 11 | Article 656938
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FIGURE 3 | Malaria Life Cycle and Selected Factors Influencing Malaria Parasite Transmission and Suggested Impact During HIV-1 Malaria Co-infection. Example of
selected factors that are known to be associated with malaria parasite transmission and the suggested impact (determined using Decision Matrix, Supplementary
Figure 1.) with HIV-1 and/or malaria/HIV-1 co-infection. Suggestive impact is used due to the lack of available statistical evidence and the difficulty in ascertaining the
biological relationship between malaria/HIV-1 co-infection and malaria parasite transmission success. Strong Direct Impact means that there is evidence, which
includes mosquito transmission data, to suggest that HIV-1 malaria co-infection directly alters gametocyte conversion (GC), gametocyte development (GD), or
mosquito infectivity (MI). Direct Impact means there is evidence, sans mosquito data, to suggest that HIV-1 malaria co-infection directly alters GC, GD, or MI. Indirect
impact means there is evidence to suggest that HIV-1 or HIV-1 malaria co-infection indirectly alters factors that influence GC, GD, or MI. Possible Impact means
there is evidence to suggest that HIV-1 or HIV-1 malaria co-infection may alter factors associated with GC, GD, or MI. Unknown Impact means there is currently not
enough evidence to suggest that HIV-1 or HIV-1 malaria co-infection directly or indirectly alter GC, GD, MI, or the factors associated with GC, GD, or MI. The left
table (gray, “Gametocyte Conversion”) represents selected transmission factors that pertain to the gametocytogenesis and gametocyte commitment. The center
table (red, “Gametocyte Development”) represents selected transmission factors that pertain to the sexual stage development. The right table (green, “Mosquito
Infectivity”) represents selected factors that may influence infectivity to mosquitoes and subsequent mosquito transmission success. In the middle is a representation
of the life cycle of Plasmodium falciparum (adapted from NIAID/NIH, 2016, https://www.niaid.nih.gov/diseases-conditions/malaria-parasite) representing the exo-
erythrocytic (liver) cycle, erythrocytic cycle (bloodstream), and sexual stage (gametocyte) development in the host, and the sporogonic cycle in the mosquito.
1Brancucci et al., 2017; 2Tanaka et al., 2019; 3Orikiiriza et al., 2017; 4Drobnik et al., 2003; 5Belury et al., 2003; 6Bowman et al., 2019; 7Whitworth et al., 2000;
8Patnaik et al., 2005; 9Abu-Raddad et al., 2006; 10Laufer et al., 2006; 11Onyenekwe et al., 2007; 12Van Geertruyden et al., 2008; 13Stiffler et al., 2020; 14Trott et al.,
2011; 15Koehler et al., 2009; 16Okonkwo et al., 2016; 17Mbale et al., 2016; 18Graves et al., 1988; 19Nassir et al., 2005; 20Lingnau et al., 1993; 21Bousema et al.,
2011; 22Belperio and Rhew, 2004; 23Eksi et al., 2012; 24Brancucci et al., 2014; 25Josling et al., 2020; 26Coleman et al., 2014; 27Kafsack et al., 2014; 28Filarsky
et al., 2018; 29Hobbs et al., 2013; 30Azevedo et al., 2019; 31Buckling et al., 1999; 32Elbasit et al., 2006; 33Ittiravivongs et al., 1984; 34Josling et al., 2018; 35Sandison
et al., 2011; 36Puta and Manyando, 1997; 37Schneider et al., 2006; 38Barnes et al., 2008; 39Bouyou Akotet et al., 2018; 40Sowunmi et al., 2008; 41Quintero et al.,
2011; 42Nacher et al., 2002; 43Tay et al., 2015; 44Sanyaolu et al., 2013; 45Okekchukwu et al., 2018; 46Van Geertruyden et al., 2009; 47Stone et al., 2018; 48Kamya
et al., 2006; 49Schneider et al., 2007; 50Babiker et al., 2008; 51Djimde et al., 2003; 52Rogerson et al., 2010; 53Tadesse et al., 2018; 54Wargo et al., 2007;
55Tukwasibwe et al., 2014; 56Gulati et al., 2015; 57Birku et al., 2002; 58Oesterholt et al., 2009; 59Torrevillas et al., 2020; 60Paul et al., 2000b; 61Robert et al., 2000;
62Hogh et al., 1998; 63Beavogui et al., 2010; 64Kone et al., 2010; 65Kakuru et al., 2013; 66Kamya et al., 2007; 67Mermin et al., 2006.
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(von Seidlein et al., 2001). The authors hypothesized that fever
and high parasite densities in those with a history of infection
represented acute infection with an active immune response.
Lack of an acute infection could prevent gametocyte exposure to
important damaging elements of the immune system, such as
inflammatory cytokines (von Seidlein et al., 2001). A more recent
study in Ghana identified relatively lower prevalence of
gametocytemia in patients with fever (Dinko et al., 2018). In
vitro findings demonstrated that increased levels of cytokines
(including TNF-a and IFN-g) correlated with a lack of
gametocyte infection of the mosquito vector (Naotunne et al.,
1993). These data suggested that patients with clinical malaria
may be less likely to develop gametocytemia, or to serve as good
reservoirs for transmission.

Effects of immune deficiency were studied by Koehler et al. in
a rhesus macaque model of SIV-P. cynomolgi co-infection
(Koehler et al., 2009). They found significant effects of co-
infection on the immune response to malaria parasite
infection, including a more rapid depletion of CD4+ T-cells,
a failure to generate an appropriate CD4+ T-cell response
to parasitemia, and decreased proliferative B-cell response
(anti-parasite IgG) (Koehler et al., 2009). This study did not
directly examine effects on transmission to mosquitoes, but
the data provided convincing evidence that co-infection
impacts the production of key immunological factors that
control gametocytemia.

The inability of an HIV-infected host to mount a robust
immune response against malaria infection is expected based on
the depletion of CD4+ T cells during HIV-1 infection. Several
clinical studies suggest a relationship between the severity of
immune deficiency, specifically decreased CD4+ T-cell counts
and repressed cytokine synthesis, and worsening malarial
disease. A long-term study in Uganda followed nearly 500
HIV-positive participants and controls over an eight-year
period to determine the frequency of clinical malaria. The
immune deficiencies of the HIV-1-positive patients were
categorized according to the WHO hierarchical classification of
CD4+ T-cell count. Results showed a positive association
between increasing immunosuppression and increasing
parasitemia. Further, the odds of having clinical malaria were
six times higher in patients with CD4+ T-cell counts less than
200/ml as compared to those with counts higher than 500/ml
(Whitworth et al., 2000). A second large cohort study explored
the effects of HIV-1 co-infection on the outcomes of cerebral
malaria in children, finding that children without HIV-1 had
substantially increased levels of TNF-a and ICAM-1 during their
clinical malaria episodes. Despite the varied inflammatory
responses, time to parasite clearance was similar in HIV-1-
infected and -uninfected groups (Mbale et al., 2016). A third
study by Laufer et al. investigated the impact of HIV-1-associated
immunosuppression on malaria in patients in Malawi (Laufer
et al., 2006). The study showed that parasite density in
symptomatic clinical infection was inversely related to CD4+
T-cell count, a relationship that was not seen in patients with
asymptomatic infections. In contrast, a cross-sectional study in
Nigeria observed that the prevalence of asymptomatic malaria
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
parasitemia in children under five was significantly higher
in HIV-1 co-infected children, was highest among HIV-1
co-infected children who were severely immunosuppressed and
was significantly associated with declining CD4+ T-cell counts
(Okonkwo et al., 2016). Each of these studies failed to measure
gametocytemia specifically, but given our current understanding
of the importance of T-cells and cytokines in immunity to
asexual parasites, it is possible that a similar association exists
between decreasing CD4+ T-cell counts and blunted cytokine
responses in HIV-infected patients and increasing
gametocytemia. However, special consideration should be
given to asymptomatic malaria carriers as they represent a
unique and challenging demographic due to partial protective
immunity acquired with age and exposure in endemic areas.

Hematocrit Levels
Malaria is known to cause anemia by multiple mechanisms,
including destruction of infected erythrocytes, antibody-
mediated bystander erythrocyte lysis, and impaired
erythropoiesis (Quintero et al., 2011). A large study by Nacher
et al. examined host factors influencing P. falciparum gametocyte
carriage and found that hemoglobin concentrations (as a
measure for anemia) were negatively correlated with peak
gametocyte counts and gametocyte carriage duration (Nacher
et al., 2002). This association between gametocytemia and
anemia has been reported in other studies (Price et al., 1999;
Stepniewska et al., 2008; Dinko et al., 2018), suggesting that
anemia, and thus perhaps tissue hypoxia, stimulates P.
falciparum gametocytogenesis. A large Nigerian study of 1125
children attempted to discern the mechanism by which anemia
influences gametocyte development and found the proportion of
male to female gametocytes in anemic children was nearly two-
fold higher than in non-anemic children. The authors suggested
that anemia may prolong the half-life of male gametocytes and
potentially their survival in circulation (Sowunmi et al., 2008).

Possible mechanisms by which anemia triggers gametocyte
development are well reviewed by Bousema and Drakeley (2011).
Anemia in a host is associated with increases in both relative and
absolute levels of the immature red blood cells called
reticulocytes. Reticulocytes have high RNA content and
increased hemoglobin synthesis and are stimulated by the
glycoprotein cytokine erythropoietin (EPO). EPO has been
implicated as a stimulant for gametocyte formation in P.
chabaudi and P. vinckei (Reece et al., 2005) and is thought to
influence gametocyte sex allocation (Paul et al., 2000b). These
conditions in an anemic host are postulated to be ideal for
gametocyte development (Bousema and Drakeley, 2011), but
cause-and-effect between reticulocytemia and gametocyte levels
has not been elucidated.

Anemia is also a common clinical finding in HIV-1 infection,
with prevalence up to 95% depending on patient factors such as
stage of HIV-1 disease, sex, age, and pregnancy status (Belperio
and Rhew, 2004). Because anemia is not unique to either disease,
determining the effect of HIV-1-related anemia on malaria
parasite transmission is challenging. Trott et al. examined the
effects of immunodeficiency virus infection on malaria parasite
April 2021 | Volume 11 | Article 656938
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transmission using SIV/P. fragile co-infection in rhesus
macaques. These authors found an increase in the percentage
of gametocytes during the initial drop in hematocrit in both
parasite- infected and co-infected animals (Trott et al., 2011).
The mechanism by which anemia in these animals induced
gametocytemia is unclear, but these data suggested that
immunodeficiency virus-induced anemia could be associated
with higher risk of malaria parasite transmission.

Data from epidemiologic field studies examining this
association are difficult to interpret, as most studies fail to
associate the prevalence of anemia with increased risk of
parasite transmission beyond measures of gametocytemia. Tay
et al. studied 400 HIV-1 seropositive patients with and without
malaria co-infection and found an overall anemia prevalence of
67%, with a prevalence of nearly 94% in HIV-malaria co-infected
patients (Tay et al., 2015). A second study found median
hemoglobin levels were lower in HIV-1 positive patients with
positive malaria blood smears than HIV-1 positive patients
without malaria (Sanyaolu et al., 2013). In pregnant women in
Nigeria, low hemoglobin levels were correlated with malaria/
HIV-1 co-infection, but not with decreasing CD4+ T-cell counts
(Okechukwu et al., 2018). Only one study in Zambia found HIV-
1-infection, not CD4+ T-cell count, to be an independent risk
factor for a longer duration of anemia in co-infected patients
(Van Geertruyden et al., 2009). These studies clearly demonstrate
that anemia is prevalent in co-infected patients but did not
provide data to support that anemia in HIV-1-infected patients is
a significant risk factor for increased malaria parasite
transmission specifically. Additionally, it is difficult to discern
if the primary etiology of anemia in these patients is HIV-1
infection or malaria, given that anemia is common in both
diseases as well as other NTDs prevalent in these settings.
More studies in co-infected patients are needed to determine if
data from co-infected animal models are reproducible
in humans.

Lipid Profiles
A recent in vitro study by Brancucci et al. (2017) concluded that
levels of host-derived lipids, specifically lysophosphatidylcholine
(LysoPC), could act as an environmental stimulus for P.
falciparum gametocyte differentiation. Specifically, Plasmodium
parasites use LysoPC for phosphatidylcholine (PC) biosynthesis
and the resultant depletion of LysoPC leads to dramatic
induction of gametocytogenesis (Brancucci et al., 2017). This
association between the host lipid profile and gametocytogenesis
is clinically relevant given that systemic LysoPC levels are altered
throughout the course of a malaria infection. The most common
fluctuations are often associated with the host immune response
to disease progression and parasitemia (Drobnik et al., 2003;
Orikiiriza et al., 2017). A study on lipid profiles in HIV-1
infection demonstrated increased levels of LysoPC in HIV-1-
positive patients pre- and post-antiretroviral therapy (ART)
compared to HIV-1-negative patients (Belury et al., 2017). A
recent study by Bowman et al. showed that the concentration and
fatty acid composition of LysoPC differed between HIV-1-
positive and HIV-1-negative patients. Although there were no
significant differences between serum concentrations of total
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
LysoPC, the species of LysoPCs showed differential
enrichment. In particular, LysoPCs containing saturated fatty
acids (SaFAs) were enriched, while LysoPCs containing
polyunsaturated fatty acids (PUFAs) were reduced in HIV-1-
positive patients. SaFA-enriched LysoPCs were also associated
with immune activation in HIV-1-positive patients, consistent
with elevated serum levels of interleukin-6 (IL-6) and markers of
monocyte activation (Bowman et al., 2019). Understanding the
clinical relevance of these observations is in the early stages, but
alterations in lipid profiles of HIV-1-infected patients could
influence gametocyte production and transmission to
mosquito vectors.
Impact of Therapeutic Agents
Antifolates
In populations most affected by malaria and HIV-1 co-infection,
use of ART and antifolate prophylaxis are important to consider
when discussing host factors that impact malaria parasite
transmission. Excellent laboratory studies suggested direct
effects of various antiretroviral agents, particularly cysteine
protease inhibitors, on gametocytogenesis and malaria parasite
transmission, which have been recently reviewed (Azevedo et al.,
2019). Antifolate drugs, however, have been used both as
primary antimalarial agents (e.g., Sulfadoxine-Pyrimethamine
or SP) and as antibiotics adjuncts to ART (e.g., trimethoprim-
sulfamethoxazole or TMP-SMX) for the prevention of
opportunistic infections in HIV-positive patients.

Two early studies in the 1970’s failed to show an effect of
TMP-SMX on gametocytemia, though both studies were limited
by a small sample of patients (Wilkinson et al., 1973; Hansford
and Hoyland, 1982). Research interest has grown dramatically
over the last several decades and has revealed that SP
monotherapy may increase gametocytemia in the early stages
of treatment (Puta and Manyando, 1997; Schneider et al., 2006;
Barnes et al., 2008), but long-term TMP-SMX therapy could
decrease parasite burden and transmission (Mermin et al., 2006;
Kamya et al., 2007; Hobbs et al., 2012; Hobbs et al., 2013).

Early studies in the 1980’s began to associate growing
resistance of P. falciparum to the use of SP (Ponnampalam,
1982; Kupferschmidt et al., 1988), though these data conflicted
with a small study which failed to find a stimulating effect of SP
on gametocytogenesis (Ittiravivongs et al., 1984). In 1997, a study
by Puta and Manyando (1997) measured gametocytemia in
patients treated with SP or chloroquine and found a significant
difference between the two treatment groups. In 2006, Schneider
et al. (2006) convincingly showed the risk of gametocyte carriage
and density in Kenyan children with falciparum malaria was
significantly higher in patients treated with SP monotherapy
compared to those treated with combination SP and artesunate
(AS) therapy. Further, gametocyte prevalence and density
decreased over time in patients with SP+AS therapy but not in
SP-treated children.

These studies suggested increasing levels of P. falciparum
resistance to SP, that was confirmed by Barnes et al. (2008) in
2008. These authors conducted three therapeutic efficacy studies
in P. falciparum-infected patients treated with SP over the course
April 2021 | Volume 11 | Article 656938

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Roberds et al. HIV-1 Impact on Malaria Transmission
of five years. Notable findings included a significant increase in
post-treatment gametocytemia with most significant increases in
gametocyte positivity rates between days 14 and 21 of treatment.
Over the course of the study, the mean maximum gametocyte
density in patients increased seven-fold from 2000 to 2002, and
this was attributed to a rapidly increasing frequency of Pfdhfr/
dhps mutations, encoding SP resistance. Oesterhalt et al.
(Oesterholt et al., 2009) showed a relationship between
submicroscopic gametocytemia and the presence of Pfdhfr
mutations in areas of East Africa that previously reported
adequate response to SP treatment. These growing resistance
patterns lead to the institution of artemisinin-based therapy as
the primary treatment in 2006 (Gregson and Plowe, 2005; Amin
et al., 2007), though SP is still prescribed for intermittent
preventive treatment in pregnancy (WHO) and as prophylaxis
for HIV-1-associated opportunistic infections in malaria
endemic areas.

While SP monotherapy has been associated with increased
risk of gametocytemia, subsequent infectivity to mosquitoes
surrounding these observations has been inconclusive (Hogh
et al., 1998; Buckling et al., 1999; Robert et al., 2000; Schneider
et al., 2006; Beavogui et al., 2010; Kone et al., 2010). In particular,
TMP-SMX prophylaxis has been shown to reduce the risk of
parasite transmission in malaria/HIV-1 co-infection. Hobbs et al.
in 2012 (Hobbs et al., 2012) showed that TMP-SMX treatment of
mice infected with Plasmodium berghei or Plasmodium yoelii
significantly reduced liver stage parasite burden and peripheral
parasitemia. These data were foundational for a second study by
Hobbs et al. in 2013 (Hobbs et al., 2013) focusing on the effect of
ART and antifolates on two key aspects of parasite transmission -
gametocyte burden and mosquito infectivity. In this study,
strains of P. falciparum were exposed to TMP-SMX at
concentrations equivalent to those in HIV-positive patients
receiving prophylactic treatment. Unmetabolized TMP-SMX
did not significantly reduce gametocyte viability or inhibit
gametocyte exflagellation in vitro, but did reduce oocyst
infection in mosquitoes. These findings suggested the
possibility that TMP-SMX might impact mosquito infectivity
directly, thus, potentially reducing transmission.

In HIV-1-malaria co-infected patients, numerous clinical
studies have suggested that antifolate treatment has an
inhibitory effect on parasite transmission. A large cohort study
of 300 HIV-1-infected children in Uganda showed that TMP/
SMX treatment and provision of insecticide-treated bed nets
reduced malaria incidence by 97%, despite geographically high
levels of antifolate resistance (Kamya et al., 2007). Similar effects
were seen in a cohort study of over 1000 Ugandan adults,
showing that TMP-SMX treatment led to an incidence of 9
clinical episodes of malaria per 100 person years compared to a
baseline incidence of 50.8 clinical episodes per 100 person years
(Mermin et al., 2006). TMP-SMX prophylaxis also showed
promising effects in HIV-1 exposed infants, reducing malaria
incidence by 39% relative to HIV-1-exposed infants who did not
continue therapy (Sandison et al., 2011).

A particularly intriguing study by Mermin et al. in 2005
(Mermin et al., 2005) examined a large sample of HIV-infected
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patients and their HIV-1-negative family members and found
that TMP-SMX prophylaxis in HIV-1-positive patients
significantly reduced malaria disease burden in HIV-1-negative
family members. While reductions in malaria-associated
morbidity , infect ion rates , and hospital izat ion are
unquestionably multifactorial, it is possible that antifolates are
directly anti-parasitic. Further, although the study did not report
malaria incidence for HIV-1-positive individuals, it could
reasonably be surmised that malaria was prevalent in the HIV-
1-population given the known increased risk of malaria in HIV-
1-positive patients. Future studies similar in design but targeted
at HIV-1-malaria co-infected patients and including mosquito
infectivity studies, could further support a direct impact of
antifolate therapy on malaria parasite transmission.

Malaria Treatment Failure
Malaria treatment failure, as defined by clinical failure,
parasitological failure, or recrudescence, is a significant
problem for efforts to mitigate clinical infection and control
parasite burden. Though this issue is multi-faceted,
encompassing vector biology, innate host immunity, drug
resistance, and environmental considerations, this scope of
challenges now extends to the impact of HIV-1 on parasite
clearance, including clearance remediated by antimalarial
treatment. Birku et al. (2002) investigated the effect of
artemisinin on clearance of P. falciparum in patients with and
without HIV-1 co-infection. Their data showed increased time
for parasite clearance and inability to entirely clear parasitemia
within a designated treatment period. Further, mean parasite
density was 12-fold higher in HIV-1 seropositive patients than in
seronegative controls. A second large retrospective study of 1965
patients in Uganda revealed similar findings, showing patients
with HIV-1 co-infection had a greater than 3-fold increased risk
of antimalarial treatment failure. Molecular analysis of these
treatment failures indicated these failures were due to new
infections rather than recrudescence (Kamya et al., 2006). In a
large cohort study of Ugandan children, Kakuru et al. (2013)
studied how different HIV-1 treatments and prophylaxis affected
gametocytemia in children and found that dihydroartemisinin-
piperaquine (DP) and TMP-SMX treatment were associated with
an increased risk both of any gametocytemia and of failed
gametocyte clearance during malaria follow-up. Additional
studies have shown that many of the antimalarials
recommended globally have little to no effect on gametocytes
and may allow gametocytes to persist for more than 1 month
after successful clearance of asexual parasites (Bousema et al.,
2006; Bousema et al., 2010). Beyond the clinical challenges of
treatment failure, an inability to control parasitemia and
gametocytemia may make HIV-1-infected patients an
enhanced reservoir for transmission.

Population of Special Interest:
Asymptomatic Individuals
The presence of gametocytes in a human host has not been
associated with any distinct clinical findings. Gametocytes can be
detected in acutely symptomatic malaria patients as well as
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asymptomatic carriers, especially in endemic areas where multiple
infections are common and clinical immunity develops during
childhood. Asymptomatic infections pose a unique threat to
malaria control as they represent a large reservoir of hosts capable
of unknowingly harboring and transmitting parasites. Recent
evidence (based on hypotheses from the early 1900s) indicates
that many asymptomatic individuals harbor gametocytes at such
low densities that they are not often detected by microscopy
[reviewed in (Nassir et al., 2005; Babiker et al., 2008)].
Associations between asymptomatic infections with low parasite/
gametocyte density and mosquito infectivity vary significantly in
relation to parasite genetic diversity (complexity of infection), drug
resistance, and host immunity/chronicity of infection (Wargo et al.,
2007; Bousema and Drakeley, 2011; Tukwasibwe et al., 2014).

At this time, the prevalence of HIV-1 co-infected asymptomatics
has not been fully described due to the difficulty in ascertaining
asymptomatic malaria patients. Two large studies of adults in Africa
showed conflicting results in overall prevalence of asymptomatic
parasitemia, with HIV-1 positive patients showing significantly
lower prevalence of asymptomatic parasitemia than HIV-1
negative controls. HIV-1 positive patients not using TMP-SMX
prophylaxis had an increased risk of parasitemia, suggesting that
antifolates reduce parasitemia (Bouyou Akotet et al., 2018; Kamau
et al., 2020). These findings were proposed to result from an
increased tendency of HIV-1 positive patients to seek medical
care and use prophylactic measures (Bouyou Akotet et al., 2018).
A cross-sectional study in Kenya revealed that more than 60% of
malaria asymptomatic adults seeking HIV-1 testing in the Kisumu
region are positive for malaria [submitted manuscript, Kifude, C.
et al., 2021], but significant differences by HIV-1 status have not
emerged. Recent evidence from Kamau et al. revealed that
asymptomatic malaria infections were significantly associated with
abnormal hematological outcomes in people living with HIV
(Kamau et al., 2020).

Contrary to parasitemia data above, asymptomatic individuals
infected with HIV-1 have been shown to have a significantly higher
risk of being gametocyte positive, and with a higher relative
gametocyte density, compared to HIV-1-negative individuals
(Stiffler et al., 2020). Further, HIV-1 co-infection is associated
with significant differences in P. falciparum dhfr and dhps
haplotypes in the same patient population, suggesting that HIV-1
co-infection could impact the spread of drug resistance (Torrevillas
et al., 2020). These observations are concerning in the context of
transmission reduction, especially considering the high prevalence
of asymptomatics in varying endemnicities (Alves et al., 2005;
Bousema et al., 2014; Sattabongkot et al., 2018; Tadesse et al.,
2018) and areas with seasonal transmission. As reviewed by Babiker
et al. (2008), asymptomatic gametocyte carriers are a likely source of
seasonal epidemics as they harbor gametocytes throughout
transmission-free seasons until the vector returns (Babiker et al.,
1998; Nassir et al., 2005).

CONCLUSIONS

Although the current evidence is suggestive, the bidirectional impact
of co-infection on the clinical progression of both diseases suggests
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
that HIV-1/malaria co-infection may be a catalyst for increased
parasite transmission. In order to elucidate how contributing co-
infection factors, define malaria parasite transmission success,
combined clinical and entomological studies must be undertaken.
Importantly, the nature of the entomological studies depends on the
question(s) to be answered. For example, if the question is whether
circulating gametocytes are intrinsically infectious, the study design
may include replacing serum from a volunteer blood sample with
non-immune serum to eliminate circulating host factors that could
obscure intrinsic infectivity of gametocytes to exposed mosquitoes.
If, on the other hand, the question is whether a volunteer is
infectious based on their current clinical or treatment status,
direct mosquito feeding on whole blood would be preferable to
account for circulating host factors and therapeutics that could
impact parasite development in themosquito host. Given that many
of the intrinsic and extrinsic host factors noted above, some of
which can fluctuate on a very short timescale, can affect
gametocytogenesis and gametocytemia, and that mean gametocyte
circulation time in the periphery is 3.4-6.4 days (Bousema and
Drakeley, 2011), matched clinical samples collected at or very close
to the time of mosquito feeding are essential to directly correlate
volunteer clinical status to mosquito infection success. Even with the
best coordination, however, infection of mosquitoes after direct skin
feeding on infected falciparum gametocyte-positive volunteers is far
from uniform; the average success rate of mosquito infection from a
2012 survey of 930 feeding experiments in a variety of endemic
settings was 62% (Bousema et al., 2012). Accordingly, longitudinal
studies have particular value in that volunteers can be re-tested over
time, perhaps multiple times per month for several months, to track
both clinical and treatment profiles with mosquito infection success.
Each volunteer, therefore, can provide both control (baseline) and
temporal data on host factor correlates with mosquito infectivity. In
this context, special consideration should be made to further
understand the impact of asymptomatic gametocyte carriers,
the duration and intensity of gametocyte carriage, the presence
of HIV-1 co-infection and the potential effects of HIV-1 and
malaria chemotherapies on experimental parasite transmission to
competent mosquito vector species.

From a public health perspective, asymptomatic Plasmodium-
infected individuals remain one of the biggest threats to malaria
control and eradication programs. If HIV-1 co-infected individuals
have increased prevalence, frequency, duration and/or intensity of
gametocytemia, they are unwittingly and unintentionally more
infectious reservoirs of parasite transmission for the rest of their
community. As such, these individuals represent an ideal target for
additional therapies in conjunction with ART for the protection of
public health and for malaria elimination and eradication.
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