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Plasmid-Chromosome Crosstalk

in Staphylococcus aureus: A
Horizontally Acquired Transcription
Regulator Controls Polysaccharide
Intercellular Adhesin-Mediated
Biofilm Formation

Gabriella Marincola"*, Greta Jaschkowitz'", Ann-Katrin Kieninger'?, Freya D.R. Wencker’,
Andrea T. FeBler?, Stefan Schwarz? and Wilma Ziebuhr™*

7 Institute of Molecular Infection Biology, University of Wirzburg, Wiirzburg, Germany, 2 Centre for Infection Medicine,
Institute of Microbiology and Epizootics, Free University of Berlin, Berlin, Germany

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal
complex CC398 typically carry various antimicrobial resistance genes, many of them
located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified
plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene
cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated
biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica
locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon
and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm
gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another
S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on
the molecular background of the biofilm-negative phenotype of pAFS11-carrying
S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active.
However, transcription of both plasmid- and core genome-derived icaADBC operons
were efficiently suppressed involving IcaR. Surprisingly, although being different on the
amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and
are able to interact with the icaA promoter region of the other copy. We speculate that this
regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data
shed light on an unexpected regulatory interplay between pre-existing and newly acquired
DNA traits in S. aureus. This also raises interesting general questions regarding functional
consequences of gene transfer events and their putative implications for the adaptation
and evolution of bacterial pathogens.

Keywords: Staphylococcus aureus, biofilm regulation, PlA/ica, IcaR, horizontal gene transfer,
plasmid-chromosome crosstalk
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INTRODUCTION

Staphylococcus aureus is a common human and animal
pathogen, causing a wide range of clinical manifestations
(Tong et al., 2015; Ballhausen et al., 2017). Due to the
capability to readily acquire many different resistance genes,
S. aureus and other staphylococcal species are regarded as
pathogens of concern for public health (Foster, 2017; Lakhundi
and Zhang, 2018). Thus, methicillin-resistant S. aureus (MRSA)
and coagulase-negative staphylococci (MR-CoNS) are among the
most common causes of healthcare-associated infections (Lee
et al., 2018a; Becker et al., 2020). In this respect, the ability to
form biofilms on the inert surfaces of medical devices is
considered as important pathomechanism that contributed to
the establishment of staphylococci as notorious nosocomial
pathogens (Heilmann et al., 2019; Becker et al., 2020; Schilcher
and Horswill, 2020). Biofilms are understood as bacterial
communities that adhere to surfaces by encasing into a self-
produced extracellular polymeric matrix (Costerton et al., 1999).
The staphylococcal biofilm matrix may contain
exopolysaccharides (Heilmann et al., 1996) and proteins
(Rohde et al., 2005) as well as extracellular (¢)DNA (Qin et al,,
2007) [for a recent review see reference (Schilcher and Horswill,
2020)]. The key exopolysaccharide component of staphylococcal
biofilms is PIA (polysaccharide intercellular adhesin), a beta-1,6
linked N-acetyl glucosaminoglycan, whose synthesis enzymes are
encoded by the ica (intercellular adhesin) locus [recently
reviewed in (Nguyen et al., 2020)]. PIA/ica was originally
discovered in Staphylococcus epidermidis and was later also
detected in S. aureus and other staphylococcal species
(Heilmann et al.,, 1996; Mack et al.,, 1996; Cramton et al,,
1999). Interestingly, ica locus homologs also exist in
phylogenetically unrelated bacteria such as Escherichia coli
(Wang et al., 2004), suggesting an eminent role of the factor in
the evolution of bacterial biofilm functions. In these organisms,
PIA is also often referred to as PNAG (poly-1,6-N-
acetylglucosamine). The staphylococcal ica locus consists of
two divergently oriented transcription units, one comprising
the icaADBC operon (encoding the enzymes required for PIA
synthesis) and the other harboring icaR which codes for a
transcription factor of the TetR family (Figure 1A). IcaR, for
which the crystal structure was solved, binds to a region
upstream of icaA and represents a potent repressor of
icaADBC operon transcription (Conlon et al., 2002a; Jefferson
et al., 2004; Jeng et al., 2008). Regulation of the ica locus is highly
complex and a plethora of environmental cues are known to
influence PIA production many of which either directly or
indirectly influencing icaR transcription (Conlon et al., 2002b;
Cerca et al., 2008; Fey and Olson, 2010; Cue et al., 2012; Hoang
et al., 2019; Nguyen et al., 2020). Expression of icaR is further
controlled post-transcriptionally through RNA-mediated
mechanisms that influence stability and translation of the
icaR mRNA, with direct consequences for PIA production and
biofilm formation (Ruiz de los Mozos et al., 2013; Rochat et al.,
2018; Bronesky et al., 2019; Lerch et al,, 2019; Schoenfelder et al.,
2019). While nearly all S. aureus genomes carry the ica locus,

distribution of the gene cluster among S. epidermidis and other
CoNS species is more diverse and often associated with distinct
clonal lineages (Kozitskaya et al., 2005; Conlan et al., 2012;
Thomas et al., 2014; Méric et al., 2015; Méric et al.,, 2018; Lee
et al.,, 2018b; Espadinha et al., 2019). The ica locus is usually
located in the bacterial chromosomal DNA in all staphylococcal
species. Previously, however, we detected an ica gene cluster of
unknown genetic origin on plasmid pAFS11 in the bovine MRSA
isolate S. aureus Rd11 (Felller et al., 2017). S. aureus Rd11 is a
livestock-associated (LA)-MRSA strain of sequence type ST398,
a clonal lineage known for its potential to carry a broad range of
both common and novel antibiotic resistance genes, many of
which located on plasmids (Kadlec et al., 2012; Fefiler et al.,
2018). On pAFSI11, antimicrobial and heavy metal resistance
genes were found to be co-localized with a novel ica gene cluster.
The ica locus on pAFS11 differed both on nucleotide and protein
levels from the copy in the S. aureus Rd11 chromosome, and
initial analyses (i.e. BLAST searches against the entire non-
redundant sequence collections at NCBI) suggested that the
plasmid-borne ica locus might have its origin in the CoNS
species Staphylococcus sciuri [recently re-classified as
Mammaliicoccus sciuri (Madhaiyan et al., 2020)] (Fefiler et al.,
2017). The mosaic structure of pAFS11 further suggests that the
plasmid arose by a series of recombination events and was
acquired by S. aureus Rd11 through horizontal gene transfer
(HGT). As a result, S. aureus Rd11 carries two ica loci.
Surprisingly, however, the strain did not produce biofilm when
tested in standard tissue culture plate assays. Also,
transformation of the pAFSI11 plasmid into another S. aureus
strain did not prompt biofilm formation, but even slightly
reduced it (Fefller et al., 2017). In this study, we address the
molecular mechanism underlying the biofilm-negative
phenotype of pAFS11-bearing S. aureus. We identified an
unexpected IcaR-mediated regulatory crosstalk between the
plasmid-borne and chromosomally encoded ica loci, resulting
in downregulation of biofilm formation. We discuss these
findings in the context of co-evolution of virulence and
resistance traits and raise the question of how genes newly
acquired by HGT might become integrated into the regulatory
network of host bacteria.

MATERIALS AND METHODS

Sequence Alignments and Data Base
Searches

Alignments of the nucleotide sequences of ica loci as well as
that of amino acid sequences of Ica proteins from different
species were performed with CLUSTAL Omega multiple
sequence alignments (https://www.ebi.ac.uk/Tools/msa/
clustalo) (Madeira et al., 2019). Average distance between the
ica loci and pairwise alignments were calculated with the aid of
Jalview (Waterhouse et al., 2009). Strains and sequences
included into the analyses comprised S. epidermidis RP62A
(accession no. NC_002976), S. epidermidis O-47 (accession no.
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FIGURE 1 | Conservation of pAFS11 ica locus. (A) TOP: schematic view of the organization of the ica locus including the IcaR tetramer and its function as
repressor of transcription. BOTTOM: average distances between the ica loci of S. epidermidis O-47, S. epidermidis RP62A, S. aureus RN4220, S. aureus
lineage ST398, S. sciuri NS1 and plasmid pAFS11. (B) Pairwise Alignment shown as percentage identity of nucleotide positions between the ica loci of pAFS11
vs. NS1, pAFS11 vs. RN4220 and RN4220 vs. RP62A. (C) Pairwise Alignment shown as percentage identity of amino acid residues between the Ica proteins of
RN4220 vs. pAFS11 and RN4220 vs. RP62A. (D) Multiple sequence alignment of IcaR protein from pAFS11, RN4220, RP62A and O-47. Conservation is
visualized as a histogram and a score is given for each column: conserved residues are indicated by ', and columns with residues, where all properties are
conserved are marked with ‘+’. Putative icaA operon- interacting residues on IcaR in S. epidermidis are marked with a red triangle on top of the sequence (Jeng
et al., 2008). All comparisons shown in (A-D) were calculated with the aid of Jalview (Waterhouse et al., 2009) from CLUSTAL Omega multiple sequence

alignments (Madeira et al., 2019).
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CP040883), S. aureus ST398 (accession no. AM990992.1),
S. aureus RN4220 (accession no. AFGU01000118.1), S. sciuri
NS1 (accession no. LDTK01000031.1) and plasmid pAFS11
(accession no. FN806789.3). Data base queries with nucleotide
and protein sequences were performed using the Basic Local
Alignment Search Tool available at the National Center for

Biotechnology Information (NCBI) (https://blast.ncbi.nlm.nih.
gov/Blast.cgi).

Plasmid and Strain Construction
Strains, plasmids and oligonucleotides used for this work are
listed in Tables 1 and 2, respectively.
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TABLE 1 | Strains and plasmids.

Description Reference
Strains
E. coli
DC10B E. coli for plasmid transformation into staphylococci (Monk et al., 2012)
S. aureus
RN4220 Restriction-deficient S. aureus strain (Nair et al., 2011)
Rd11 LA-MRSA carrying pAFS11 plasmid (FeBler et al., 2017)
N2 RN4220 transformed with pAFS11 (FeBler et al., 2017)
GAM20 RN4220 transformed with pGM10 (picapar) This work
GAM28 RN4220 transformed with pGM11 (picapar_AicaRar) This work
AK18 RN4220 transformed with pAK17 This work
GAMB30 RN4220 Aica This work
GAM33 GAMBO0 (RN4220 Aica) transformed with pGM10 (picapar) This work
GAMB35 GAMB3O0 (RN4220 Aica) transformed with pGM11 (picapar_AicaR) This work
GAM42 GAMBO0 (RN4220 Aica) transformed with pGM12 (picagrn) This work
GAM44 GAMBO0 (RN4220 Aica) transformed with pGM13 (picagn_AicaR) This work
GAM46 GAMBO0 (RN4220 Aica) transformed with pGM14 (picapn_AicaR_icaRar) This work
GAM49 GAMB0 (RN4220 Aica) transformed with pGM15 (picapar_AicaR_icaRgn) This work
GAM57 GAMB3O0 (RN4220 Aica) transformed with pGM16 (picapara- This work
GAM59 GAMBO0 (RN4220 Aica) transformed with pGM17 (picapara-_AicaR) This work
GAMB1 GAMB3O0 (RN4220 Aica) transformed with pGM18 (picapara-_AicaR_icaRrn) This work
GAMB3 GAMBO0 (RN4220 Aica) transformed with pGM19 (picapar@-) This work
GAMB5 GAMB3O0 (RN4220 Aica) transformed with pGM20 (picapare-_AicaR) This work
GAMB7 GAMB3O0 (RN4220 Aica) transformed with pGM21 (picapare-_AicaR_icaRpn) This work
Others
RPG2A S. epidermidis biofilm positive reference strain (Gill et al., 2005)
TM300 S. carnosus biofilm negative reference strain (Que et al., 2005)
Plasmids
pAFS11 Original plasmid isolated from Rd11 (FeBler et al., 2017)
icaADBC mutant construction
pPBASE6 Suicide mutagenesis vector (Geiger et al., 2012)
pAK17 PBASE carrying icary flanking region for ica deletion This work
ica complementation
pRB473 Staphylococcal shuttle vector (Brlckner et al., 1993)
pGM10 pRB473 with ica operon from pAFS11 (icapar) This work
pGM11 pRB473 with icapar_AicaR This work
pGM12 pRB473 with ica operon from RN4220 (icarn) This work
pGM13 pRB473 with icagn_AicaR This work
pGM14 pRB473 with icagn_AicaR_icaRar (“crosstalk plasmid”) This work
pGM15 pRB473 with icapar_AicaR_icaRpy (“crosstalk plasmid”) This work
pGM16 pRB473 with icapar with palindrome A mutated (icapara-) This work
pGM17 pRB473 with icapara-_AicaR This work
pGM18 pRB473 with icapara—_AicaR_icaRpn This work
pGM19 pRB473 with icapar with palindrome B mutated (icaparg-) This work
pGM20 pRB473 with icapar@-_AicaR This work
pGM21 pRB473 with icaparg-—_AicaR_icaRrn This work

“* symbolized mutated palindromes.

Construction of a Markerless icaADBC Mutant

The markerless ica mutant was obtained via allelic replacement
with inducible counter-selection using the pBASE6 shuttle vector
(Bae and Schneewind, 2006; Geiger et al., 2012). pPBASE6 vector
was linearized using primers SLIC_pBASE_R and
SLIC_pBASE_F. Total deletion was achieved by overlapping
PCR using as template gDNA from RN4220 with primers
Flank_A_SLIC together with Flank_A_rev and Flank_B_rev
together with Flank_B_SLIC. The amplicon was introduced
into the linearized pBASE6 vector using the in vivo E. coli
cloning (iVEC) method (Nozaki and Niki, 2019). The resulting
plasmid (pAK17) was transformed into the restriction-deficient
strain RN4220. Mutagenesis was performed as described
elsewhere (Bae and Schneewind, 2006). The deletion was

verified by PCR with oligonucleotides spanning the
deletion region.

Construction of Complementation Plasmids

All plasmids were created following the iVEC method (Nozaki
and Niki, 2019). As iVEC turned out to be more efficient in the
presence of buffer, the ligation buffer from the QuickLigationTM
Kit (NEB, #M2200S) was added to the reactions. Sanger
sequencing was used to verify accuracy of all plasmids. To
create plasmids pGM10 and pGMI2, the ica s and icary
operons were amplified from pAFS11 and RN4220,
respectively, and introduced in the linearized pRB473. Deletion
of icaR coding regions from plasmids pGM10 and pGM12
(resulting in plasmids pGMI11 and pGM13, respectively) was
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TABLE 2 | Oligonucleotides.

Purpose

aRT-PCR
gyr

icaARN
icaApAF
icaF?pA;:

ica deletion mutant
pAK17

Deletion Confirmation

Complementation plasmids
pGM10

pGM12

pGM11

pGM13

pGM14

pGM15

pGM16/pGM17/pGM18

pGM19/0GM20/pGM21

Template

RN4220

PBASE6

PRB473
PAFS11

PRB473
RN4220

pGM10

pPGM12

PAFS11
pGM212
RN4220

pGM10

PGM10/pGM11/pGM15

PGM10/pGM11/pGM15

Name

GMO027
GM028
GM020
GMO021
GMO16
GMO17
GMO018
GMO019

Flank_A_SLIC
Flank_A_rev
Flank_B_rev
Flank_B_SLIC
SLIC_pBASE_R
SLIC_pBASE_F
GM176

GM177

SLIC_pRB473_R
SLIC_pRB473_F
GM154
SLIC_icaCSc_R
SLIC_pRB473_R
SLIC_pRB473_F
GM178

GM179

GM156

GM155

GM157
pRB473_MCS_F
GM182

GM183

GM157
pRB473_MCS_F
GM186

GM187

GM184

GM185

GM196

GM197

GM198

GM199

GM202

GM201

GM157
pRB473_MCS_F
GM203

GM204

GM157
pRB473_MCS_F

Sequence

ACGGATAATTATGGTGCTGGGC
TGCAAACCTCTCTCTGAAGTCG
AACAGAGGTAAAGCCAACGC
ATGGTGCATCTTGATCAACG
ATTTGATGTGTGTCGATGCAG
TCCCTGTTACTGCTCCGATTG
ATGTTTGTATACGGATGGCTTT
ATCAGCGTTTGACTGATTCG

GATCTGTCGACGATAACAGATACTATTGGAGATACT
ATTGGCATTGGTAAATCATGACATAGGCGCTT
ATGATTTACCAATGCCAATGGGAGTGGGACA
GCATGCAAGCTTGATAGGAACACCACATAATGGTA
TATCGTCGACAGATCTGCGCG
TCAAGCTTGCATGCCTGCAGAA
TTGCTAAAACAATACCAACAATA
AAGGTAATCATGACAATATGAT

GTCGACTCTAGAGGATCCCCGG
CTGCAGGCATGCAAGCTTGGATTCT
CTTGCATGCCTGCAGACAGAAGACTCCTTTTTGTT
TCCTCTAGAGTCGACGAAGATAAACATTACCTATA
GTCGACTCTAGAGGATCCCCGG
CTGCAGGCATGCAAGCTTGGATTCT
CTTGCATGCCTGCAGATCACATAGGCGCTTATCAAT
TCCTCTAGAGTCGACTACGAAGTTTAAATGTGCAAT
GAGGCAAATGAAGATAATTCATAAAAACCTATAATGA
GGTTTTTATGAATTATCTTCATTTGCCTCCTTTACTA
AGGCAGTTATTGGTGCCCTTAAACG
CGTTTAAGGGCACCAATAACTGCCT
GTAGGGGGTTATAAAAATTTTTGTTACTAGTTTGTAATA
AAACTAGTAACAAAAATTTTTATAACCCCCTACTGAAAATTA
AGGCAGTTATTGGTGCCCTTAAACG
CGTTTAAGGGCACCAATAACTGCCT
GTAGGGGGTTATAAAAAGTGAATAATACATCTGAGAAACTC
ACAAACTAGTAACAAAAATTATGAATTATCAGCGTTTGACT
TTTTTATAACCCCCTACTGAAAATTAA
TTTTTGTTACTAGTTTGTAATAATTAA
AGTAAAGGAGGCAAATGAATTGAAGGATAAGATTATTGATA
TGTCATTATAGGTTTTTATTTCTTCAAAAATATATTTAGT
AAACCTATAATGACACGCCATA
TTCATTTGCCTCCTTTACTACCTATGAATA
ATAGTATATCtaaaagtAAGAAAAAGGCAATGCGTTA
acttttaGATATACTATTTTTACAAACTACCG
AGGCAGTTATTGGTGCCCTTAAACG
CGTTTAAGGGCACCAATAACTGCCT
aagcaatGGGAGAAAATTATGAAAATTTTATTA
TTTTCTCCCattgcttCGGTAGTTTGTAAAAATAGTA
AGGCAGTTATTGGTGCCCTTAAACG
CGTTTAAGGGCACCAATAACTGCCT

achieved by overlapping PCRs which amplified the respective
vectors in two fragments that overlapped in the icaR deletion and
multiple cloning site regions. Of note, this approach left putative
icaR 5" and 3’ untranslated regions (UTRs) intact which might be
involved in post-transcriptional regulation of icaR. icaRysr was
amplified from pAFS11 and introduced in the linearized pGM12,
resulting in plasmid pGM14. icaRgx was amplified from RN4220
and introduced in the linearized pGM10, resulting in plasmid
pGM15. The vectors containing mutated sequences which alter
the palindromes (pGM16 to pGM21) were generated by PCR

site-directed mutagenesis amplifying the original vectors (see
Table 2 for details) in two fragments that overlapped in the
region containing the mutated palindrome and in the multiple
cloning site region. In Table 2, the mutated palindrome
sequences are shown as lower-case characters in the
primer sequences.

Preparation of Total RNA and qRT-PCR

Total RNA of bacteria was isolated as described previously
(Lerch et al, 2019). Briefly, RNA was precipitated with 1x
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volume isopropanol (Sigma-Aldrich, #19516) for 10 minutes at
room temperature. Pelleted RNA was washed with 70 % ethanol
and solved in RNase-free double-distilled water (ddH,O). The
transcript abundance of icaAap, icaR,ar and icaAgy from three
independent experiments was determined by real-time qRT-
PCR. Thus, 5 pg of each RNA sample was treated with DNasel
(Thermofisher, #AM2235) for 45 min at 37°C and the reaction
was stopped by phenol/chloroform/isoamylalcohol extraction
(25:24:1, Carl Roth GmbH, #X985.2) with the aid of PLG
heavy tubes (5 Prime, #2302830). RNA was precipitated
overnight at -20°C with 4.67x volume ethanol/3M sodium
acetate pH 6.5 (Thermofisher, #AM9740) (30:1 mix). Pelleted
RNA was washed with 70% ethanol, dissolved in 30 pl RNase-
free ddH,0 and diluted 1:10. To check for efficiency of DNA
digestion, a PCR was set up with the same amount of RNA (1 ul
of 1:10) and same primers used for qRT-PCR. One-step qRT-
PCR was performed using an amplification kit with SYBR Green
(Power SYBR™, Green RNA-to-CT " 1-Step Kit; Thermofisher,
# 4389986) with the primers listed in Table 2 and run on Biorad
CFX according to the manufacturer’s instructions. Transcript
abundance was calculated using a logarithmic dilution series of
one sample to generate a standard curve for each gene. Relative
quantification of the genes of interest was expressed in relation to
the expression of the constitutive reference gene gyrase B (gyrB).
The means were calculated from three biological replicates run in
technical duplicates. Statistical analysis was performed using
one-way ANOVA by employing the GraphPad Prism
software package.

Biofilm Assay

Biofilm formation was tested on 96-well, polystyrene tissue
culture plates (Greiner Bio-One, # 655180) as described
previously (Christensen et al., 1985), using TrypticaseTM Soy
Broth (BD BBL™, #211768) supplemented with 4% NaCl as
growth medium. S. epidermidis RP62A and S. carnosus TM300
were used as positive and negative controls, respectively. For
strains carrying resistance genes, antimicrobial agents were used
at the following concentrations: 25 pg ml™" erythromycin (for
both overnight and day culture) and 30 ug ml™* (for overnight
culture) or 10 pg ml™" (for day culture) chloramphenicol.
Bacterial overnight cultures were freshly diluted to ODgqy of
0.05 and 200 pl filled in each well (two technical replicates per
strain). To distinguish between total, protein and PIA matrix-
mediated biofilm production, three tissue culture plates were set
up in parallel and incubated at 30°C for 18 h. Cultures were then
discarded and adherent cells washed twice with 1x PBS buffer.
The control plate for measuring the total biofilm was dried and
heat-fixed at 65°C for 1 h. To discern between PIA- and protein-
mediated biofilm, biofilms were either treated with 1 mg ml™"
proteinase K (Merck, #1245680500) for 4 h at 37°C or 40 mM
NalO, (Carl Roth GmbH, #2603.1) for 24 h at 4°C. Afterwards
the plates were washed with 1x PBS, dried and heat-fixed. All
three plates were stained with 10 mg ml™" crystal violet (Merck,
#115940) for 2 min, washed twice with double-distilled water
before measuring the absorbance at 492 nm (ELISA plate reader,
Multiskan Ascent). The means were calculated from three
biological replicates. Statistical analysis was performed using

one-way ANOVA by employing the GraphPad Prism
software package.

RESULTS

The Two ica Locus Copies in S. aureus
Rd11 Are of Different Genetic Origin

We previously reported that database searches against the
entire non-redundant nucleotide collection at NCBI
(including whole-genome shotgun contigs) returned
similarities of pAFS11 to an ica-like gene cluster present in
some S. sciuri isolates [now M. sciuri (Madhaiyan et al., 2020)]
(FeBller et al., 2017). Of note, the putative ica locus on pAFS11
was found to differ on nucleotide level from ica sequences
present in S. aureus and S. epidermidis (Fefiler et al., 2017). For
further phylogenetic analysis, we therefore performed multiple
sequence alignments of icaR/icaADBC nucleotide sequences
from two S. aureus (i.e. RN4220 and ST398, to which Rd11
belongs) and two S. epidermidis (i.e. RP62A and O-47) strains
as well as from the pAFS11 ica locus (referred to as icapap
hereafter). Finally, based on the nucleotide BLAST query
results, an ica-like locus from the CoNS species S. sciuri was
included into the analysis as well. Average distances were
calculated from the alignment data and the tree displayed in
Figure 1A illustrates that ica, sy is most distantly related to the
two S. aureus-derived ica loci. In addition, the two ica loci from
S. epidermidis are highly divergent from ica,p, while they are
closer related to ica from S. aureus. Interestingly, however, the
ica, op nucleotide sequence is closely related to the ica-like locus
from S. sciuri strain NS1 (Figures 1A, B). The data suggest that
the two ica loci present in Rd11 are of different genetic origin,
with ica,,r most likely being derived from another species for
which S. sciuri (M. sciuri) is a putative candidate. Although, as
expected, interspecies conservation on the nucleotide level was
found to be low (Figure 1B), the icap,r genes translate into
amino acid sequences that are identified by the BLASTP
algorithm as Ica-associated proteins with (again) some
sequence differences between species. Thus, Figure 1C shows
the percentage of identical amino acid positions upon pairwise
alignments of Ica proteins from icapap, S. aureus RN4220 and
S. epidermidis RP62A. While comparisons between RN4220
and RP62A revealed high conservation of S. aureus and
S. epidermidis Ica proteins, identical amino acid positions
were much lower between icapap and S. aureus-derived Ica
proteins. In this respect, IcaR was the protein with the lowest
conservation (29%), indicating that the two IcaR repressor
proteins harbored by S. aureus Rd11 differ significantly on
the protein sequence level (Figure 1C). Despite this apparent
divergence, IcaR,r exhibits a number of amino acid residues
(marked by asterisks in the conservation histogram in Figure
1D) that are highly conserved in IcaR proteins of S. aureus and
S. epidermidis as well (Figure 1D). These include the putative
icaA operator-interacting residues shown for IcaR
S. epidermidis (Jeng et al., 2008) (marked with red triangles
on top of the sequence in Figure 1D).
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Plasmid pAFS11 Has a Negative Effect on

S. aureus PIA-Mediated Biofilm Formation

As mentioned above, we previously reported that S. aureus Rd11
carrying pAFS11 does not produce biofilm, nor does S. aureus
RN4220 into which the plasmid was transformed, suggesting
that ica, o on the plasmid might be inactive (Fefler et al., 2017).
To challenge this hypothesis, we cloned the entire ica,r from
pAFSI11 onto the shuttle vector pRB473 (resulting in plasmid
pica,ap) to enable ready genetic manipulation of the locus. As a
first step, we deleted the icaR,sr coding region from the vector,
yielding plasmid pica,sr_AicaR. Both plasmids (with or without
icaR,y) were transformed into S. aureus RN4220 as recipient
strain and biofilm assays were performed with the constructs
and corresponding wild types (Figure 2). The biofilm assays
allow to detect total biofilm formation as well as to differentiate
between PIA and protein matrix-mediated biofilm production
(see material and methods for details). We display here (and in
the following figures) solely the data for PIA-mediated biofilm
formation (Figures 2-5). The entire data sets on total, protein
and PIA biofilm formation can be found in Supplementary
Figure S1. The assays confirmed the PIA biofilm-negative
phenotype of S. aureus Rd11 and revealed that the S. aureus
RN4220 wild type is a weak, but detectable PIA biofilm
producer. Upon acquisition of pAFS11, PIA biofilm formation
of RN4220 did not increase, but on the contrary was even slightly
reduced, although this reduction was statistically not significant
(+pAFS11, Figure 2). The same phenomenon occurred when
S. aureus RN4220 was transformed with plasmid picapap,
carrying the entire icapap locus from pAFSI1 (+pica,ap,

PIA Biofilm Formation

% % %k %k

icaR S. aureus
icaADBC S. aureus
icaR pAFS11
icaADBC pAFS11

>pHe

AbS4920m

absent genes

RN4220

FIGURE 2 | Effect of pAFS11 on PIA biofim formation. Analysis of PIA biofim
production by static 96-well microtiter plate biofim assays of Rd11, RN4220
and RN4220 transformed with plasmid pAFS11 or with a plasmid carrying the
whole ica operon from pAFS11 (+picapar) or with icaR deletion
(+picapar_AicaR). RP62A served as positive control, TM300 as negative
control. The means were calculated from three biological replicates run in
duplicates. The ica genes distinctive for each strain are depicted as symbols,
with filed symbols indicating presence and empty symbols indicating absence
of a given gene (as indicated in the legend). The entire data sets on total,
protein and PIA biofilm formation can be found in Supplementary Figure
S1. Statistical analysis was performed using one-way ANOVA by employing
the GraphPad Prism software package. ns: P = 0.1234; ***P < 0.0001.

Figure 2). In contrast, however, PIA biofilm formation of
RN4220 massively increased when the icaR,,r gene was
deleted from the ica,ap copy on the vector (+pica,sp_AicaR,
Figure 2). In the S. aureus RN4220 +pica,sp_AicaR strain, PIA
biofilm levels even exceeded that of the S. epidermidis RP62A
positive control and were much higher than in the RN4220
wild type, suggesting that the ica,or copy on the vector
contributes to PIA production, but only when the IcaR,ar
repressor is absent. We conclude from this that pAFS11 may
exert its negative effect on S. aureus PIA biofilm formation most
likely via IcaR,sr which also seems to negatively influence the
ica locus on the RN4220 chromosome (hereinafter referred to
as icapy)-

The ica Locus on pAFS11 Is Inactive Due
to Efficient IcaR Repression

The data obtained so far strongly suggest that the ica,sr locus is
functional and capable to enable PIA synthesis. However, by our
initial experimental set-up (i.e. by employing the S. aureus
RN4220 wild type with an intact chromosomal icagy locus) it
was difficult to distinguish between icapap- and icagy-derived
PIA production. Therefore, we constructed a markerless icagy
deletion mutant in RN4220 via allelic replacement, and
transformed the resulting RN4220 Aica strain with plasmids
pAFS11, picapar and picapap_AicaR. Biofilm assays with the
constructs confirmed loss of PIA production in the RN4220 Aica
deletion mutant (Figure 3A). Providing the mutant with an
entire ica,r locus either on plasmid pAFS11 or pica,r did not
result in biofilm formation (Figure 3A). However, biofilm
formation was triggered and highly significantly increased,
when the icaR,ap repressor-encoding gene was deleted from
the ica,ap locus (+pica,sr_AicaR, Figure 3A), indicating that the
icaADBCyap genes of icapap are indeed able to mediate PIA
biofilm formation, once IcaR,,p-dependent repression is
alleviated. To further corroborate this assumption, we
monitored transcription of icaA,ar and icaR,ar by qRT-PCR
in the various constructs. In strain RN4220 Aica, transformed
with either pAFS11 or picapap, weak icaApap transcription was
detectable (Figure 3B). Upon deletion of icaRyar from the
plasmid (+pica,ap_AicaR, Figure 3B), icaR,,p transcription
was no longer detectable (as expected) and icaA,ar
transcription levels massively increased (i.e. 200-fold)
compared to the intact icapap copy (+picapar, Figure 3B).
These findings are in agreement with the biofilm test results.
From the combined data we conclude that (i) the ica,r locus on
pAFS11 is functionally fully intact and (ii) icaADBC,,sr operon
transcription is efficiently repressed by its cognate
IcaR,Ar repressor.

IcaR From pAFS11 Represses the ica
Locus in the S. aureus Chromosomal DNA
and vice versa

Our initial experiments with wild type S. aureus RN4220
indicated that IcaR, s may also inhibit icaADBCry expression
on the RN4220 chromosome (Figure 2). To substantiate this
hypothesis, we constructed another set of plasmids carrying (i)
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the ica locus from RN4220 (picary), (ii) the ica locus from
RN4220 lacking icaRgyn (picagn_AicaRpy) and (iii) the ica locus
from RN4220 where we exchanged icaRgy from RN4220 with
icaRyar from pAFS11 (picarn_AicaRpn_icaRpar). All plasmids
were transformed into the RN4220 Aica mutant background and
the resulting strains were analyzed for their ability to form PIA
biofilm (Figure 4A). Complementation of RN4220 Aica with its
own icagy locus restored PIA-mediated biofilm formation, and
upon icaRgy repressor gene deletion, PIA biofilm production
significantly increased, demonstrating functionality of the
vector-borne icarn locus, including icaRpy-mediated
regulation (Figure 4A). Accordingly, qRT-PCR analysis
confirmed that IcaRpy efficiently represses transcription of its
cognate icaADBCry operon (Figure 4B). We then asked the
question whether or not expression of the chromosomal
icaADBCry operon can undergo control by the foreign
IcaRpap repressor from pAFS11. Thus, we performed biofilm
tests and quantitative transcription analyses with vector
picarn_AicaR_icaRpp, in which icaADBCgy was combined
with the icaR,sr gene from pAFS11. As shown in Figure 4,
presence of icaR,ap significantly diminished PIA production
and transcription of the icaADBCry operon, suggesting the
capability of IcaRpar to control the icaADBCry copy from
RN4220 (Figure 4). Vice versa, we next investigated, if IcaRpyn
from RN4220 can influence icaADBCpar from pAFSI11. For
this purpose, we additionally constructed vector picapsr_A
icaRyap_icaRgn which was transformed into the RN4220 Aica
mutant background. Biofilm testing revealed a highly significant
reduction of PIA production when icaADBC,,zr Was combined
with icaRgry, suggesting that IcaR from S. aureus RN4220 is
indeed able to repress the icaADBC,sr genes from pAFSI11
(Figure 4C).

ica gene transcription
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FIGURE 3 | The ica genes of pAFS11 lead to biofim formation. (A) Analysis of PIA biofilm production by static 96-well microtiter plate biofilm assays of strain
RN4220 wild type and Aica alone or complemented with plasmid pAFS11 or with a plasmid carrying the whole ica operon from pAFS11 (+picapar) or with icaR
deletion (+picapar_AicaR). RP62A served as positive control, TM300 as negative control. The entire data sets on total, protein and PIA biofilm formation can be found
in Supplementary Figure S1. (B) Quantification of icaApar and icaRpar transcripts by gRT-PCR of strains from (A). The graph displays relative mRNA amounts
using gyrB expression as reference. (A, B) The ica genes distinctive for each strain are depicted as symbols, with filled symbols indicating presence and empty
symbols indicating absence of a given gene (as indicated in the legend). The means were calculated from three biological replicates run in duplicates. Statistical
analysis was performed using one-way ANOVA by employing the GraphPad Prism software package. ns: P = 0.1234; ***P < 0.0001.

A Palindrome Sequence in the icaApar
Upstream Region Is Required for IcaR-
Mediated Biofilm Repression

The data obtained so far demonstrate that the pAFSI1- and
RN4220-derived IcaR repressors, which differ on amino acid
level (Figure 1D), are able to control the icaADBC operon of the
respective other ica locus copy. To understand the molecular
prerequisites for the IcaR interactions with their DNA targets, we
focused on the nucleotide sequence constraints known to be
involved in IcaR binding. IcaR was previously shown to bind as
a dimer to a specific palindrome sequence (ACCTANCTNNC/
GNNAGNTAGGT) present in the icaA operator of S. epidermidis
(Jeng et al., 2008). This palindrome is 22 nucleotides long and
contains six mismatches (22,6) (Figure 5A, top). Of note, the
sequence is highly conserved and is also present in the S. aureus
icaA promoter region (Figure 5A, top). Surprisingly, although IcaR
from S. aureus is clearly able to control PIA production from
PAES11, the S. aureus-like palindrome sequence stretch lacks in
icapar (Figure 5A, bottom). Instead, the icaA oy upstream region
displays two other palindromes which differ at the nucleotide
level from that of the known S. aureus/S. epidermidis recognition
site. Thus, palindrome A (TNAAAATNNTA/TANNATTTTNA)
is 22 nucleotides long and harbors six mismatches (22,6),
while palindrome B (CNAACNANC/GNTNGTTNG) consists of
18 nucleotides with six mismatches (18,6) (Figure 5A, bottom).
To investigate the putative involvement of these palindromes
in IcaR function, we mutated either palindrome A or B in (i) a
plasmid carrying the whole icapp, (ii) in an ica,r plasmid with
an icaR,r deletion as well as (iii) in an icaR,sp deletion vector
complemented with icaRry. The plasmids were again transformed
into the RN4220 Aica mutant background and analyzed
for PIA-mediated biofilm formation. Figure 5B demonstrates
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FIGURE 4 | IcaR,ar controls expression of ica genes from RN4220 and vice versa. (A) Analysis of PIA biofim production by static 96-well microtiter plate biofilm
assays of strain RN4220 wild type and Aica alone or complemented with a plasmid carrying the ica operon of RN4220 (+picagry) or with icaR deletion
(+picagn_AicaR) or with icaRar instead of icaRgy (+picarpn_AicaR_icaRyar). The entire data sets on total, protein and PIA biofilm formation can be found in
Supplementary Figure S1. (B) Quantification of icaArn and icaRyar transcripts by gRT-PCR of complemented strains from (A). The graph displays relative mRNA
amounts using gyrB expression as reference. (C) Analysis of PIA biofim production by static 96-well microtiter plate biofilm assays of RN4220 wild type and Aica
alone or complemented with the ica operon of plasmid pAFS11 on a working plasmid (+picapar) or the ica operon of plasmid pAFS11 with icaR deletion
(+picapar_AicaR) or with icaRpy instead of icaRpar (+picapar_AicaR_icaRgy). (A, C) RP62A served as positive control, TM300 as negative control. (A=C) The ica
genes distinctive for each strain are depicted as symbols, with filled symbols indicating presence and empty symbols indicating absence of a given gene (as
indicated in the legend). The means were calculated from three biological replicates run in duplicates. Statistical analysis was performed using one-way ANOVA by
employing the GraphPad Prism software package. ns: P = 0.1234; *P = 0.0332; “**P < 0.0001.

that an altered palindrome A sequence did not influence
icaR-mediated biofilm control. Thus, upon palindrome A
mutation, PIA-mediated biofilm production remained repressed
in picapapases, indicating that IcaR,sr does not require this
nucleotide sequence stretch for action. As expected, PIA
production was derepressed when icaR,,p was lacking in the
palindrome A mutant (+picapapaxn_AicaR, Figure 5B). Most
importantly, however, icaRgy was still able to completely
downregulate PIA-mediated biofilm production in this
construct, confirming that palindrome A is not an interaction
site for IcaR, neither for IcaR proteins derived from pAFS11 nor
from RN4220 (Figure 5B). In contrast, mutation of palindrome
B had a profound impact on biofilm regulation by IcaR. Firstly,
PIA production was found to be deregulated and increased in

an icapap construct carrying an altered palindrome B nucleotide
sequence (+picapappe*s)), suggesting that control by the cognate
IcaR, 5 is significantly impaired when integrity of this sequence
stretch is disturbed (Figure 5B). Moreover, PIA-mediated biofilm
production further increased in a palindrome B mutant in which
icaR,ap was deleted (+picapapeen_AicaR, Figure 5B), which
speaks in favor of residual IcaR,sp repressor activity in the
palindrome B mutant. Finally, when providing the mutant with
IcaRgy from RN4220, biofilm repression was partially, but not
fully restored which (again) is in good agreement with residual IcaR
repression in the palindrome B mutant. Together, the combined
data strongly suggest that IcaR from both pAFS11 and RN4220
require an intact palindrome B (but not palindrome A) for
unfolding their repressor activity on the ica,ar locus.
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FIGURE 5 | IcaR proteins from S. aureus and from pAFS11 require a palindrome on the icaA,ar operator for action. (A) TOP: Known palindrome sequence on

S. aureus/S. epidermidis is shown at the top of the panel (Jeng et al., 2008). 22,6 stands for a palindrome which is 22 nt long and carries six mismatches. BOTTOM:
Putative palindromes A and B on icaApar operator are shown and their characteristics are reported. The nucleotide mutations introduced are shown in red below the
wild type sequence alongside with the resulting palindrome perturbations. (B) Analysis of PIA biofilm production by static 96-well microtiter plate biofilm assays of
strain RN4220 Aica complemented with the ica operon from pAFS11 wild type (+picapar) or with deletion of icaRpar (+picapar_AicaR) or with icaRgy instead of
icaRoar (+picapar_AicaR_icaRpy), carrying a mutated palindrome A (iCaparass) OF B (iCapars.«)- The ica genes distinctive for each strains are depicted as symbols,
with filed symbols indicating presence and empty symbols indicating absence of a given gene (as indicated in the legend). The entire data sets on total, protein and
PIA biofilm formation can be found in Supplementary Figure S1. The means were calculated from three biological replicates run in duplicates. Statistical analysis
was performed using one-way ANOVA by employing the GraphPad Prism software package. ns: P = 0.1234; *P = 0.0332; ****P < 0.0001.

DISCUSSION

Acquisition of mobile genetic elements (MGEs) is often
beneficial for bacteria by providing novel metabolic and
resistance traits. However, MGE carriage may also come at
considerable cost for the recipient bacterial cell (Slater et al.,
2008; San Millan and MacLean, 2017). Thus, resources will be
required to replicate and maintain MGEs (e.g. plasmids) on
which beneficial genes are located and their (inappropriate)
expression may impose a metabolic burden, resulting in
reduced fitness and competitiveness of MGE-bearing bacterial
cells (Baltrus, 2013). Accordingly, bacteria have evolved
sophisticated mechanisms to control both MGE uptake and
maintenance as well as expression of horizontally acquired
genes (Brantl, 2014; Kwong et al,, 2017; Firth et al.,, 2018). In
case of plasmid-mediated HGT, this often involves a regulatory

crosstalk between chromosomal factors and the newly acquired
plasmid (Huang et al., 1990; Charles and Nester, 1993; Bafios
et al, 2009). Interestingly, these control networks are not
unidirectional and there is growing evidence to suggest that
plasmids are able to influence chromosomal gene expression as
well in a wide range of bacterial species [recently reviewed in
(Vial and Hommais, 2020)]. In the study presented here, we
extend these examples by the Gram-positive pathogen S. aureus
and reveal that horizontally acquired and core genome genes
have the capacity to mutually influence each other in this
organism. Thus, we demonstrate that a transcription factor (i.e.
IcaR), located on a large multi-resistance plasmid, is able to
target a pathogenicity factor (i.e. icaADBC-mediated PIA biofilm
formation) from the S. aureus core genome. Vice versa, the IcaR
homolog from the S. aureus core genome was found to be able to
silence transcription of plasmid-borne icaADBC genes, creating a
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bi-directional regulatory crosstalk between plasmid- and
chromosomally encoded factors that eventually hindered
metabolically costly PIA-mediated biofilm formation.

PIA consists of N-acetyl-glucosamines (GlcNac) molecules,
and ample sugar and energy supplies are fuelled into GlcNac
synthesis to provide the building blocks of the exopolysaccharide.
Accordingly, ica gene expression is intimately linked to central
carbon flux control and energy balance (Vuong et al., 2005; Seidl
et al,, 2008; Zhu et al., 2009; Sadykov et al., 2011; Lindgren et al.,
2014) which also involves the action of non-coding RNAs to
appropriately adjust metabolic patterns (Rochat et al., 2018;
Bronesky et al., 2019; Marincola et al., 2019; Schoenfelder et al.,
2019). Presence of two fully functional ica gene clusters in strain
S. aureus Rd11 is likely to represent a major metabolic challenge
and the observed downregulation of PIA production in this strain
makes sense to prevent metabolic overload. Paradoxically, it is just
the additionally acquired ica,ar locus copy on plasmid pAFS11
that mediates a biofilm-negative phenotype. Indeed, acquisition of
pAFS11 or the icapap locus alone abolished PIA biofilm formation
in S. aureus (Figure 2). This effect is accomplished through the
IcaR,, zr repressor which can also target the chromosomal ica locus
copy (Figure 4). Moreover, the tight self-control of the icap o copy
on pAFS11 by its cognate IcaR,, o repressor further contributes to
a biofilm-negative phenotype (Figures 2, 3). Remarkably,
icaADBC, 5y expression can be additionally repressed by Icapy
from the core genome (Figure 4C). Thus, although being different
from the canonical IcaR recognition site known from
S. epidermidis and S. aureus (Jeng et al., 2008), Icagy interacts
with a palindrome sequence present in the upstream region of
icaADBC,f (palindrome B in Figure 5A), revealing a certain
flexibility of IcaR-like proteins in DNA target selection (Figure 5).

Phylogenetic analyses revealed that the two ica loci in Rd11
differ both on nucleotide and protein sequence levels and are
only distantly related to each other (Figure 1). Thus, the
horizontally acquired ica,ap copy on pAFSIl1 is likely to
originate from an unknown bacterium for which the soil and
animal dwelling species S. sciuri [recently re-classified as
M. sciuri (Madhaiyan et al., 2020)] might represent a putative
candidate (Fefller et al, 2017). But clearly more detailed
investigations will be required to substantiate this hypothesis.
Interestingly, inhibition of core genome-encoded
exopolysaccharide production by plasmids seems to be a
common theme in the bacterial world. Thus, in nitrogen-fixing
Rhizobium tropici, exopolysaccharide production was found to
be downregulated by the NrcR transcription factor, encoded on
an acquired plasmid (Del Cerro et al., 2016), and in the
nosocomial pathogen Acinetobacter baumanii, PNAG (PIA)
production was described to be diminished upon acquisition of
a multi-resistance plasmid (Venanzio et al., 2019). In the latter
case, this large conjugative multiresistance plasmid facilitates its
own transmission by downregulating chromosomally encoded
type-6-secretion systems (T6SS) that usually hamper HGT
(Venanzio et al, 2019). Together with the effect on PNAG
production, the A. baumanii plasmids represent interesting
examples for a plasmid-chromosome regulatory crosstalk that
influences simultaneously both virulence and resistance traits.

LA-MRSA lineages of the clonal complex CC398 (to which
strain Rd11 belongs to) can thrive in very different habitats (e.g.
animals, humans, environment etc.) where they are exposed to
numerous stress conditions. It is tempting to speculate that PIA
biofilm formation, which is an important factor in S. aureus
pathogenesis and survival (Fluckiger et al., 2005; Kropec et al.,
2005), might become a selection advantage at some stage. In this
respect, it is an interesting question by which mechanism(s)
biofilm formation could be restored in the Rd11 isolate. Plasmid
pAFS11 displays a striking mosaic structure and has most likely
arisen by recombination of genes from various origins.
Assuming that icapap locus integration into pAFS11 and
acquisition of the plasmid by S. aureus is an evolutionarily
recent event, it is conceivable that control of pAFS11-encoded
gene expression is not fully integrated into the regulatory
network of the S. aureus Rd11 recipient (yet). One obvious
possibility to (re)gain a biofilm positive phenotype would be
(spontaneous) mutation and inactivation of icaR,,r on pAFS11.
At first sight, this idea seems to be contradictory to our
experimental findings showing that IcaRgry has the potential
to take over and replace the lacking IcaRpap activity. This
mutual IcaR replacement seems to work particularly well,
when both factors (icaR and icaADBC) are on the same
replicon and are probably in an appropriate stoichiometric
repressor/DNA equilibrium (Figure 4C). In agreement with
this assumption, the IcaRgy repressor effect was found to be
less efficient when a single icaRry copy resides on the
chromosome and icaADBC,a5 is located on a (multi-copy)
plasmid (Figure 2). Here, icaRpsr deletion on the vector
enabled PIA production, and it is reasonable to suggest that
the insufficient repressor activity of Icagy in this experimental
set-up might be associated with the copy number of the icap,p-
bearing vector which increased the number of DNA targets for
the IcaRpy repressor. At the present stage of experimental work
this is mere speculation. However, recent research demonstrates
that available IcaR protein amounts are critical for the
appropriate control of icaADBC transcription, and multiple
cis- and trans-acting factors have been identified that target
icaR mRNA molecules to fine-tune their translation (Ruiz de los
Mozos et al., 2013; Rochat et al., 2018; Bronesky et al., 2019;
Lerch et al,, 2019; Schoenfelder et al., 2019). Plasmid copy
number effects may have the potential to interfere with this
delicate repressor/DNA target balance. In this respect, the data
obtained with icapp-bearing plasmids in the icagy locus
proficient S. aureus RN4220 background may reflect very well
the natural situation in pAFS11 carrying isolates (Figure 2).
Thus, from an evolutionary point of view, mutational
inactivation of icaR,sr on the pAFS11 plasmid would make
sense to readily enable PIA production. The same effect could be
achieved by acquiring mutations in the icapar palindrome B
sequence, which represents the target site of both the IcaR,r
and IcaRgy proteins. Indeed, at least for S. aureus core genome
ica loci, mutations in icaA upstream regions were previously
described. The mutations had direct consequences for PIA
production and occurred both in vitro and in vivo, indicating
that the icaA promoter region undergoes selection and is a
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suitable target to modulate PIA production (Jefferson et al.,
2003; Schwartbeck et al., 2016). It will be interesting to explore if
the ica,sr locus on pAFS11 might become subject to mutational
variation. Long-term in vitro passage experiments together with
surveillance of the evolution of pAFS11-like plasmids in field
studies will be suitable approaches to give answers to how
control of plasmid-borne ica locus expression will be
integrated into the regulatory network of S. aureus.
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