
Frontiers in Cellular and Infection Microbiolo

Edited by:
Ghassan M. Matar,

American University of Beirut, Lebanon

Reviewed by:
Luchang Zhu,

Houston Methodist Research Institute,
United States
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Objective: To investigate the overall distributions of key virulence genes in Klebsiella
pneumoniae , especial ly the hypervirulent blaKPC-posit ive K. pneumoniae
(Hv-blaKPC(+)-KP).

Methods: A total of 521 complete genomes of K. pneumoniae from GenBank were
collected and analyzed. Multilocus sequence typing, molecular serotyping, antibiotic-
resistance, virulence genes and plasmid replicon typing were investigated.

Results: Positive rates of virulence genes highly varied, ranging from 2.9 (c-rmpA/A2) to
99.6% (entB). Totally 207 strains presented positive fimH, mrkD, entB and wzi and 190
showed positive fimH, mrkD, entB, irp2 and wzi, which were the two primary modes. A
total of 94, 165 and 29 strains were denoted as hypervirulent K. pneumoniae (HvKP),
blaKPC(+)-KP and Hv-blaKPC(+)-KP. ST11 accounted for 17 among the 29 Hv-blaKPC
(+)-KP strains; Genes iucA, p-rmpA2 and p-rmpA were positive in 28, 26 and 18
Hv-blaKPC(+)-KP strains respectively. Among the 29 Hv-blaKPC(+)-KP strains exhibiting
four super clusters from GenBank, IncHI1B plasmids carrying virulence genes and IncFII
ones with blaKPC were responsible for both 23 strains respectively.

Conclusions: Positive rates of virulence genes vary remarkably in K. pneumoniae. Genes
iucA, p-rmpA2 and p-rmpA were primary ones inducing Hv-blaKPC(+)-KP. IncHI1B
plasmids carrying virulence genes and IncFII ones with blaKPC constitute the primary
combination responsible for Hv-blaKPC(+)-KP. The making of Hv-blaKPC(+)-KP is mostly
via blaKPC(+)-KP acquiring another plasmid harboring virulence genes.
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INTRODUCTION

Klebsiella pneumoniae, a ubiquitous and an opportunistic
pathogen, can induce both nosocomial and community-
acquired infections (Russo and Marr, 2019; Choby et al., 2020).
The former consist of pneumonia, bacteremia, urinary tract
infections, etc. The latter include pyogenic liver abscess,
endophthalmitis, meningitis, necrotizing fasciitis, etc. K.
pneumoniae inducing such “invasive syndrome” is termed as
hypervirulent K. pneumoniae (HvKP), which is more virulent
than “classical” K. pneumoniae (cKP) typically responsible for
nosocomial infections (Russo and Marr, 2019). Many virulence
factors are involved in such pathogenesis, e.g. capsule,
lipopolysaccharide, Types 1 and 3 fimbriae, siderophores,
allantoin metabolism, etc. (Paczosa and Mecsas, 2016). Further,
numerous genes are determinants of those factors. Genes p-
rmpA, p-rmpA2 and c-rmpA/A2 all could induce hypercapsule
(Paczosa and Mecsas, 2016). Traditionally, HvKP was usually
susceptible to most antibiotics except inherently resistant
ampicillin (Fang et al., 2007).

With years passing, K. pneumoniae, regardless of cKP or
HvKP, becomes more and more drug-resistant, among which
carbapenem-resistance is of great concern. Carbapenem-resistance
is mostly conferred by carbapenemase gene (blaKPC), New Delhi
metallo-b-lactamase gene (blaNDM), and oxacillinases-48 gene
(blaOXA-48), which are predominantly carried on the mobile
genetic elements (Zhang et al., 2015; Lee et al., 2016). Among
them, blaKPC, particularly blaKPC-2/3 is predominant (Kopotsa
et al., 2019). Carbapenem-resistant K. pneumoniae (CRKP) has
now become a great public health threat worldwide (Lee et al.,
2016; Niu and Li, 2019), due to its causing high mortality and
medical burden.

In the past decades, hypervirulence and drug-resistance
advance separately in K. pneumoniae. CRKP was not usually
considered hypervirulent (Zhang et al., 2017a). However, their
convergence was found in recent years worldwide (Zhang et al.,
2015; Lam et al., 2019; Wozniak et al., 2019). Not surprisingly,
such K. pneumoniae strains could induce an overwhelming
mortality (Gu et al., 2018). Due to the mobility of elements
carrying virulence and drug-resistance genes, hypervirulent
carbapenem-resistant K. pneumoniae (Hv-CRKP) gained more
and more prevalence with its positive rate reaching 7.4–15.0%
among CRKP in recent years (Lee et al., 2017). To date, the
overall distribution of key virulence genes in K. pneumoniae
strains, in particular hypervirulent blaKPC-positive K.
pneumoniae (Hv-blaKPC(+)-KP), was rarely reported. Here, we
collected 521 K. pneumoniae strains from GenBank. Upon the
yielded data, we could get insight into the distributions of key
virulence genes in K. pneumoniae, particularly Hv-blaKPC(+)-KP.
MATERIALS AND METHODS

K. pneumoniae Strains
A total of 521 complete whole genomes (Table S1) of
K. pneumoniae from the GenBank Database (https://www.ncbi.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
nlm.nih.gov/genome/815; download date: May 13th, 2020) were
analyzed in this study. Those draft genomes (contigs and
scaffolds) were not included. The 521 strains included 28.4%
(148 strains) from Mainland China, 4.4% (23 strains) from
Taiwan of China, 1.5% (eight strains) from Hong Kong of
China, 25.7% (134 strains) from USA, 9.6% (50 strains) from
Australia, 6.7% (35 strains) from UK, 3.8% (20 strains) from
Germany, 2.7% (14 strains) from Korea, 2.3% (12 strains) from India,
2.1% (11 strains) from France, 1.5% (eight strains) from Japan and
11.1% (58 strains) from other countries.

Multilocus Sequence Typing (MLST)
The DNA fasta sequences of the 521 genomes were compared
with the K. pneumoniae MLST database (Larsen et al., 2012)
containing the seven housekeeping genes (gapA, infB, mdh, pgi,
phoE, rpoB and tonB) and the STs were yielded.

Determination of Serotypes, Antibiotic-
Resistance and Virulence Genes
For the genomes of K. pneumoniae from GenBank, the accession
numbers were directly used to determine the capsular types via
the database of Institute Pasteur (https://bigsdb.pasteur.fr/
klebsiella/klebsiella.html). The potential beta-lactamase genes
were determined using the Resfinder software version 3.2
(https://cge.cbs.dtu.dk/services/ResFinder/) (Zankari et al.,
2012) with the minimum coverage of 60% and minimum
identity of 90%, and the virulence genes were predicted using
NCBI_BLAST (megablast) searches against the virulence genes
of K. pneumoniae with experimental supports (Table S2) with
the cut-off coverage of 80% and cut-off identity of 80%.

For virulence genes in this study, they could be classified as
the following categories: metabolism (peg-344), colonization
(allS), assembling channel protein for capsular polysaccharides
or macromolecular exopolysaccharides (EPS, wzy-K1), regulator
of mucoid phenotype (p-rmpA2, c-rmpA/A2, p-rmpA), Type 1
fimbriae (fimH), Type 3 fimbriae (mrkD), enterobactin (entB),
yersiniabactin (irp2), salmochelin (iroN), and aerobactin (iucA)
and capsular polysaccharide-anchor (wzi).

Determination of HvKP, cKP and
Hv-blaKPC(+)-KP
The factors responsible for HvKP include hypercapsule (by p-
rmpA2, c-rmpA/A2, p-rmpA), EPS (by wzy-K1) and excessive
siderophores (Paczosa and Mecsas, 2016; Russo and Marr, 2019).
In this study, HvKP could be defined as: positive wzy-K1, ≥3
positive siderophore genes (entB, irp2, iroN and iucA), or ≥1
positive capsule-regulating genes (p-rmpA2, c-rmpA/A2 and p-
rmpA). Non-HvKP is termed as cKP. Hv-blaKPC(+)-KP is
defined as HvKP carrying blaKPC.

Phylogenetic Analysis and Plasmid
Replicon Analysis
The phylogenetic tree of K. pneumoniae strains was generated
using kSNP3 (Gardner et al., 2015) software for K. pneumoniae
chromosomes and displayed by iTOL (Letunic and Bork, 2016)
with midpoint rooting. For the plasmids, the phylogenetic
April 2021 | Volume 11 | Article 661218
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patterns were based on the presence/absence of orthologous gene
families of all the plasmids under analysis. A binary gene
presence/absence matrix was created using OrthoFinder
(Emms and Kelly, 2019) with default settings and a
hierarchical cluster result was shown by iTOL (Letunic and
Bork, 2016).

Plasmid replicon typing was determined using the
PlasmidFinder software version 2.0.1 with the minimum
coverage of 60% and minimum identity of 95%.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 8
software (GraphPad Software Inc., USA). Chi-square test was
used to analyze comparisons between groups; p <0.05 was
considered statistically significant.
RESULTS

Distributions of Virulence Genes and
Predicted Key Virulence Factors
Figure 1A showed overwhelmingly different positive rates of
virulence genes, ranging from 2.9 (c-rmpA/A2) to 99.6% (entB)
among the 521 K. pneumoniae strains. Four genes (fimH, mrkD,
entB and wzi) exhibited prevalence rates of > 90.0%, 1
(irp2) > 50.0% and the others < 25.0%. For the rmpAs, the
order was: p-rmpA2 (12.5%), p-rmpA (10.6%) and c-rmpA/A2
(2.9%). For the four siderophore genes, the order was: entB
(99.6%), irp2 (53.4%), iucA (15.7%) and iroN (9.2%). Positive
rates of iroN and iucA were both lower than that of irp2 and entB
(all p < 0.0001). Figure 1B presented different positive rates
of predicted virulence factors, ranging from 0.2% (none
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siderophore) to 99.2% (Type 1 fimbriae). The factors (Types 1
and 3 fimbriae, regular capsule, one or two siderophores) were
found more common; 436 (83.7%) strains were found possessing
≤ 2 siderophores. Figure 2 showed 23 modes of virulence genes
in K. pneumoniae: each ≥2 strains. Totally 207 strains presented
positive fimH, mrkD, entB and wzi and 190 showed positive
fimH, mrkD, entB, irp2, and wzi simultaneously, which were
the two primary modes and accounted for 39.7% and
36.5% respectively.

Among the 91 strains harboring wzy-K1, p-rmpA, p-rmpA2 or
c-rmpA/A2, 49 (53.8%) possessed p-rmpA and p-rmpA2, 18
(19.8%) possessing wzy-K1, p-rmpA and p-rmpA2, 15 (16.5%)
possessing merely p-rmpA2. Figure 3A showed strong
relationships among wzy-K1/p-rmpA or p-rmpA/p-rmpA2. In
the 520 strains positive in entB, irp2, iroN or iucA, 278 (53.5%)
harbored entB and irp2, 241 (46.3%) harboring only entB, 35
(6.7%) harboring all the four genes. Figure 3B showed strong
relationships between iucA/iroN and irp2. Other relationships
were also shown in: Figure 3C (K1, peg-344, allS and ST23),
Figure 3D (K2, p-rmpA, p-rmpA2 and c-rmpA/A2), Figure 3E
(K2, peg-344, allS and ST14), Figure 3F (K2, irp2, iroN and iucA)
and Figure 3G (K1, irp2, iroN and iucA). Gene wzy-K1 was
completely restricted to K1 serotype (31/31), vice versa. High
prevalence of peg-344 and allS was found in K1 strains (22/31,
28/31), but rarely in K2 ones (10/38, 0/38). Gene allS was mainly
found in K1 strains (28/33), contrary to peg-344 (22/65). K1
strains mostly belonged to ST23 (23/31) while less than a half
(17/38) of K2 ones belonged to ST14. K1 strains showed higher
rates of rmpAs (p-rmpA/p-rmpA2/c-rmpA/A2) and siderophore
genes (iroN/iucA) than K2 ones: 23/31 vs 10/38 (p < 0.0001), 23/
31 vs 9/38 (p < 0.0001), which “confirmed” hypervirulence in
K1 strains.
A B

FIGURE 1 | Distributions of virulence genes and factors in K. pneumoniae. (A) Distribution of 13 virulence genes in 521 K. pneumoniae strains. (B) Distribution of
virulence factors in 521 K. pneumoniae strains.
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FIGURE 2 | Modes of virulence genes in 521 K. pneumoniae strains. The presence of virulence genes is represented by a dark blue box and the absence of others
is represented by a light blue box. Only those with ≥ 2 strains were included in Figure 2.
A B D

E F G
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FIGURE 3 | Venn diagrams of various relationships among virulence genes, serotypes and ST types. (A) Venn diagram of wzy-K1, p-rmpA, p-rmpA2 and c-rmpA/
A2. (B) Venn diagram of entB, irp2, iroN and icuA. (C) Venn diagram of K1, peg-344, allS and ST23. (D) Venn diagram of K2, p-rmpA, p-rmpA2 and c-rmpA/A2.
(E) Venn diagram of K2, peg-344, allS and ST14. (F) Venn diagram of K2, irp2, iroN and iucA. (G) Venn diagram of K1, irp2, iroN and iucA. Such relationships were
shown in 521 K. pneumoniae strains.
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FIGURE 4 | Distributions of virulence genes in Hv-blaKPC(+)-KP.
FIGURE 5 | Modes of virulence genes in Hv-blaKPC(+)-KP. The presence of virulence genes is represented by a dark blue box and the absence of others is
represented by a light blue box.
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According to the aforementioned criteria, 94 (18.0%), 165
(31.7%) and 29 (5.6%) strains were denoted as hypervirulent K.
pneumoniae (HvKP), blaKPC(+)-KP and Hv-blaKPC(+)-KP, as
shown in Figure S1. Consequently, 427 (82.0%) strains were
cKP. Hv-blaKPC(+)-KP shared 17.6% (29/165) among blaKPC
(+)-KP. For the blaKPC(+)-KP, ST11 accounted for 34.5% (57/
165) while clonal group 258, including ST11, ST258, ST340 and
ST437, was positive for 65.5% (108/165), indicating the focus of
blaKPC(+)-KP.

Distributions of Virulence Genes in
Hv-blaKPC(+)-KP
Figure 4 presented greatly different prevalence of virulence genes
in 29 Hv-blaKPC(+)-KP strains, ranging from fimH (100.0%),
mrkD (100.0%), entB (100.0%), wzi (100.0%) to c-rmpA/A2
(6.9%). Genes iucA, p-rmpA2 and p-rmpA were positive in 28
(96.6%), 26 (89.7%) and 18 (62.1%) Hv-blaKPC(+)-KP strains
respectively. A sum of 28 (96.6%) strains presented ≥ 3
siderophores and 29 (100.0%) carried p-rmpA/p-rmpA2
(p > 0.9999).

A total of nine modes of virulence genes were found among
the 29 Hv-blaKPC(+)-KP strains, as shown in Figure 5. And the
first four modes consisted of eight (27.6%), seven (24.1%),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
five (17.2%) and three (10.3%) strains, which constituted
the majority.

Distributions of STs and Serotypes in
Hv-blaKPC(+)-KP
Among the 29 Hv-blaKPC(+)-KP strains, ST11 accounted for the
majority (17, 58.6%) although more than 10 STs were found in
total (Figure 6A). And five serotypes were found (Figure 6B),
among which K64 (11, 37.9%) and K47 (10, 34.5%) made
the majority.

Locations of Virulence and blaKPC Genes
in Hv-blaKPC(+)-KP
Trends in virulence among Hv-blaKPC(+)-KP infections revealed
that the prevalence of Hv-blaKPC(+)-KP significantly increased
between 2018 and 2020, mainly from China, especially Mainland
China (Figure 7). We found that IncHI1B plasmids were
predominantly responsible for the virulence genes (23 strains,
79.3%) and IncFII plasmids were the main contributors for the
gene blaKPC (23 strains, 79.3%), suggesting that Hv-blaKPC
(+)-KP strains were mainly induced by two different plasmids
(Figure 8). IncHI1B and IncFII plasmids constituted the
alarmingly successful combination among Hv-blaKPC(+)-KP
A

B

FIGURE 6 | Distributions of STs and serotypes in Hv-blaKPC(+)-KP. (A) Distribution of STs in Hv-blaKPC(+)-KP. (B) Distribution of serotypes in Hv-blaKPC(+)-KP.
Statistics were made among the 29 Hv-blaKPC(+)-KP strains. ND, not defined.
April 2021 | Volume 11 | Article 661218
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strains. ST11 accounted for 17 (58.6%) among the 29 Hv-blaKPC
(+)-KP strains. Those Hv-blaKPC(+)-KP strains with ST11
typically corresponded to K47 (9/17) and K64 (8/17) serotypes
and were divided into four super subgroups. Those with ST86
were all K2 serotype (4/4).
DISCUSSION

This study investigated the general distributions of key virulence
genes in K. pneumoniae, in particular Hv-blaKPC(+)-KP.

Among the 521 strains, 65 were positive for peg-344, of which
63 were denoted as HvKP. A sensitivity of 96.9% was therefore
yielded, similar as the report (p = 0.5791) (Russo et al., 2018).
Gene allS was not restricted to K1 and K2 strains, different from
the document (Yu et al., 2008). The reason may lie in the
different specimen types of analyzed strains. Gene wzy-K1
(formerly designated magA), corresponding to K1 serotype,
vice versa, could help K. pneumoniae yield macromolecular
EPS, which confers hypervirulence (Fang et al., 2004). Wzi is a
protein riveting capsular polysaccharides, loss of which K.
pneumoniae should be acapsular (Rahn et al., 2003). Acapsule
was found in 13 (2.5%) strains, which means low virulence. A
total of four kinds of siderophores were found in K. pneumoniae
strains: enterobactin, salmochelin, yersiniabactin, and aerobactin
(Russo and Marr, 2019). Intriguingly, one strain (strain
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
AR_0096, accession number: CP027612.1) was found for none
siderophore, indicating other ferric uptake systems than
siderophores may also provide a certain amount of iron for
growth and reproductivity (Hsieh et al., 2008).

Except for macromolecular EPS and excessive siderophores,
hypercapsule could also contribute to hypervirulence (Russo and
Marr, 2019), which is typically conferred by p-rmpA, p-rmpA2 or
c-rmpA/A2 genes. Hypercapsule played an equal role with
excessive siderophores (15.4 vs 16.3%, p = 0.6714) in
hypervirulence of K. pneumoniae. The reason lies in the same
pLVPK-like plasmids harboring rmpAs and siderophore
genes concurrently.

Gene blaKPC was first reported from USA in 1996 (Yigit et al.,
2001). Then, the first blaKPC-2(+)-KP strain was reported in
mainland China in 2007 (Wei et al., 2007). CRKP has now
shared 70 – 90% of carbapenem-resistant Enterobacteriaceae in
the European Union and China (Grundmann et al., 2017; Zhang
et al., 2017b). To date, blaKPC consists of more than 50 subtypes,
among which blaKPC-2 is the most successful one and
predominates CRKP worldwide. blaKPC-2 was positive in 132
(25.3%) strains while blaKPC-3 was found in 30 (5.8%) strains.
Our study also showed clonal group 258 but not ST11 made up the
majority of blaKPC(+)-KP (Wang et al., 2018; Fu et al., 2019); The
reason comes from the global distribution of the 521 strains.

The first Hv-CRKP, belonging to K2 and ST65, was unveiled in
mainland China in 2015, which was isolated from blood inWuhan
FIGURE 7 | Characteristics of the 29 Hv-blaKPC(+)-KP strains. The phylogenetic relationship of the 29 Hv-blaKPC(+)-KP strains was analyzed by kSNP 3.0 Based on
the predicted results, the binary gene presence/absence matrix was created reflecting the collection year, collection region, blaKPC-2 gene and core virulence genes.
The STs of Hv-blaKPC(+)-KP strains were marked on the right of the phylogenetic tree. ND: not defined. The presence of genes, etc. is represented by a solid box.
and the absence of others is represented by a white box.
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City in March 2013 (Zhang et al., 2015). Armed with
hypervirulence and extreme drug-resistance, Hv-CRKP causes
greater mortality and becomes notorious (Gu et al., 2018). Our
study showed a positive rate of 5.6% for Hv-blaKPC(+)-KP
worldwide. Different prevalence of iucA, p-rmpA2 and p-rmpA
in Hv-blaKPC(+)-KP strains suggested their different roles in
hypervirulence. The modes of virulence genes were rather
diverse in Hv-blaKPC(+)-KP. Similar prevalence of ≥ 3
siderophores and p-rmpA/p-rmpA2 (p > 0.9999) indicated their
equal roles in hypervirulence of Hv-blaKPC(+)-KP strains, which
also originated from the same pLVPK-like plasmids harboring
rmpAs and siderophore genes simultaneously. The proportion of
K64 was (11, 37.9%), lower than another report (Zhang et al.,
2020) (p < 0.0001). Further, IncHI1B plasmids carrying virulence
genes and IncFII ones with blaKPC were responsible for both 23
strains, suggesting IncHI1B and IncFII plasmids jointly constitute
the most successful combination. Furthermore, the phylogenetic
trees revealed that the 29 Hv-blaKPC(+)-KP strains belonged to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
four super clusters although three clusters all possessed
ST11 strains.

Hv-blaKPC(+)-KP evolution may occur through two
mechanisms. The first pathway is via HvKP acquiring a
plasmid carrying drug-resistance determinants (Wei et al.,
2016; Feng et al., 2018) or by the insertion of resistance genes
into virulence plasmid or chromosome harbored by HvKP
(Zhang et al., 2016; Fu et al., 2018). The second pathway is via
multidrug-resistant/extreme drug-resistant cKP acquiring a
pK2044- or pLVPK-like virulence plasmid or integrated
virulence genes into drug-resistance plasmids (Gu et al., 2018).
Our data showed it was most likely that Hv-blaKPC(+)-KP mainly
evolved through the second pathway, i.e. via blaKPC(+)-KP
acquiring another plasmid harboring virulence genes. Zhou
et al. (2020) and Tang et al. (2020) preached that CRISPR-Cas
system deficiency in ST11 may play a vital role. However, the two
papers elucidated only blaKPC entering ST11 strains; IncHI1B
plasmids are different from IncFII ones: rare protospacers were
FIGURE 8 | Details for the characteristics of the 57 antibiotic-resistance or virulence plasmids carried by the 29 Hv-blaKPC(+)-KP strains. The phylogenetic patterns
were based on the presence/absence of orthologous gene families of 57 plasmids under analysis. Seven categories of information were presented in this figure,
including the phylogenetic tree of 57 plasmids, STs of host strains, collection year, collection region, blaKPC-2 gene, core virulence genes and replicon types of
plasmids. ND, not defined. The presence of genes, etc. is represented by a solid box and the absence of others is represented by a white box.
April 2021 | Volume 11 | Article 661218
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found and they lacked Type IV secretion systems, e.g. traM gene.
Therefore, the mechanisms behind IncHI1B plasmids entering
ST11 strains would be sophisticated and intriguing.

This study has some limitations. First, the specimen types
of 521 K. pneumoniae strains are not well known. Second,
some positive virulence genes do not inevitably mean
“exact” hypervirulence.

Taken together, positive rates of virulence genes vary
overwhelmingly in K. pneumoniae. Hypercapsule plays an
equal proportion with excessive siderophores in hypervirulence
of K. pneumoniae. Virulence genes iucA, p-rmpA2 and p-rmpA
are primary ones inducing Hv-blaKPC(+)-KP. IncHI1B plasmids
carrying virulence genes and IncFII ones with blaKPC constitute
the primary combination responsible for Hv-blaKPC(+)-KP. Hv-
blaKPC(+)-KP urges more insightful investigations.
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