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Arctic University of Norway, Norway
Trevor Gordon Marshall,

Autoimmunity Research Foundation,
United States

*Correspondence:
Xuedong Zhou

zhouxd@scu.edu.cn
Lei Cheng

chenglei@scu.edu.cn
Biao Ren

renbiao@scu.edu.cn

Specialty section:
This article was submitted to

Microbiome in Health and Disease,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

Received: 28 February 2021
Accepted: 09 August 2021
Published: 31 August 2021

Citation:
Zong Y, Zhou Y, Liao B, Liao M, Shi Y,
Wei Y, Huang Y, Zhou X, Cheng L and
Ren B (2021) The Interaction Between

the Microbiome and Tumors.
Front. Cell. Infect. Microbiol. 11:673724.

doi: 10.3389/fcimb.2021.673724

REVIEW
published: 31 August 2021

doi: 10.3389/fcimb.2021.673724
The Interaction Between the
Microbiome and Tumors
Yawen Zong1,2, Yujie Zhou1,2, Binyou Liao1, Min Liao1,2, Yangyang Shi1,2, Yu Wei1,2,
Yuyao Huang1,2, Xuedong Zhou1,2*, Lei Cheng1,2* and Biao Ren1*

1 State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of
Stomatology, Sichuan University, Chengdu, China, 2 Department of Cariology and Endodontics, West China School of
Stomatology, Sichuan University, Chengdu, China

Cancer is a significant global health problem and is characterized by a consistent increase
in incidence and mortality rate. Deciphering the etiology and risk factors are essential parts
of cancer research. Recently, the altered microbiome has been identified within the tumor
microenvironment, tumor tissue, and even nonadjacent environments, which indicates a
strong correlation between the microbiome and tumor development. However, the
causation and mechanisms of this correlation remain unclear. Herein, we summarized
and discussed the interaction between the microbiome and tumor progression. Firstly, the
microbiome, which can be located in the tumor microenvironment, inside tumor tissues
and in the nonadjacent environment, is different between cancer patients and healthy
individuals. Secondly, the tumor can remodel microbial profiles by creating a more
beneficial condition for the shifted microbiome. Third, the microbiome can promote
tumorigenesis through a direct pathogenic process, including the establishment of an
inflammatory environment and its effect on host immunity. The interactions between the
microbiome and tumors can promote an understanding of the carcinogenesis and provide
novel therapeutic strategies for cancers.
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INTRODUCTION

Cancer is one of the most common fatal diseases. In 2018, there were 18.1 million new cases and 9.6
million cancer-related deaths worldwide (Bray et al., 2018). The economic burden from the
healthcare of cancer patients was $125 billion per year in the USA and occupied a giant
proportion of public health expenditure (Mariotto et al., 2011). Understanding cancer causation
and risk factors is an essential part of public health missions. Genetic mutations, infection, tobacco,
diet, and radiation, are considered to be common risk factors that promote the development of
cancer (Willett, 2000; Anand et al., 2008; Ashford et al., 2015).

Microorganisms are able to colonize the gut, skin, oral cavity (OC), urine, and other
environments of human body (Kho and Lal, 2018). The microbiome can be defined as a
characteristic microbial community that occupies a reasonable well-defined habitat with distinct
physio-chemical properties (Lloyd-Price et al., 2016; Sender et al., 2016; Kho and Lal, 2018; Berg
et al., 2020). The microbiome has been developed as a diagnostic marker, a pathogenic agent or a
therapeutic target in some diseases due to the rapid development of sequencing technology
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(Kaczor-Urbanowicz et al., 2017; Gopalakrishnan et al., 2018;
Temraz et al., 2019). In cancer, chemotherapy, medications and
an altered diet have been shown to significantly influencemicrobial
composition and function (Hayase and Jenq, 2021; Szczyrek et al.,
2021). Additionally, the microbiota is highly correlated with type-
or subtype-specific tumors (Banerjee et al., 2018; Ma et al., 2019;
Nejmanetal., 2020).Theoncologyprogressioncanalso remodel the
humanmicrobiome (Mimaetal., 2015;Burns et al., 2018;Burns and
Blekhman, 2019). Recently, Manzoor et al. (2020) proposed a
hierarchical relationship between the microbiome and tumors.
Specifically, researchers proposed a direct interaction between
microorganisms and tumors. Secondly, the microbiome is able to
act as a tumor biomarker. Third, the microbiome modulates
therapeutic drug efficacy.

In order to better understand the relationship between the
microbiome and tumors, we summarized and discussed the
relationship between the microbiome and some human
cancers, according to their distinct colonization sites. Cancer
patients possess a distinct composition of microbiomes located
in the tumor microenvironment (TME), inside tumor tissues and
in a nonadjacent environment, compared to healthy individuals.
Tumor progression can remodel the microbial community, while
the human microbiome plays diverse roles in tumorigenesis. The
interaction between the microbiome and tumors also highlights
novel therapeutic strategies against cancers as the microbiome
and some probiotics can affect current cancer treatments in some
cases (Khan et al., 2021; Kim and Lim, 2021; Yoon et al., 2021).
CANCER PATIENTS AND HEALTHY
INDIVIDUALS HAVE DISTINCT
MICROBIOMES

In the late 19th century, Robert Koch and Louis Pasteur
discovered bacteria inside tumor tissues (Compare and
Nardone, 2014). However, the source of where these bacteria
emerge remains unclear. In recent years, the microbiome has
been proven to be tumor type-specific and plays important roles
in tumor development (Banerjee et al., 2018; Ma et al., 2019;
Nejman et al., 2020). Currently, the tumor related microbiome
research is mainly focused on the microbiota located in the TME,
inside the tumor tissue and in the nonadjacent environment.

Microbiome in the Tumor
Microenvironment
TME refers to a complex and dynamic entity containing organs,
tissues, their function and metabolism. The TME is highly
related to tumor occurrence, growth, and metastasis (Khalaf
et al., 2021). The microbiome in TME of colorectal cancer (CRC)
has been well-characterized (Rowland, 2009; Ahn et al., 2013;
Sears and Garrett, 2014; Cheng et al., 2020). Shah et al. (2018)
found an overlap of microbial composition in a tumor biopsy
and the paired fecal sample from CRC patients by comparing the
microbiome from the tumor biopsies, paired fecal samples, and
adjacent tissues. This finding suggests that the fecal microbiome
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
can be an excellent noninvasive biomarker for the CRC. The
abundance of some species, including Peptostreptococcus
stomatis and Parvimonas micra, were significantly increased in
the feces collected from CRC patients (Zhang et al., 2018b).
Zeller et al. (2014) revealed that the CRC-associated fecal
microbiota shifted the function from fiber degradation to the
utilization of host carbohydrates and amino acids. The CRC-
associated imbalance of fecal microbiota also contributed to an
enrichment of metabolites (i.e. polyamines) (Yang et al., 2019).
The mycobiome refers to the fungal community of the
microbiome. (Huffnagle and Noverr, 2013; Seed, 2014; Chin
et al., 2020). The mycobiomes were found to be different between
the early-stage and late-stage CRCs (Coker et al., 2019).
Additionally, the radio from the fungal phylme Basidiomycota/
Ascomycota was increased among patients with CRC compared
to healthy individuals (Gao et al., 2017; Coker et al., 2019; Qin
et al., 2021). Except for fungi and bacteria, the virome, composed
of endogenous retroviruses, eukaryotic viruses, and
bacteriophages (Santiago-Rodriguez and Hollister, 2019), is
also related to CRC. Nakatsu et al. (2018) found that
Orthobunyavirus, Tunavirus, Phikzvirus, Betabaculovirus and
Zindervirus were represent Eukaryotic viruses in subjects with
CRC, while Fromanvirus seemed to be represented only in the
healthy cohort. Interestingly, there was an significant increase of
the diversity of the gut bacteriophage community compared with
controls, especially Streptococcus phage SpSL1, Streptococcus
phage 5093, Streptococcus phage K13, Vibrio phage pYD38-A
and Enterobacteria phage HK544 (Nakatsu et al., 2018).

The oral microbiome is anothermain component of the human
microbiome and can be collected through a comfortable and
noninvasive method (Kaczor-Urbanowicz et al., 2017;
Chattopadhyay et al., 2019). Guerrero-Preston et al. (2016) found
that head and neck squamous cell carcinomas patients exhibited a
significant loss in diversity ofmicrobiota in the saliva. In particular,
the family Enterobacteriaceae and genus Oribacterium can help
distinguish oral squamous cell carcinoma (OSCC) samples from
oropharyngeal cancer and control samples. In addition to saliva, the
periodontal pockets, tooth surfaces andmucosa also harbor various
oral microbiomes. The species Parvimonas micra and Neisseria
sicca were associated with a reduced risk of OSCC, while an
unnamed Actinomyces (oral-taxon_170) was associated with an
increased risk (Hayes et al., 2018). Fungi also play important roles in
OSCC. Shay et al. (2020) found that Ascomycota was the
predominant fungus from the oral wash samples of OSCC
patients. The abundance of Candida albicans and Rothia
mucilaginosa in OSCC patients were higher compared to healthy
individuals, while Candida dubliniensis, Schizophyllum commune
and a fungus from the class of Agaricomycetes were over-
represented in healthy controls. Candida was proven to be a
predominant fungal genus in the oral fungal microflora in some
OSCC patients (Mukherjee et al., 2017; Perera et al., 2017; Vesty
et al., 2018), indicating a positive relationship between Candida
and OSCC.

The urogenital tract is also an important microbial habitat
(Whiteside et al., 2015). Wu et al. (2018) found a significant
difference in the urinary microbial community between the
August 2021 | Volume 11 | Article 673724
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bladder cancer and non-cancerous groups. The microbiome
from TME of genital organs is also related to other cancers.
Walther-Antonio et al. (2016) discovered that there was a
significant difference in the structures of microbiomes from the
vagina, cervix, fallopian tubes and ovaries of endometrial cancer.
In particular, the species Atopobium vaginae and an uncultured
Porphyromonas sp. were associated with disease status, especially
if the vagina had a pH>4.5.

Some tumor engraftment areas are not traditional
microbiota-enriched environments. The prostatic fluid lacks
prostate cancer-specific microbial species. However, the
microbial diversity in patients with high prostate-specific
antigen levels is low (Ma et al., 2019), which indicates that the
shifted microbiota may break stability of the prostate
microenvironment and provide a novel biomarker for patients
with high prostate-specific antigen levels.
Intra-Tumoral Microbiome
Recently, Nejman et al. (2020) performed a comprehensive analysis
of the tumormicrobiome from1526 tumor tissues, aswell as adjacent
normal tissues across several common cancer types, including breast,
lung, ovary, pancreas, melanoma, bone, and brain tumors. They
demonstrated that tumors contained different bacteria and bacterial
contents inside their tumor cells. Notably, the intra-tumoral
microbiome represents type- or subtype-specific characteristics,
and the highest enrichment appeared in the breast cancer (BC).
Previously, Urbaniak et al. (2016) also isolated special bacterial
species (Bacillus, Enterobacteriaceae, Staphylococcus Escherichia
coli, and Staphylococcus epidermidis) with a relatively high
abundance from BC and identified their DNA-damaging ability in
HeLa cells. The malignancy and subtype classifications also
represented a strong correlation with the tumor microbiome. Meng
et al. (2018) demonstrated that adecrease in the relative abundanceof
the family Bacteroidaceae, while the genus Agrococcus increased
during BC malignancy. Microbial function predicted by the
PICRUS indicated that these bacterial species influenced biotin and
glycerophospholipid metabolism, as well as flavonoid biosynthesis.
There are fourmain types of BC, including endocrine receptor (ER)-
positive, triple-positive, human epidermal growth factor receptor-2
(Her2)-positive and triple-negative. Banerjee et al. (2018)
demonstrated that the triple-positive and triple-negative samples
havedistinctmicrobial patterns,while ER-positive andHer2-positive
samples share similar microbial signatures by using hierarchical
clustering analysis. Microbial diversity is also different between
different racial groups. Black women with the higher BC morbidity
have an increased abundance of the genus Ralstonia in breast tissue
compared to white women (Smith et al., 2019). Meanwhile, prostate
tissue samples from African men demonstrated an increase of the
predominant genera, including Streptococcus, Alicycliphilus,
Acidovorax, Escherichia, Bacteroides, Eubacterium, Parabacteroides,
and Odoribacter, in prostate cancer compared to non-African men
(Feng et al., 2019).

Despite a high overlap of microbial abundance among the
CRC tumor biopsy and paired fecal samples, approximately 20%
of isolated microbiota were different (Shah et al., 2018). For
bacterial species inside the CRC tissues, Warren et al. (2013)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
observed that the dominant bacteria, including the species from
the genus Fusobacterium, Leptotrichia, and Campylobacter, were
all gram-negative anaerobes, which were previously recognized
as common bacteria from the oral microbiome. Although there
was no significant microbial difference in either the Topography-
Lymph Node-Metastasis stage or clinical tumor stage, Sheng
et al. (2020) identified five distinct microbial genera (Bacteroides,
Fusobacterium, Faecalibacterium, Parabacteroides, and
Ruminococcus 2) from the proximal and distal CRC segments.

In OSCC, microbial diversity was found to be significantly
reduced in tumor tissues, compared to the adjacent normal
tissues, saliva, and mouthwash samples (Mukherjee et al., 2017;
Zhang Z. et al., 2019). Chng et al. (2016) found that cholangio
carcinoma tumors colonized much more opportunistic pathogens
from the genus Stenotrophomonas, compared to normal tissues.
For other microbes, Carey et al. (2020) discovered that the family
double-stranded DNA viruses, specifically Papillomaviridae,
owned the most viral copies in the primary oropharyngeal
squamous cell carcinoma tissues and positive lymph node
samples. In most cancer specimens, the viruses, including
Baculoviridae, Reoviridae, Siphoviridae, Myoviridae, and
Polydnaviridae, were detected at high levels. Peters et al. (2019)
found that lung cancer (LC) tissues had lower microbial richness
and diversity, compared to paired normal tissues. There was a
negative correlation between microbial diversity of LC-paired
normal tissues and cancer survival. In gastric cancer (GC), Yu
et al. (2017) found thatHelicobacter pylori was a dominant species
from the microbiota, even in nonmalignant gastric tissue of some
GC patients, indicating thatH. pylori was the primary cause of GC
in early stages of neoplastic transformation.
Microbiome in the Tumor
Nonadjacent Environment
The colonization niche of some bacteria has not yet been fully
elucidated. It has been proven that the gram-negative bacteria
from advanced CRC tumor microbiome are similar to the oral
microbiome (Warren et al., 2013). The microbial composition in
lungs is also more similar to that of the OC (Yu et al., 2017).
Nakatsu et al. (2018) found that the interactions between
bacteriophages in fecal samples and oral commensal bacteria
from CRC patients performed altered characteristic compared
with controls indicating the important roles of virus in CRC.
These ectopic microbiomes from the nonadjacent environment
have been shown to play important roles in tumor progression.

The whole digestion system provides a natural migration tunnel
for microorganisms. There is a significant enrichment of specific
intestinal microorganisms (Bifidobacteriaceae, Enterobacteriaceae,
andEnterococcaceae families) in the liver fromcholangiocarcinoma
tumor tissue (Chng et al., 2016). There was also a significant
correlation between the non-digestive cancers (LC, prostate
cancer, and multiple myeloma) and the intestinal microbiome
(Liss et al., 2018; Liu et al., 2019; Zhang B et al., 2019). Shi et al.
(2019) found that the gastrointestinal microbiome was associated
with a degree of lymphatic invasion of BC.

Blood circulation is another environment that is influenced
by tumor development. The serum microbiome structure of GC
August 2021 | Volume 11 | Article 673724
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patients was significantly different from patients with
inflammation compared to healthy controls (Dong et al., 2019).
The serummicrobiomehas thepotential tobeabiomarkerofGC, as
it has been shown to have a high correlation with Topography-
Lymph Node-Metastasis stage, lymphatic metastasis, tumor
diameter and invasion depth (Dong et al., 2019). In biliary tract
cancer, theplasmamicrobiomecanbeapredictivebiomarkerdue to
altered abundance of Bifidobacteriaceae, Pseudomonaceae families,
Corynebacterium, Ralstonia, and Comamonas species (Lee
et al., 2020).

In summary, cancer patients at different clinical stages and
malignancy tend to have specific characteristics of the
microbiomes (structure, function, and metabolism) from the
microenvironment, tumor tissues, or nonadjacent microbial
locations (Figure 1).
TUMOR PROGRESSION AFFECTS THE
MICROBIAL COMMUNITY

Tumor-specific microbiome highlights whether the tumor
progression can reshape the tumor-related microbiome in
TME, tumor tissues or the nonadjacent environment (Walther-
Antonio et al., 2016; Meng et al., 2018; Shrestha et al., 2018;
Zhang et al., 2018b; Dong et al., 2019; Shi et al., 2019). Genetic
mutations from tumor cells are considered to be important
characteristics for the identification of tumor biomarkers.
There are specific genetic mutations across several tumors,
including ER and Her2 genes in BC, genes involved in DNA
mismatch repair and Sirtuin-3, loss of free fatty acid receptor 2 in
CRC, cytokeratin 19 fragment, neuron-specific enolase,
carcinoembryonic antigen and Tumor Protein P53 mutations
in LC. These mutations were found to be highly correlated with
tumor-specific microbiomes (Banerjee et al., 2018; Greathouse
et al., 2018; Hale et al., 2018; Zhang et al., 2018a; Liu et al., 2019;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Lavoie et al., 2020; Sheng et al., 2020). Burns et al. (2018)
validated that loss-of-function mutations, particularly pathway-
level mutations, were able to change the predicted interactions in
the microbiome. Tumor mutations can have an effect on the
whole microbial network, rather than individual microbes
(Burns et al., 2018; Burns and Blekhman, 2019).

The TME provides a suitable condition for location of the
shifted microbiome. For example, the progression of CRC was
found to be accompanied by different ratios of Fusobacterium
nucleatum (Liesenfeld et al., 2015; Mima et al., 2016). In
addition, researchers observed that the CRC tumor resection
altered the concentrations of microbial metabolites within urine,
and then decreased the abundance of related microbial species.
Walther-Antonio et al. (2016) discovered that a high vaginal pH
environment was highly correlated with endometrial cancer, as
well as the abundance of some species (i.e., Porphyromonas sp.).
Garza et al. (2020) indicated that the altered microbiota can
obtain nutrition from the enriched metabolites within tumor
tissue to support their self-growth.

Destruction of the physiological barrier also forms favorable
conditions for the microbiome. Yoon et al. (2019) discovered
that intestinal uptake was affected by BC and was found to be
positively related to the abundance of the Citrobacter genus from
the Enterobacteriaceae family, but negatively related to the
unclassified Ruminococcaceae. Zhou and Boutros (Zhou and
Boutros, 2020) validated that the dysfunction of intestinal
barrier, induced by an abnormal activation of c-Jun N-terminal
kinase signaling pathway, formed a feedback amplification loop
in order to remodel the gut microbiome in a drosophila
tumor model.

Overall, tumor progression is able to reshape the microbial
community. Genetic mutations in tumorigenesis can have an effect
on tumor-related microbiome. The tumor microenvironment,
including the metabolite enrichment and permeability alterations
in the physiological barrier, can provide a niche for the shifted
microbiome (Figure 2).
FIGURE 1 | Cancer patients and healthy individuals have different microbiomes. (Colorectal cancer and related bacteria are used as examples.)
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THE MICROBIOME DRIVES
TUMORIGENESIS

The microbiome has been considered to be a tumorigenic factor
since Robert Koch and Louis Pasteur discovered bacteria inside
tumor tissues in the late 19th century (Compare and Nardone,
2014). Currently, several microbes have been proven to be
important risk factors in tumorigenesis, such as H. pylori in GC;
Streptococcus bovis, F. nucleatum and Porphyromonas gingivalis in
CRC, and human papilloma virus in cervical cancer and OSCC
(Ellmerich et al., 2000;Humans, I.W.G.o.t.E.o.C.R.t, 2012;Chi et al.,
2015; Yamamura et al., 2017; Diaz et al., 2018; de Carvalho et al.,
2019; Laniewski et al., 2020; Wang et al., 2021). The tumorigenic
effects of themicrobiome have beenwidely investigated over recent
years and have suggested that a specific microbial profile (rather
than a certain microbe) from the TME, inside tumor tissue or
nonadjacent environments can also drive tumorigenesis.

Microbiome in the Tumor
Microenvironment
Several studies have reported that antibiotic treatment can help
decrease the number and volume of tumors in mice, including
CRC, prostate cancer, pancreatic cancer and melanoma
(Zackular et al., 2013; Pushalkar et al., 2018; Sethi et al., 2018;
Aykut et al., 2019; Stashenko et al., 2019). The transplantation of
the microbiome from tumor-bearing mice or patients into germ-
free mice is a practical way of confirming whether the
microbiome can drive tumorigenesis. The mice transplanted
with a CRC-related microbiome obtained a doubled-tumor
burden (Zackular et al., 2013). Baxter et al. (2014) transplanted
fecal microbiota from three CRC patients and three healthy
individuals into germ-free mice and found that tumor accounts
of the mice were strongly related to the microbiota colonized in
the mice prior to CRC-induction treatment. Ericsson et al. (2015)
validated that different microbiomes can regulate the host
burden of CRC. They also observed that there was less
butyrate production, but more host glycan degradation from
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
the metabolic pathways of the microbiota in the TME of CRC-
susceptible mice, compared to non-susceptible ones. A high
concentration of microbial virulence genes was also identified
from the CRC intestinal microbiome (Burns et al., 2015).
Notably, Stashenko et al. (2019) found the OSCC-related
metabolic activities of the oral microbiome were similar, which
suggests that the carcinogenic microbial metabolites were non-
specific in OSCC.

Metabolic changes within the TME may promote the effects of
genemutations. Inamousemodel, several studieshavedemonstrated
that some gene mutations could only cause tumorigenesis within a
specific microbial community (Maggio-Price et al., 2006; Seamons
et al., 2013; Howe et al., 2018). For example, Helicobacter can
synergize transforming growth factor-b (TGF-b) deficiency in
order to promote the CRC tumorigenesis in mice (Maggio-Price
et al., 2006; Daniel et al., 2017). In their models, Helicobacter was
mainly located within the cecum (Maggio-Price et al., 2006).
Functional analysis of the gut microbiome from the CRC TGF-b
deficient mice revealed that Helicobacter induced an increase in
production of lipopolysaccharide (LPS) and oxidative
phosphorylation. In addition, the metabolic shift of the gut
microbiome from CRC TGF-b deficient mice was highly associated
with the host inflammatory response, tumor formation, DNA
damage and CRC-related polyamine production (Daniel et al.,
2017; Yang et al., 2019).

The microbiome can also induce tumor-related genetic
mutations. Hale et al. (2018) found that Bacteroides fragilis and
the sulfidogenic Fusobacterium nucleatum affected the CRC
DNA mismatch repair. Zhou and Boutros (Zhou and Boutros,
2020) established an intestinal tumor model in drosophila and
identified a c-Jun N-terminal kinase-dependent feedback
amplification loop between the tumor and the gut microbiome.
Abnormal activation of c-Jun N-terminal kinase signaling
induced by the tumor caused dysbiosis of the gut microbiome
and dysfunction of the intestinal barrier. Depletion of the
microbiome restored intestinal barrier function and
reestablished the host-microbiome homeostasis.
FIGURE 2 | Tumor progression affects the microbial community.
August 2021 | Volume 11 | Article 673724
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In addition, the microbiome can affect host immunity. The
combination of TGF-b deficiency and Helicobacter infection
contributes to an inflammatory environment in the intestine
by increasing proliferation of epithelial cells, cyclooxygenase-2-
positive CD4+ T cells and macrophages (Maggio-Price et al.,
2006). A depletion of the gut microbiome reduced CRC burden
in mice, along with increased mature T and B cells (Sethi et al.,
2018). The gut microbiome also modulated host immunity by
reducing the numbers of interferon gamma-producing (IFN-g+)
T cells and inducing interleukin 17A (IL-17A+) and interleukin
10-producing (IL-10+) T cells to drive tumorigenesis (Sethi et al.,
2018). Helicobacter hepaticus co-infected with Hepatitis B virus
recruited innate lymphoid cells and promoted hepatocellular
carcinoma (HCC) tumorigenesis through an IFN-g/p-STAT1
axis (Han et al., 2019). In pancreatic cancer, Pushalkar et al.
(2018) found that the pancreatic microbiome induced a
reduction of myeloid-derived suppressor cells, an increase in
M1 macrophages, and a promotion of TH1 differentiation into
CD4(+) T cells and CD8(+) T-cell activation in order to tolerate
the host immunity.

Intra-Tumoral Microbiome
The microbiome inside tumor tissues also plays a role in
tumorigenesis. Accumulation of the microbiome inside BC
tissues can disturb the proliferation of tumor cells by
interfering with hormonal production (Abed et al., 2016). The
quorum-sensing molecule from Pseudomonas aeruginosa, a
pathogen inside the breast, led to a reduction in the survival of
BC cells (Allali et al., 2015). The bacterial stress response also
depends on cellular malignancy and TME, including oxidative
stress. Proal and VanElzakker (Proal and VanElzakker, 2021)
explained that bacteria, fungi, and viruses can induce or promote
aWarburg-like metabolism in infected host cells in order to meet
their own replication and nutritional needs. Nejman et al. (2020)
detected tumor type-specific microbiomes in melanoma and
breast, lung, ovarian, pancreatic, bone, and brain tumors.
Notably, some intra-tumoral bacteria were identified as being
intracellular, and were located both in cancer and immune cells,
particularly in CD45+ T cells and macrophages. This indicates
that the intra-tumoral bacteria can gather immune cells in order
to regulate tumor growth. In particular, Gram-positive bacteria
were detected only in macrophages, while gram-negative bacteria
were rarely detected in cancer cells or in CD45+/CD68− immune
cells (Nejman et al., 2020). The distinct locations indicated that
immune cells may play microbial type-specific roles in response
to intra-tumoral bacteria. However, the detailed mechanisms
remain unclear.

Intra-tumoral mycobiome is also correlated to tumorigenesis.
Aykut et al. (2019) demonstrated that fungi can be enriched in
the tumor environment and are able to induce a carcinogenic
effect in the pancreatic ductal adenocarcinoma. Researchers
identified a 3000-fold increase in fungal abundance from a
tumor compared to normal pancreatic tissue. Their work also
demonstrated that pathogenic fungi activated the complement
cascade when promoting pancreatic ductal adenocarcinoma.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Microbiome in the Nonadjacent
Environment
The microbiome in a nonadjacent environment can affect tumor
development. Yu et al. (2010) validated that there was an
accumulation of gut-derived LPS in the circulation of rats with
HCC. Knockout of the Toll-like receptor 4 (TLR4) gene, a receptor
of LPS, limited excessive tumor growth, while the reconstitution of
TLR4 restored hepatic inflammation and tumor cell proliferation.
Dapito et al. (2012) found thatTLR4 and intestinalmicrobiotawere
required forHCCprogressionby regulating increasedproliferation,
expression of the hepatomitogen epiregulin and prevention of cell
apoptosis. Deoxycholic acid, a gut metabolite produced by the
obesity-induced microbiome, induced senescence-associated
secretion in hepatic stellate cells and promoted the development
of HCC (Yoshimoto et al., 2013). In BC, Kovacs et al. (2019) noted
the oxidative stress induced by lithocholic acid, a metabolite from
the gutmicrobiome,was reducedduringoncogenesis,which led toa
decrease in the diversity of the intra-tumoral microbiome. These
results demonstrated that the nonadjacent microbiome, especially
their metabolites, played important roles in establishing an
inflammatory or oxidative environment to affect tumorigenesis.

Some microbiomes are not directly related to tumor
development, but their metabolites can migrate to a
pathological site in order to promote tumorigenesis by causing
an altered immune environment through the assistance of
immune cells and cytokines. Sethi et al. (2018) depleted the gut
microbiota and saw decreased tumor burden in pancreatic
cancer and melanoma. However, a lack of mature T and B
cells reversed this protection. Moreover, the host was found to
have fewer IFN-g+ T cells, and more IL-17A+ and IL-10+ T cells
(Sethi et al., 2018). Ma et al. (2018) reported that bile acid, the
important metabolite of the gut microbiota, controlled CXCL16
expression of liver sinusoidal endothelial cells in order to
modulate the accumulation of natural killer T cells in HCC,
indicating that the intestinal microbiota can implement indirect
immunosurveillance in HCC progression.

In conclusion, the microbiome has distinct functions in
tumorigenesis that are, to some extent, dependent on its
locations. The microbial metabolites and virulence in TME
established beneficial conditions for tumor proliferation. The
intra-tumoral microbiota affected metabolism, oxidation activity
and host immunity to promote tumorigenesis. Furthermore, the
microbiota in a nonadjacent environment can induce an
inflammatory or oxidative environment through metabolites
and affects immune cells in tumor progression (Figure 3).
DISCUSSION

The microbiomes within TME, tumor tissue and even the
nonadjacent environment, are specific and play essential roles in
tumor development (Figure 1). Tumor progression contributes to
different architectures of microbial profiles (Figure 2), while the
shifted microbiome in distinct locations can drive tumorigenesis
through direct and indirect effects (Figure 3).
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However, the interactions between the microbiome and
tumor are complicated. For example, despite the microbial
type-specific immune cells were identified in several cancers,
there was no detailed evidence to prove their function in
tumorigenesis (Nejman et al., 2020). The induced signals from
the microbiome and their metabolites in a nonadjacent
environment have the ability to move to a tumor environment
(Yu et al., 2010; Dapito et al., 2012; Yoshimoto et al., 2013;
Kovacs et al., 2019). However, the detailed mechanisms are still
unclear, including how the translocation occurs, how the
translocation affects the microbiome and virulence, and how
the translocation affects the carcinogenic process.

The microbiome has been considered to be a risk factor for
tumorigenesis since bacteria were discovered inside tumor tissues
(Compare andNardone, 2014).Oneof the important challenges for
the investigation of a tumor-related microbiome is microbial
contamination. Several studies described different structures of
the microbiome in the proximal and distant sites of tumor, which
were considered as themicrobiome fromtumormicroenvironment
(Ahn et al., 2013; Mima et al., 2016). Nejman et al. (2020)
constructed lots of controls to reduce contamination. Recently,
the Cancer Microbiome Atlas provided a protocol to control for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
sample contamination (Dohlman et al., 2021). It is critical to set up
rigorous contamination controls, and choose the proper sample
collection sites, as well as types of microbial analysis, to investigate
the tumor microbiome.

Currently, the tumor-related microbiota has been mainly
focused on bacteria. Other microbes also play essential roles in
tumorigenesis, including fungi, viruses, and bacteriophages. The
mycobiome has distinct characteristics in cancer patients and
healthy individuals. Additionally, it is known to play important
roles in tumor development (Gao et al., 2017; Mukherjee et al.,
2017; Perera et al., 2017; Vesty et al., 2018; Coker et al., 2019;
Qin et al., 2021). Furthermore, the interaction between
the mycobiome and microbiome has a critical function in
tumorigenesis (Lambooij et al., 2017; Sanchez-Alonzo et al.,
2020; Santus et al., 2021). Zapatka et al. (2020) systemically
utilized whole-genome and whole-transcriptome sequencing
data from 2,658 cancers across 38 tumor types and validated a
high prevalence of known tumor-associated viruses, including
Epstein–Barr virus, hepatitis B virus and human papillomavirus.
These results revealed that impaired antiviral defense may drive
tumorigenesis. Recently, Thaker et al. (2019) discussed the
impact of virus on tumor metabolism, and showed that the
FIGURE 3 | The microbiome drives tumorigenesis.
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virus, such as Adenovirus,Herpes family, and Flaviviruses, caused
different metabolic nodes to remodel the metabolism.
Meanwhile, the phages might reshape the microbiome to affect
the cancer progression. Hannigan et al. (2018) evaluated the
differences of the virome and bacterial community compositions
in human CRC. They found that CRC-related bacteriophage
communities potentially impacted the tumorigenesis by shifting
the bacterial community. Nakatsu et al. (2018) also found the
related shift of the interaction between the bacteriophage and
oral bacteria. This kind of shifted interactions seemed also
appeared in the non-adjacent community.

The efficacy of current cancer therapies, including chemotherapy,
radiotherapy and surgery, are highly correlated to the microbial
phenotype (Muls et al., 2017; Paul et al., 2017; Nakatsuji et al., 2018;
Wang et al., 2018; Lauka et al., 2019; McGee et al., 2019; Wu et al.,
2019; Xu et al., 2020a). The microbiome can also influence
effectiveness of the immunotherapy (Matson et al., 2018; Uribe-
Herranz et al., 2018; Strouse et al., 2019;Wojas-Krawczyk et al., 2019;
Xu et al., 2020b).Metabolites of themicrobiome also affect treatment
outcomes (Hatae et al., 2020; Nomura et al., 2020). Therefore, the
microbiome can serve as a potential biomarker or target to
distinguish the precision therapeutic strategies for different cancer
patients (Hargadon, 2017; Shaikh et al., 2019; Liss et al., 2020; Liu
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
et al., 2020; Song et al., 2020). Meanwhile, the human commensal
bacteria, such as Lactobacilli and Bifidobacteria have also been
suggested to play important roles in preventing and treating
various tumor malignancies, indicating that the microbiome can be
a source of potential therapeutics, as well as a therapeutic target
(Motevaseli et al., 2017; Wei et al., 2018; Legesse Bedada et al., 2020;
Zuo et al., 2020).
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