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The respiratory tract is the major site of infection by SARS-CoV-2, the virus causing
COVID-19. The pulmonary infection can lead to acute respiratory distress syndrome
(ARDS) and ultimately, death. An excessive innate immune response plays a major role in
the development of ARDS in COVID-19 patients. In this scenario, activation of lung
epithelia and resident macrophages by the virus results in local cytokine production and
recruitment of neutrophils. Activated neutrophils extrude a web of DNA-based
cytoplasmic material containing antimicrobials referred to as neutrophil extracellular
traps (NETs). While NETs are a defensive strategy against invading microbes, they can
also serve as a nidus for accumulation of activated platelets and coagulation factors,
forming thrombi. This immunothrombosis can result in occlusion of blood vessels leading
to ischemic damage. Herein we address evidence in favor of a lung-centric
immunothrombosis and suggest a lung-centric therapeutic approach to the ARDS of
COVID-19.

Keywords: acute respiratory distress syndrome (ARDS), coronavirus, COVID-19, cytokine storm, NET, SARS-CoV-2

INTRODUCTION

SARS-CoV-2, the coronavirus responsible for COVID-19, initially infects the nasal, bronchial and
alveolar epithelial cells (Hoffmann et al., 2020; Milewska et al., 2020; Zhu et al., 2020). Resident
immune cells such as macrophages and dendritic cells are also infected, albeit to a lesser extent
(Carsana et al., 2020; Schaefer et al., 2020; Yang et al., 2020). The SARS-CoV-2 pulmonary tropism is
manifested in the clinical features of COVID-19 (e.g., cough, dyspnea). The clinical course of SARS-
CoV-2 infection is subdivided into three outcomes. Most patients will be asymptomatic or display
minor respiratory symptoms and recover without hospitalization. Roughly 10-20% of affected
individuals will advance to pneumonia/hypoxia and require hospitalization, but will eventually
recover (Chowdhury et al., 2021; Morris et al., 2021). Only a small fraction (5 - 10%) of COVID-19
patients will progress to acute respiratory distress syndrome (ARDS) and require aggressive
treatment in intensive care units (e.g., mechanical ventilation) (Chowdhury et al., 2021; Morris
et al, 2021). Some of these patients will eventually succumb to the disease with the major cause of
death being respiratory failure (Ackermann et al., 2020; Phua et al., 2020; Tay et al., 2020). Autopsy
findings indicate that the lungs bear the greatest pathologic burden, characterized by diffuse alveolar
damage, inflammatory cell infiltrates and thrombosis (Ackermann et al., 2020; Lax et al., 2020; Liu
et al., 2020; Deshmukh et al,, 2021). Of note, organs remote from the initial site of infection such as
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the heart and kidneys are not spared. Histopathologic features in
autopsy specimens of these remote organs include the presence
of microvascular thrombi adjacent to regions of necrosis
(Ackermann et al., 2020; Rapkiewicz et al., 2020; Tang et al,
2020). Thus, in severe COVID-19 there is evidence indicative of
an hypercoagulative state and multiorgan dysfunction.

A dysregulated immune response to SARS-CoV-2
infection is believed to play a major role in the pathogenesis of
COVID-19. Specifically, there is an impaired antiviral response
in conjunction with an excessive inflammatory response
(Blanco-Melo et al,, 2020; Hadjadj et al., 2020). Lymphopenia
is common and may be coupled to markers of T cell exhaustion
in the circulation and decreased numbers in lymphoid tissues
(Diao et al., 2020; Giamarellos-Bourboulis et al., 2020; Lee et al.,
20205 Liu et al., 2020; Lucas et al., 2020; Zhao et al., 2020; Zheng
et al., 2020; Ronit et al, 2021). An inadequate lymphocyte-
mediated antiviral response would protract the viral infection
and thereby exacerbate the inflammatory response (Lee et al.,
2020; Lucas et al., 2020; Manjili et al., 2020; Ronit et al., 2021).

LUNG-CENTRIC INFLAMMATION

Analyses of bronchoalveolar lavage fluid (BALF) of COVID-19
patients indicate a pro-inflammatory environment within the
lungs (De Biasi et al., 2020; Liao et al., 2020; Pandolfi et al., 2020;
Wang et al., 2020a; Ronit et al., 2021). Their BALF is enriched in
pro-inflammatory chemokines and cytokines as well as activated
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macrophages and neutrophils. Chemokines (e.g., IL-8) dominate
the BALF profile in moderate cases of COVID-19, whereas
cytokines (e.g., TNF-q, IL-6) are prevalent in more severe
cases (Liao et al., 2020).

A major cytokine involved in initiation and progression of the
inflammatory response is IL-1B, the activation of which is
dependent on the NLRP3 inflammasome (Kelley et al., 2019;
Swanson et al., 2019; Zhao and Zhao, 2020). In brief, detection of
viral material (e.g., PAMPs) by alveolar macrophages activates
the NFxB transcription pathway, resulting in the generation of
nascent pro-IL-1B as well as components of the NLRP3
inflammasome (Figure 1). Subsequently, the inflammasome is
assembled and serves as a platform for caspase-mediated
cleavage of pro-IL-1B to the mature form. IL-1 lacks a signal
sequence and is retained in the cytoplasm until an exit portal is
created in the plasma membrane. To this end, gasdermins, also
activated by the caspases, enter the plasma membrane and
oligomerize to form pores (Broz et al., 2020). IL-1f and other
pro-inflammatory material (e.g., DAMPs) exit via these
gasdermin pores. Collectively, the released mediators amplify
the local inflammatory response via feed-forward mechanisms,
including cytokine-induced cytokine release and recruitment of
additional innate immune cells (e.g., neutrophils).

The NF«B pathway and the NLRP3 inflammasome appear to
be operative in COVID-19 patients (Lee et al., 2020; Hariharan
et al.,, 2021) and may contribute to lethality (Lara et al., 2020).
SARS-CoV-2 infects human monocytes and activates the NLRP3
inflammasome, resulting in gasdermin-mediated pyroptosis
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FIGURE 1 | Schematic of lung-centric inflammation and immunothrombosis in response to SARS-CoV-2 infection. Resident alveolar macrophages mount an

inflammatory response to infection of the lungs by SARS-CoV-2. Macrophages detect viral material e.g., pathogen-associated molecular patterns (PAMPs). PAMPs
activate the NFkB pathway which generates pro-IL-1B and components of the inflammasome. Assembly and functional activation of the inflammasome results in
caspase-mediated cleavage of pro-IL-1 to the mature IL-1f. Caspase cleavage of gasdermin D (GSDMD) allows it to enter the plasma membrane and oligomerize,
forming pores. IL-1B as well as other inflammatory mediators, such as damage-associated molecular patterns (DAMPs) exit the macrophage through the GSDMD
pores. The inflammatory response is amplified by feed-forward mechanisms and recruitment of additional leukocytes, e.g., neutrophils. Activated neutrophils can
extrude neutrophil extracellular traps (NETs), a meshwork of decondensed DNA decorated with granule-derived proteases and antimicrobials. Inflammasome-derived
caspase as well as granule-derived elastase activate GSDMD to form the pores for NET release. NETs formed in the alveolar space can induce lung injury while NETs
generated within blood vessels sequester platelets and coagulation factors to promote thrombogenesis. Modified from (Tall and Westerterp, 2019).
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(Ferreira et al., 2021). Active caspases and cytokines are present
in the circulation of these patients, with higher levels noted in
severe cases (Rodrigues et al, 2021). Further, inflammasome
components are detected in autopsy specimens of lung tissue,
primarily in macrophages and to a lesser extent in alveolar
epithelia (Rodrigues et al., 2021; Toldo et al., 2021).

LUNG-CENTRIC “CYTOKINE STORM”

The cytokines and chemokines generated within the lungs in
response to infection can spill into the general circulation, a
convenient sampling reservoir for both clinical and experimental
purposes. Based on elevated circulating levels of cytokines, the term
“cytokine storm” has been used as a descriptor of the
hyperinflammatory response involved in the pathogenesis
of COVID-19 (Barnes et al., 2020; Castelli et al., 2020;
Fajgenbaum and June, 2020; Mehta et al, 2020; Merad and
Martin, 2020; Tay et al, 2020). This descriptor has been
challenged on the grounds that the measured blood levels of
inflammatory cytokines in COVID-19 patients are orders of
magnitude less than levels reported in other cases of ARDS such
as sepsis or influenza (Kox et al., 2020; Mudd et al., 2020; Sinha
et al., 2020). The issue is further confounded by a lack of a precise
definition for the term “cytokine storm” (Fajgenbaum and June,
2020). A reasonable approach to avoid this rather semantic issue is
to consider the local pulmonary storm as being more severe than the
systemic storm (Mudd et al., 2020; Wang et al., 2020a). Based on

this premise, data mining of the literature for ARDS studies in
which measures of cytokine levels in BALF and blood are provided
in the same patients yielded the results presented in Tables 1 and 2.
Table 1 presents data from ARDS of pulmonary origin, while
Table 2 presents data from extrapulmonary causes. Of note,
none of the studies specifically addressed a potential lung-to-
systemic cytokine gradient. Further, the sample sizes are rather
small, particularly for the two COVID-19 cases in Table 1.
Finally, no attempt is made to establish statistical differences.
Despite these limitations, there is a notable trend for higher levels
of inflammatory cytokines in BALF than plasma of ARDS
patients in which the inciting event was of pulmonary origin
(Table 1). This lung-to-systemic gradient is not as evident in
ARDS of non-pulmonary origin (Table 2). Analogous results are
obtained in experimental models of lung inflammation and
injury. When the inciting factor is a direct insult to the lungs,
the BALF levels of cytokines exceed their blood levels (Table 3).
Of note, dismantling of NETs within the airspace (intratracheal
DNase), reduces LPS-induced alveolar damage. This maneuver
decreases the cytokine levels in both compartments, while
maintaining a BALF-to-lung cytokine gradient (Table 3). By
contrast, when lung inflammation/injury is a result of an indirect
insult (e.g., peritonitis), a BALF-to-blood cytokine gradient is not
evident (Table 4). Collectively, a BALF-to-blood cytokine
gradient is noted in ARDS and animal models when the
inciting event is of lung origin. Thus, despite the limited data
from COVID-19 cases, it seems likely that a lung-centric
cytokine storm may characterize the ARDS of COVID-19.

TABLE 1 | Systemic and bronchoalveolar lavage fluid (BALF) cytokines in ARDS of pulmonary origin.

Systemic BALF Time n Study
MCP1
Pneumonia 80 3,000 3 hrs 5 1
COVID 1,660 3,470 3 days 4 2
IL-8
Pneumonia 60 300 3 days 47 3
Pneumonia 370 463 1 day 44 4
Pneumonia 30 761 3 hrs 5 1
COVID 1,250 3,375 3 days 4 2
IL-1B
Pneumonia 51 95 1 day 44 4
Pneumonia 7 100 3 hrs 5 1
TNF-o
Pneumonia 15 77 1 day 44 4
Pneumonia 15 300 3 hrs 5 1
Pneumonia 30 ND* 3 days 47 3
COVID ND ND 3 days 4 2
IL-6
Pneumonia 1,500 3,000 3 days 49 3
Pneumonia 220 283 1 day 44 4
Pneumonia 317 919 3 hrs 5 1
COVID 896 3,786** 21-23 days 1 5
COVID 1,560 1,300 3 days 4 2

Values are the means in pg/ml. The means were either given or approximated from measurements provided (transparent grid overlay). Time: time of sample collections in hours/days after
start of mechanical ventilation.*ND, not detected; **IL-6 levels in pleural effusion = 18,000 pg/ml. Study 1 (Osaki et al., 2010): ARDS, bilateral infiltrates, 1/5 patients died. Study 2 (Ronit
etal., 2021): ARDS, bilateral infiltrates, lymphopenia, 2/4 patients died. Study 3 (Schutte et al., 1996): ARDS, microorganisms detected in BALF, 42% of patients died. When BALF levels of
IL-8 and IL-6 were corrected for urea, the predicted levels in alveolar fluid were 10-fold higher, indicating local production of the two cytokines. Study 4 (Lee et al., 2010): acute respiratory
failure due to severe pneumonia, 34/44 patients died. BALF cytokine levels exceeded systemic levels regardless of the comparisons made (e.g., survivors vs non-survivors). Study 5
(Wang et al., 2020a): ARDS, septic shock, multiple organ failure, the patient died. Based on the II-6 gradient from lungs to blood, proposed that “the local (cytokine) storm may be worse
than the systemic storm”. Compartments with higher levels in bold font.
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TABLE 2 | Systemic and bronchoalveolar lavage fluid (BALF) cytokines in ARDS of non-pulmonary origin.

Systemic BALF Time n Study
IL-8
3,525 480 2 hrs 20 1

630 3540 17 days 6 2

20 250 3 days 10 3
IL-1B

460 11,900 17 days 6 2

364 267 2 hrs 23 4
TNF-a

370 3,900 17 days 6 2

204 463 2 hrs 23 4

40 ND* 3 days 10 3
IL-6

388 538 2 hrs 20 1

880 9,780 17 days 6 2

400 4,000 3 days 10 3

Values are the means in pg/ml, except study 4 in which values are the medians in pg/ml. The values were either given or approximated from measurements provided (transparent grid
overlay). Time: time of sample collections in hours/days after start of mechanical ventilation. *ND, detected. Study 1 (Bouros et al., 2004): ARDS, respiratory failure, bilateral infiltrates;
diagnosis: trauma (9), pneumonia (3), sepsis (2), transfusion (2), pancreatitis (2), intoxication (1), burns (1); 14/20 patients died. Regardless of comparisons made (e.g., survivors vs non-
survivors) IL-6 levels in BALF exceeded systemic levels, while systemic levels of IL-8 exceeded their BALF levels. Study 2 (\Meduri et al., 1995): ARDS, respiratory failure, lung PMN
infiltrates, diagnosis: pneumonia (3), aspiration (1), urosepsis (3), intra-abdominal infection; (1) 4/8 patients died. Time of sampling varied from 5 to 30 days after ARDS with a mean of 17
days. Study 3 (Schutte et al., 1996): ARDS, respiratory failure, lung PMN infiltrates; diagnosis: sepsis (nonpulmonary origin) (7), shock (3); 6/10 patients died. Study 4 (Agouridakis et al.,
2002): ARDS, respiratory failure, bilateral infiltrates, diagnosis: trauma (9), pneumonia (5), sepsis (2), transfusion (2), pancreatitis (2), intoxication (1), burns (1); 12/23 patients died.

Compartment with higher levels in bold font.

Inherent in experimental models of lung inflammation/injury
is a defined time interval from insult to assessment of endpoints.
Chemokines (e.g., IL-8, MIP-2) are detected as early as 2 - 6
hours after direct injury to the lungs, exceeding plasma levels by
at least 20-fold (Table 3). Further, the acid-induced lung injury
(pulmonary edema and impaired oxygenation) is associated with
the presence of neutrophils in the BALF (Folkesson et al., 1995).
Both neutrophil recruitment and lung injury are prevented by
therapeutic (post-acid) blockade of IL-8. These observations are
consistent with the following scenario. Acid stimulates lung
epithelium and/or macrophages to generate IL-8, which
attracts neutrophils to the lungs, where they are activated and
cause injury (Folkesson et al., 1995).

There are a few issues of relevance to COVID-19 that warrant
attention. When BALF and plasma samples are obtained
early after admission to ICU, a lung-to-blood gradient for the
chemokines, IL-8 is detected (Table 1); correspondingly, the
BALF also contains activated monocytes and neutrophils (Ronit
et al,, 2021). In the same samples, no such gradient was detected
for the pro-inflammatory cytokines, TNF-o. or IL-6 (Ronit et al.,
2021). However, in a longitudinal study of one patient with
protracted COVID-19 (over 3 weeks), a 4-fold BALF to blood
gradient for IL-6 was attained just days before death (Table 1).
Of note, in pleural effusion samples obtained concurrently, the
level of IL-6 was 20-fold greater than in plasma (Wang et al,
2020a). Further, assuming a progression in disease severity over

TABLE 3 | Systemic and bronchoalveolar lavage fluid (BALF) cytokines in animal models of direct lung injury.

Systemic BALF Time n Study
IL-8
Acid 330 6,700** 6 hrs 10 1
MIP-2
VILI ND* 200 2 hrs 4 2
IL-1B
VILI ND 30 2 hrs 4 2
IL-6
LPS 2,125 3,050 24 hrs 16 3
DNase/LPS 270 1,670 24 hrs 6 3
TNF-a
VILI ND ND 2 hrs 4 2
LPS 450 1,460 24 hrs 6 3
DNase/LPS 280 500 24 hrs 6 3

Values are means in pg/ml. The values were either given or approximated from measurements provided (transparent grid overlay). Time: time of sample collections in hours after direct
insult to lungs. *ND, not detected. **Samples from distal small bronchi, presumed to represent alveolar fluid, contained 40,500 pg/ml IL-8. Study 1 (Folkesson et al., 1995): Hydrochloric
acid given intratracheally to rabbits. Indices of lung injury: lung edema and systemic hypoxia, PMN infiltration. All rabbits died within 12 -14 hours after lung injury. Study 2 (Ricard et al.,
2001): ventilator-induced lung injury in rats (VILI; 42 mi/kg tidal volume). Index of lung injury: Increased protein levels in BALF. Study 3 (Liu et al., 2016): lipopolysaccharide (LPS) given
intratracheally to mice. Indices of lung injury: interstitial ederma, PMN infiltration, hemorrhage, NET components in BALF and lung tissue. Intratracheal DNase reduced NET formation and
lung injury. Compartment with higher levels in bold font.
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TABLE 4 | Systemic and bronchoalveolar lavage fluid (BALF) cytokines in animal models of indirect lung injury.

Systemic BALF
MCP-1
DH 600 25
KC
DH 1500 100
IL-6
CLP 20,000 20,000
CLP 9,000 5,000
IL-1B
CLP 90 180
CLP 50 60
TNF-o
CLP 280 220
CLP 50 25

Time n Study
12hrs 7 1
12hrs 7 1
24 hrs 6 3
6 hrs 6 2
24 hrs 6 3
6 hrs 6 2
24 hrs 6 3
6 hrs 6 2

Values are means in pg/ml. The values were either given or approximated from measurements provided (transparent grid overlay). Time: time of sample collections in hours after insult.
Study 1 (Kalbitz et al., 2016): mice were subjected to a double-hit (DH)insult consisting of bilateral lung contusion followed 24 hrs later by cecal ligation and perforation. Indices of lung
injury: protein in BALF, MPO activity in lung homogenates. Study 2 (\Vang et al., 2019): mice were subjected to cecal ligation and perforation (CLP). Indices of lung injury: inflammatory cell
infiltration, alveolar damage, and edema in lung tissue. CLP also injured the heart, liver, and kidneys. 9/20 mice died by 24 hrs after CLP and 15/20 died by 7 days. Study 3 (Wang et al.,
2020b): mice were subjected to cecal ligation and perforation (CLP). Indices of lung injury: inflammatory cell infiltration, alveolar damage, and edema in lung tissue. Compartment with high

levels in bold font.

time, additional insight is gained by comparisons of moderate to
severe cases of COVID-19. Chemokines (e.g., IL-8) dominate the
BALF profile in moderate cases, whereas pro-inflammatory
cytokines (e.g., TNF-ca, IL-6) are prevalent in more severe
cases (Liao et al., 2020). The BALF of moderate COVID-19
patients is enriched with macrophages, while BALF of severe
cases is enriched with neutrophils, with the neutrophil count
being directly related to the levels of IL-8 (Pandolfi et al., 2020).
Thus, the SARS-CoV-2 infection of the lungs appears to follow
the expected trajectory of an inflammatory response (Folkesson
et al., 1995).

LUNG-CENTRIC IMMUNOTHROMBOSIS

The recruitment and activation of neutrophils can result in the
formation of neutrophil extracellular traps, or NETs (Figure 1).
NETs are an extruded web of decondensed chromatin DNA
decorated with granule-derived proteases and antimicrobials
(Papayannopoulos, 2018; Boeltz et al., 2019). The formation of
GSDMD pores in neutrophil membranes facilitates the release of
NETs to the extracellular space (Tall and Westerterp, 2019; Chen
et al., 2020). In lung tissues of fatal COVID-19 cases, NET's have
been detected in close association with damaged alveoli
(Middleton et al., 2020; Radermecker et al., 2020; Veras et al.,
2020). Further, complexes of NETs and platelets, as well as
thrombi, have been noted in the lung microvasculature
(Iba et al., 2020; Leppkes et al., 2020; Radermecker et al.,
2020). Collectively, these findings are consistent with
immunothrombosis, a pathway linking innate immunity with
thrombosis (Gaertner and Massberg, 2016; Iba et al., 2020;
Nakazawa and Ishizu, 2020; Loo et al., 2021). The homeostatic
function of this pathway is to limit pathogen spread.

As a caveat, the formation of thrombi may occlude the affected
microvasculature and result in ischemic injury (Ackermann et al,
2020). An IL-1B/NET/coagulation pathway has been invoked in

thrombogenesis in a cohort of acute coronary syndrome patients
with high circulating CRP (Liberale et al, 2019). The lungs are
particularly susceptible to immunothrombosis, given the readily
available pool of neutrophils (Granton et al, 2018) and platelets
(Lefrancais et al.,, 2017). In this scenario, a viral-induced
inflammation promotes the formation of NETs by activated
neutrophils. The NETs serve as a scaffold for sequestering
activated platelets and components of the coagulation cascade
(Mcdonald et al., 2017), setting the stage for the generation of
thrombi. Occlusive thrombi within the pulmonary vasculature have
been noted in fatal COVID-19 cases (Ackermann et al, 2020;
Leppkes et al, 2020; Middleton et al, 2020; Radermecker et al.,
2020; Rapkiewicz et al., 2020). Of note, anticoagulants (e.g.,
heparinoids) are advocated to alleviate the hypercoagulation state
of COVID-19 (Bikdeli et al., 2020; Connors and Levy, 20205
Leentjens et al., 2021). However, given the potential for bleeding,
specific guidelines for thromboprophylaxis in these patients await
the outcome of ongoing clinical trials (Leentjens et al., 2021).

Circulating DNases can degrade the DNA backbone of NETs
and may serve as an endogenous regulatory mechanism to limit
immunothrombosis (Jiménez-Alcazar et al., 2017; Mcdonald
et al,, 2017). In murine models of sepsis, dismantling of NET's
by DNases reduces occlusive intravascular clots in the lungs and
improves survival (Jiménez-Alcazar et al., 2017; Lefrancais et al.,
2018). In ARDS patients (all causes), the severity of disease and
lethality is related to the ratio of plasma NETs/DNases
(Lefrancais et al., 2018). A similar situation appears to exist in
COVID-19 patients, circulating NETs are increased with a
corresponding decrease in DNase levels (Lee et al., 2021).

In fatal cases of COVID-19 microvascular thrombi and necrotic
injury in organs remote from the lungs have been noted on
autopsies (Ackermann et al,, 2020; Rapkiewicz et al., 2020; Tang
et al,, 2020). Potential mechanisms include spill-over of either the
virus or host cytokines from damaged lungs into the systemic
circulation. However, there is little evidence that viable SARS-CoV-
2 becomes blood-borne (Andersson et al., 2020; Lamouroux et al.,
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2020; Vivanti et al., 2020). Further, circulating levels of
proinflammatory cytokines do not reach levels considered
detrimental to tissues (Kox et al., 2020; Mudd et al., 2020; Sinha
et al.,, 2020). Whether the pulmonary NET-mediated
immunothrombosis of COVID-19 can impact remote organs is
not clear at present. While NETs and NET-associated thrombi have
consistently been found in the lungs of fatal cases, their presence in
remote organs is equivocal (Leppkes et al., 2020; Radermecker et al.,,
2020). Alternatively, while NET remnants (presumably due to
DNase-induced turnover) occurs in COVID-19 (Leppkes et al,
2020), the initiated hypercoagulative and thrombotic milieu may be
a source of NET-independent remote organ involvement (Connors
and Levy, 2020). Given the paucity of information on this issue, any
conclusions regarding mechanisms of remote organ injury in
COVID-19 are rather speculative.

POTENTIAL LUNG-CENTRIC THERAPY

The lung-centric inflammatory response prompts consideration of
the potential clinical utility of bronchoscopy and BALF. BALF
analyses are currently used to provide a microbiological diagnosis
of COVID-19 in suspected cases, but in which nasopharyngeal
swabs are negative for viral RNA (Mondoni et al., 2020; Patrucco
et al, 2020). In addition, BALF analyses can also direct specific
antimicrobial therapy and bronchoscopy can be used to clear the
bronchial passage (Bruyneel et al, 2020). Of interest from a
therapeutic perspective are the results of a murine study in which
local lung inflammation and injury was induced by intratracheal
LPS (Table 3). The recruited and activated PMN generated NET's
within the airspace, as evidenced by NET markers in BALF (Liu
etal., 2016). Unlike NETSs formed in blood vessels, which are rapidly
cleared (in part via DNase), NETs in the airspace are stable
structures (Lefrancais et al., 2018). Exogenous intratracheal DNase
reduces NETs in the BALF with a corresponding reduction in both
BALF and systemic cytokines (Table 3). Of relevance to the ARDS
of COVID-19, hypoxemic patients on ventilators were given
nebulized recombinant human DNase I as part of their
therapeutic regimen; no adverse effects were noted and the
potential for benefit has prompted several clinical trials (Weber
et al., 2020).
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