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Candida albicans SET3 Plays a Role
in Early Biofilm Formation, Interaction
With Pseudomonas aeruginosa and
Virulence in Caenorhabditis elegans
Ruan Fourie , Jacobus Albertyn, Olihile Sebolai , Onele Gcilitshana and Carolina H. Pohl*

Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa

The yeast Candida albicans exhibits multiple morphologies dependent on environmental
cues. Candida albicans biofilms are frequently polymicrobial, enabling interspecies
interaction through proximity and contact. The interaction between C. albicans and the
bacterium, Pseudomonas aeruginosa, is antagonistic in vitro, with P. aeruginosa
repressing the yeast-to-hyphal switch in C. albicans. Previous transcriptional analysis of
C. albicans in polymicrobial biofilms with P. aeruginosa revealed upregulation of genes
involved in regulation of morphology and biofilm formation, including SET3, a component
of the Set3/Hos2 histone deacetylase complex (Set3C). This prompted the question
regarding the involvement of SET3 in the interaction between C. albicans and P.
aeruginosa, both in vitro and in vivo. We found that SET3 may influence early biofilm
formation by C. albicans and the interaction between C. albicans and P. aeruginosa. In
addition, although deletion of SET3 did not alter the morphology of C. albicans in the
presence of P. aeruginosa, it did cause a reduction in virulence in a Caenorhabditis
elegans infection model, even in the presence of P. aeruginosa.
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INTRODUCTION

Interkingdom interactions are ubiquitous in nature and can affect various aspects of the growth,
antimicrobial resistance and virulence of species within a consortium (Peters et al., 2012; Stacy et al.,
2016). In the opportunistic fungal pathogen, Candida albicans, these interactions are frequently
encountered in polymicrobial associations formed with commensal microorganisms as well as
pathobionts in humans (Morales and Hogan, 2010; Diaz et al., 2012; Neville et al., 2015). This is, in
part, due to the ability to form biofilms on both abiotic and biotic surfaces (Polke et al., 2015).

Candida albicans exhibits polymorphism, with up to nine distinct phenotypes being formed
(Noble et al., 2017). This includes the classical morphotypes - yeast, hyphae, pseudohyphae and
chlamydospores - as well as non-classical phenotypes dependent on the expression of the white-
opaque regulator, Wor1p (Lan et al., 2002; Pande et al., 2013; Tong et al., 2014; Noble et al., 2017).
These different phenotypes show alterations in mode of growth, morphology, carbon source
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utilisation and virulence. Importantly, distinctive phenotypes
also show differences in competitive fitness with resident or co-
infecting bacteria and may alter the population dynamics of these
bacteria (Pande et al., 2013; Fox et al., 2014).

Candida albicans is frequently co-isolated with the Gram-
negative bacterium, Pseudomonas aeruginosa from the lungs of
cystic fibrosis patients (Chotirmall et al., 2010; Leclair and Hogan,
2010; Haiko et al., 2019). In vitro, the interaction is characterised as
antagonistic, with both species influencing each other (reviewed by
Fourie and Pohl, 2019). The bacterium was found to lyse and kill
hyphae of C. albicans through physical interaction (Hogan and
Kolter, 2002; Brand et al., 2008; Bandara et al., 2010) and affects C.
albicans biofilm formation and morphogenesis through various
secreted factors and cell wall components (Kerr et al., 1999;
Hogan et al., 2004; McAlester et al., 2008; Xu et al., 2008;
Bandara et al., 2010; Holcombe et al., 2010; Reen et al., 2011;
Bandara et al., 2013). This includes inhibition of morphogenesis
from yeast to hyphal morphologies by phenazines, quorum sensing
molecules, lipopolysaccharides and via sequestration of iron, and
promotion of morphogenesis by peptidoglycan. These stimuli elicit
their effects through various signalling pathways in C. albicans,
including stimulation of morphogenesis through the mitogen
activated protein (MAP) kinase signalling pathway and the cyclic
adenosine monophosphate (cAMP)/protein kinase A (PKA), as well
as repression by the transcriptional repressor, Tup1p (Shareck and
Belhumeur, 2011). Therefore, multiple conflicting stimuli, occurring
simultaneously, from co-incubation with P. aeruginosa may play a
role to affect the morphology of C. albicans. Transcriptomic
evaluation of C. albicans indicated the upregulation of SET3 [a
component of the Set3/Hos2 histone deacetylase complex (Set3C)]
in the presence of P. aeruginosa (Fourie et al., 2021). This led to the
question if Set3C may influence the interaction between C. albicans
and P. aeruginosa, by integrating various external stimuli to
influence biofilm morphology. As the contribution of this gene in
the interaction of C. albicans with P. aeruginosa has not been
evaluated before, its role in in vitro polymicrobial biofilm formation
and virulence in Caenorhabditis elegans was examined.
MATERIALS AND METHODS

Strain Maintenance
Candida albicans strains were stored at -80°C with 15% glycerol.
Yeast strains were revived and maintained on yeast malt (YM)
agar (3 g l-1 malt extract, 3 g l-1 yeast extract, 5 g l-1 peptone, 10 g
l-1 glucose, 16 g l-1 agar) at 30°C. Pseudomonas aeruginosa PAO1
was stored at -80°C with 25% glycerol and revived/maintained
on Luria-Bertani (LB) agar (5 g l-1 yeast extract, 10 g l-1 tryptone,
10 g l-1 sodium chloride and 15 g l-1 agar).

Construction of Homozygous Deletion
Mutants With CRISPR/Cas9
A published CRISPR-Cas9 system (Nguyen et al., 2017) was used
for the construction of homozygous mutants for SET3 with
minor modifications. This method entails the introduction of a
homozygous double stranded break at the site of interest and
modification of the sites of interest with donor DNA in the wild
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type SC5314 strain. A detailed description of the procedure can
be found in Supplementary Text S1. Following homozygous
deletion of SET3 yielding set3D/D, a complemented strain (set3D/
D::SET3) was constructed by reintroduction of the wild-type gene
by modified donor DNA.

Preparation of Cells for Mono- and
Polymicrobial Biofilms
Preparation of C. albicans Cells for
Monomicrobial Biofilms
Candida albicans SC5314 (wild type) was grown on YM agar for 24
h at 30°C and was inoculated into 10 mL yeast nitrogen base (YNB)
broth (10 g l-1 glucose, 16 g l-1 YNB) and incubated at 30°C for 24 h.
Cells were harvested (1878 x g, 5 minutes) and the supernatant
removed. This was followed by washing the cells twice with
phosphate buffered saline (PBS) (Oxoid, England). The cells were
counted with a hemocytometer and diluted to 1 x 106 cells/mL in
filter sterilized (0.22 mm nitrocellulose filter, Merck Millipore,
Ireland) RPMI-1640 medium (Sigma-Aldrich, USA).

Preparation of C. albicans and P. aeruginosa Cells
for Polymicrobial Biofilms
Pseudomonas aeruginosa PAO1 (wild type) was grown on LB
plates for 24 h at 37°C. Cells were inoculated into 5 mL nutrient
broth (1 g l-1 malt extract, 2 g l-1 yeast extract, 5 g l-1 peptone and
8 g l-1 sodium chloride) and incubated at 37°C for 24 h with
shaking (150 rpm). These cells were washed (X3) and diluted to
an optical density (OD600) of approximately 0.05 in RPMI-1640
medium containing 1 x 106 cells/mL C. albicans (prepared as
described in previous section).

Quantification and Characterisation of
Biofilm Formation
Biofilm Biomass of Mono- and
Polymicrobial Biofilms
Cells were prepared as described above and 200 µL was dispensed
into a 96-well plate (Corning Incorporated, Costar®, USA). The
plate was incubated for 6h and 48h respectively at 37°C to allow
the formation of biofilms. The crystal violet assay was performed
on biofilms according to Jin and co-workers (2003) with minor
modifications. Briefly, the supernatant from each well was
removed and the biofilms were washed twice with sterile PBS.
Biofilms were then left to air dry for 45 minutes and stained with
110 µL crystal violet (0.4% w/v; Merck, Germany) for 45 min (Jin
et al., 2003). Biofilms were washed three times with 350 µL sterile
H2O and de-stained with 200 µL 95% ethanol for 45 min. One
hundred microliter of de-staining solution was then transferred
to a clean 96-well plate and absorbance was measured at 595 nm.
This experiment was performed in triplicate with four technical
replicates per biological replicate.

Quantification of C. albicans and P. aeruginosa
Colony Forming Units in Biofilms
Cells for mono- and polymicrobial biofilms were prepared as
described above in flat-bottom 6 well culture plates (Corning
Incorporated, USA) in 3 mL medium and incubated for 48h at
37°C to allow biofilm formation to take place. After incubation,
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biofilms were washed twice with sterile PBS, scraped off and
suspended in PBS. Biofilms were then vortexed 3 times for 1
minute to remove adherent cells from one another (adapted from
Fourie et al., 2017). For quantification of C. albicans, serially
diluted cells were plated onto YM medium acidified with tartaric
acid (final concentration 0.08%). For bacterial quantification,
serially diluted cells were plated onto LB supplemented with 10
µg/mL amphotericin B (Sigma-Aldrich, USA) (Pires et al., 2013).
Plates were incubated overnight, to allow formation of colonies,
and counted. This experiment was performed in triplicate.

Morphology of Mono- and Polymicrobial Biofilms
Cells for mono- and polymicrobial biofilms were prepared as
described above in flat-bottom 6 well culture plates in 3 mL
medium (Fourie et al., 2017). After incubation for 24h at 37°C (to
allow for mature biofilms without extensive killing by P.
aeruginosa), supernatant was removed and approximately 5 mm
rectangular sections of the wells were cut and placed in PBS. Cells
were fixed overnight in 3% (v/v) glutardialdehyde (Merck,
Germany) in phosphate buffer. This was followed by washing of
biofilms with PBS and fixation with 1% osmium tetroxide (Merck,
Germany) for 1h. Following fixation, biofilms were sequentially
dehydrated with increasing concentration of ethanol (50% to 100%)
and subjected to critical point drying (Samdri-795 Critical point
dryer, Tousimis, USA). A gold layer was applied to the biofilms with
a SEM coating system (Bio-Rad, UK) and examined using a JSM-
7800F Extreme-resolution Analytical Field Emission SEM.

Infection of Caenorhabditis elegans by
C. albicans and P. aeruginosa
Caenorhabditis elegans AU37 [glp-4(bn2) I; sek-1(km4 X]
(RRID : WB-STRAIN : WBStrain00000261), obtained for the
Caenorhabditis Genetic Centre (University of Minnesota), was
used for all infections. The nematodes were propagated and
maintained on Nematode Growth Medium (3 g l-1 NaCl, 2.5 g l-1

peptone, 5 mg ml-1 cholesterol, 1 mM CaCl2, 1 mM MgSO4, 25
mM KPO4, 20 g l-1 agar) with Escherichia coli OP50 as a food
source at 15°C (Brenner, 1974).

For infection by C. albicans alone, C. albicans strains were
inoculated in YPD broth overnight at 30°C. Overnight cells were
diluted to an OD600 of 0.8 and 100 mL was plated onto brain-
heart infusion (BHI)-agar plates and incubated overnight at
30°C. Synchronised L4-stage nematodes were washed with M9
buffer (3 g l-1 KH2PO4, 6 g l-1 Na2PO4 and 1 mM MgSO4) and
added to plates with C. albicans. Nematodes were incubated with
C. albicans for 4 hours at 25°C and washed three times with M9
buffer to remove non-ingested C. albicans cells. Nematodes were
then added at approximately 60 per well in a 6 well plate
(Corning Incorporated, USA) containing 2 mL 80% M9 buffer
and 20% BHI broth, with 90 mg/mL kanamycin and incubated at
25°C. Nematodes were monitored daily and dead nematodes
(non-motile after mechanical stimulation with sterile pipette tip
or penetration of C. elegans cuticle by C. albicans hyphae) were
counted and removed.

For dual-infection by both C. albicans and P. aeruginosa,
C. albicans was prepared on BHI-agar plates as described above.
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P. aeruginosa was inoculated in LB broth overnight and diluted to
OD600 of 0.8. One hundred microliter of the P. aeruginosa
suspension was plated on BHI-plates and incubated overnight at
37°C. Synchronised L4-stage nematodes were washed with M9
buffer and added to plates incubated with C. albicans for 2 hours at
25°C. Nematodes were washed three times with M9 buffer and
added to BHI-plates with P. aeruginosa for 2 hours at 25°C.
Nematodes were washed again with M9 buffer to remove non-
ingested P. aeruginosa cells and placed inM9 buffer in 6 well plates
(approximately 60 nematodes per well) and incubated at 25°C.
Nematodes were monitored daily and dead worms (non-motile
after mechanical stimulation with sterile pipette tip or penetration
of C. elegans cuticle by C. albicans hyphae) were counted and
removed. Nematodes incubated with E. coliOP50 prior to survival
assay was used as a control. Infection was performed in triplicate
for a total of 180 nematodes per strain of C. albicans. Survival
metrics including Kaplan-Meier statistics, median survival time
and log-rank test were performed with online application for
survival analysis 2 (OASIS 2; Han et al., 2016).

Statistical Analysis
Differences between control and experimental, as well as between
C. albicans strains were determined with t-test, performed with
GraphPad Prism version 7.00 for Windows (GraphPad Software,
La Jolla California USA, www.graphpad.com) unless otherwise stated.
RESULTS

Deletion of SET3 Influences Early Biofilm
Formation and Interaction With
P. aeruginosa
To evaluate the effect of the deletion of SET3 on C. albicans
biofilm formation, biomass production during early biofilm
development (6h) as well as after 48 hours (mature biofilms)
in both mono- and polymicrobial biofilms were quantified using
the crystal violet assay. In addition, the population dynamics in
polymicrobial biofilms were studied using CFUs of C. albicans
and P. aeruginosa, as presented in Figures 1, 2.

Figure 1A indicates a significant (P < 0.0001) reduction in
biomass of early (6h) monomicrobial biofilms (approximately
33.6%) of set3D/D compared to the wild type. This was restored to
wild type values with the re-introduction of the SET3 gene. Mature
(48h) biofilms of set3D/D did not exhibit this reduction in biomass
(Figure 1B), and although a slight reduction in set3D/D CFUs is seen
after 48 hours (Figure 1C), this is not statistically significant. In
addition, Figures 1D–F indicate that the mature monomicrobial
biofilms of set3D/D is composed of a thicker layer of hyphal cells
(Figure 1E), confirming previous observations by Nobile et al. (2014).

When set3D/Dwas exposed to P. aeruginosa in a polymicrobial
biofilm (Figure 2), a significant increase in polymicrobial biofilm
biomass, compared to the polymicrobial biofilms with wild type
C. albicans, is seen after 6h (Figure 2A). This effect could be
restored to the wild type phenotype with the re-introduction of
SET3 and was lost during biofilm maturation (Figure 2B).
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Interestingly, although no statistically significant effect on C.
albicans (Figure 2C) or P. aeruginosa (Figure 2D) CFUs is
seen in the mature (48h) polymicrobial biofilms (due to the
large variation between samples), a significant increase in the
ratio of bacterial CFUs over C. albicans CFUs in polymicrobial
biofilms of set3D/D is observed (Figure 2E). Deletion of SET3 did
not prevent the inhibition of C. albicans morphogenesis by P.
aeruginosa (Figures 2F–H). However, longer hyphae are present
in set3D/D polymicrobial biofilms (Figure 2G) than in either the
wild type biofilms (Figure 2F) or the complemented strain
(Figure 2H).

SET3 Influences Virulence of Mono- and
Polymicrobial Infection in C. elegans
Figure 3 indicates the percentage survival of C. eleganswith survival
statistics of C. elegans infected with C. albicans alone, or co-infected
with P. aeruginosa. A significant (P < 0.0001) increase in survival of
C. elegans infected with set3D/D compared to the wild type was
found (Figure 3A). Virulence of set3D/D in C. elegans was restored
through re-introduction of the wild-type gene (set3D/D::SET3).
Notably, the deletion of SET3 did not influence the ability of C.
albicans to form hyphae and pierce the cuticle of C. elegans. Similar
to single-species infection, co-infection byC. albicans set3D/D and P.
aeruginosa also exhibited decreased virulence compared to the co-
infection with the wild type (Figure 3B), indicating that Set3C
contributes to virulence of C. albicans in C. elegans, even in the
presence of P. aeruginosa.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
DISCUSSION

In order to evaluate the possible role of SET3 in the interaction
between C. albicans and P. aeruginosa, the impact of homozygous
deletion of SET3 on biofilm formation of C. albicans was first
evaluated. Using this approach, it was found that deletion of SET3
negatively influence early biofilm formation (Figure 1), but that this
effect was lost in mature biofilms, which also showed robust
formation of hyphae after 48h, similar to results reported
previously (Hnisz et al., 2010). Thus, although binding of the
Set3C correlates with gene expression during morphogenesis,
deletion of SET3 leaves the expression of most genes unaffected
(Hnisz et al., 2012) and may only transiently affect expression levels
of key morphogenesis-related genes.

Upon evaluation of the effect of SET3 deletion on the interaction
between C. albicans and P. aeruginosa, an increase in biomass of the
set3D/D polymicrobial biofilm was seen at 6h (Figure 2), however
this effect was also lost upon maturation of the biofilms (48h). It
must be noted that the previous upregulation of SET3 in the
presence of P. aeruginosa was also in 6h biofilms (Fourie et al.,
2021), strengthening the finding that SET3 may modulate early
biofilm formation, especially in the presence of P. aeruginosa.
Interestingly, although the Set3C may provide additional
regulation, deletion of SET3, a core component of the complex, is
unable to prevent the inhibition of C. albicans hyphal formation by
P. aeruginosa. However, longer hyphae were observed, which may
be as a result of the hypersensitivity of the cAMP/PKA signaling
FIGURE 1 | Effect of SET3 deletion on Candida albicans monomicrobial biofilms. Monomicrobial biofilm biomass after 6 h (A) and 48 h (B) of the homozygous
mutant of SET3 (set3D/D) as well as the homozygous mutant with add-back of the wild-type gene (set3D/D::SET3). Colony forming units (CFU) of mature C. albicans
biofilms are indicated in (C) as well as biofilm morphology of mature biofilms in (D) (SC5314), (E) (set3D/D) and (F) (set3D/D::SET3). Small panels on right corners
indicate biofilms with lower magnification. Scale bars on all panels indicate 10 mm. *Significantly different from wild type (SC5314) (****P < 0.0001).
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pathway previously reported for set3D/D (Hnisz et al., 2010). This
indicates that SET3 is required for the full wild type response of C.
albicans to P. aeruginosa, mediating the morphological switch to
the yeast morphology, which may allow dispersal and escape of C.
albicans from the antagonistic effect of P. aeruginosa.

Caenorhabditis elegans is susceptible to C. albicans and P.
aeruginosa (Tan et al., 1999; Pukkila-Worley et al., 2009) and is
known to share a similar innate immune response with humans
(Pukkila-Worley et al., 2011). The increased survival of nematodes
infected with set3D/D (Figure 3) (even in the presence of P.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
aeruginosa) corroborates findings of reduced virulence of set3D/D
as found previously in a murine model of systemic candidiasis
(Hnisz et al., 2010) and further validates the use of this alternative
infection model in the study of C. albicans virulence. Candida
albicans primarily relies on hyphal formation to kill C. elegans in
this assay (Pukkila-Worley et al., 2009). Notably, similar to the
results in the murine model (Hnisz et al., 2010) in which
hyperfilamentous set3D/D was less virulent, the deletion of SET3
also did not decrease the ability of C. albicans to form hyphae and
pierce the cuticle of C. elegans. This confirms that the reduction in
FIGURE 2 | Effect of SET3 deletion on Candida albicans polymicrobial biofilms with Pseudomonas aeruginosa. Polymicrobial biofilm biomass after 6 h (A) and
48 h (B) of the homozygous mutant of SET3 (set3D/D) as well as the homozygous mutant with add-back of the wild-type gene (set3D/D::SET3) with P. aeruginosa.
Colony forming units (CFU) of mature C. albicans biofilms are indicated in (C) and P. aeruginosa CFUs in (D, E) indicates the ratio of bacterial/fungal CFUs.
(F) (SC5314), (G) (set3D/D) and (H) (set3D/D::SET3) indicates the morphology of mature polymicrobial biofilms. Small panels on right corners indicate biofilms with
lower magnification. Scale bars on all panels indicate 10 mm. *Significantly different from wild type (SC5314) (*P < 0.05; **P < 0.005).
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virulence is not due to a lack of hyphae, even in this simpler model.
This adds further complexity to the role of the regulation of
morphogenesis in virulence. In mammals, the importance of a
yeast phase during certain stages of dissemination via the blood
stream, as well as the timing of the yeast to hyphal switch is
considered crucial for virulence. However, further research needs to
be done to better understand the role of the yeast phase in the C.
elegans model, where infection does not spread via dissemination.
Due to the low homology of the Set3C to human or other histone
deacetylases, it deserves further attention as a therapeutic target
as it may not only affect the virulence of C. albicans during single
species infection, but also during polymicrobial infection with
P. aeruginosa.
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