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faecalis Bacteriophage vB_EfaM_LG1
and Its Synergistic Effect

With Antibiotic

Min Song, Dongmei Wu, Yang Hu, Haiyan Luo and Gongbo Li*

Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongging, China

Enterococcus faecalis is a Gram-positive opportunistic pathogen that could cause
pneumonia and bacteremia in stroke patients. The development of antibiotic resistance
in hospital-associated E. faecalis is a formidable public health threat. Bacteriophage
therapy is a renewed solution to treat antibiotic-resistant bacterial infections. However,
bacteria can acquire phage resistance quite quickly, which is a significant barrier to phage
therapy. Here, we characterized a Iytic E. faecalis bacteriophage Vb_EfaM_LG1 with Iytic
activity. Its genome did not contain antibiotic resistance or virulence genes. Vibo_EfaM_LG1
effectively inhibits E. faecalis growth for a short period, and phage resistance developed
within hours. However, the combination of antibiotics and phage has a tremendous
synergistic effect against E. faecalis, prevents the development of phage resistance, and
disrupts the biofilm efficiently. Our results show that the phage-antibiotic combination has
better kiling efficiency against E. faecalis.

Keywords: bacteriophage, phage-antibiotic combination, Enterococcus faecalis, antibiotic resistance,
phage therapy

INTRODUCTION

Enterococci are Gram-positive facultative anaerobes, examples of which include E. faecalis and
Enterococcus faecium, which cause bacteremia, pneumonia, endocarditis, and urinary tract
infections (Beganovic et al., 2018; Jabbari Shiadeh et al., 2019). In addition, E. faecalis is also one
of the major pathogens for pneumonia and bacteremia in stroke patients, and the infection after
stroke could lead to the death of the stroke patient (Hannawi et al., 2013; Dyal and Sehgal, 2015;
Stanley et al., 2016). Moreover, the intrinsic and acquired antibiotic resistance of Enterococci is a
formidable public health threat (Arias et al., 2011; Banla et al., 2018). Enterococci have evolved
extensive drug resistance, including that to vancomycin, and could transmit antibiotic resistance
among diverse bacteria (Palmer et al.,, 2010). Therefore, new therapeutic approaches are needed to
treat Enterococcal-associated infections (Khalifa et al., 2015; Kortright et al., 2019; Bao et al., 2020).

Phages are viruses that infect and kill bacteria and are used to treat antibiotic-resistant bacteria
(Barbu et al., 2016; Kortright et al., 2019; Dion et al., 2020). Phage therapy has several advantages
over antibiotics. First, phages have a particular host range and only infect the targeted bacterium, so
phage therapy would not affect other bacteria and did not interrupt the commensal microbes
(Waters et al.,, 2017). Second, because of the different phage resistance and antibiotic resistance
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mechanisms in bacteria, phages could infect multidrug-resistant
superbugs. Thus, phage therapy is being proceeded in many
countries (Jault et al., 2018; Leitner et al., 2021).

Currently, numerous phages against pathogens had been
characterized; however, there are only 63 sequenced E. faecalis
bacteriophage deposited in NCBI (Chatterjee et al., 2021), which
is relatively understudied compared with phages that infect other
pathogens, such as Pseudomonas aeruginosa or Staphylococcus
aureus phages (De Smet et al., 2017). More phages need to be
characterized to provide more therapeutic options for treating
the multidrug-resistant E. faecalis. Moreover, phage resistance is
quite common for E. faecalis, which could be quickly selected
because of the mutations of cell wall-associated polysaccharide or
membrane protein (Duerkop et al, 2016; Banla et al., 2018;
Chatterjee et al,, 2019). Thus, a better strategy to hinder phage
resistance should be investigated. In this study, we identified a
phage infecting a broad range of E. faecalis strains and proved
that phage-antibiotic synergism effectively inhibits phage
resistance and disrupts biofilm.

RESULTS
The Biology of an E. faecalis Phage

A phage was isolated from the hospital sewage using E. faecalis
strain ef118 as a host. It forms an obvious plaque on the host in the
double layer agar plates (Figure 1A). The phage particle was
extracted from the bacterial lysate and was observed by
transmission electron microscopy. The head of the phage is a
regular icosahedral structure with a diameter of approximately
80 nm, and it has a contractable tail with a length of approximately

110 nm (Figure 1B). Thus, the morphology of this phage conforms
to the characteristics of the Myoviridae family, and it is named
Enterococcus faecalis phage vB_EfaM_LGl (refer as LG1 hereafter).

The phage titer reached the highest as 4 x 10° PEU/ml when
the multiplicity of infection (MOI) was 0.001, the optimal MO of
bacteriophage LG1 was 0.001 (Figure 1C). The one-step growth
curve of LG1 was shown in Figure 1D. The latent phase was
approximately 10 min, and then the titer of phages increased
rapidly between 10 and 20 min, indicating a lysis period of
approximately 20 min. The burst size was estimated as about 40
pfu per bacterium.

The adsorption rate of LGl onto the host strain was
determined by measuring the remaining phages in the
supernatant. LG1 absorbed onto the host ef118 efficiently, and
over 50% of the phage particles were adsorbed by the ef118
within 5 min, and approximately 80% of the phage could bind to
the host within 20 min (Figure 1E).

Spot agar assays were performed to determine the phage
infectivity against 10 E. faecalis clinically isolated strains. The
formation of clear plaques indicates that the strain is sensitive to
LG1, whereas the formation of blurred plaque or no spots is
considered non-sensitive. LG1 infects 50% of the clinical isolated
E. faecalis strains, representing a relatively broad host range, but
LG1 cannot infect any E. faecium strain (Table 1).

Sequencing Analysis of an E. faecalis
Phage LG1

Phage LGI is a double-stranded (ds) DNA phage with a linear
genome of 150,025 base pairs (bp). Its G + C content is 35.88%,
and the genome is visualized by CPT Phage Galaxy (Ramsey
et al., 2020).
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FIGURE 1 | Biological characterization of E. faecalis phage vB_EfaM_LG1. The plaque (A) and transmission electron micrograph (B) of LG1. (C) The optimal MOI
test of phage. (D) The one-step growth curve of LG1. (E) The adsorption rate of LG1 against host strain ef118 within 60 min.
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TABLE 1 | The host range of phage LG1. There are 231 putative ORFs predicted by RAST (Overbeek et al.,
2014), whereas most of the ORFs are functionally unknown. Also,
LG1 encodes five tRNA genes. The annotated ORFs can be
Enterococcus faecalls ef118 Blood + categorized into several functional modules, including phage

Strain Origin LG1 sensitivity

Enterococcus faecalls ef122 Blood - replications, DNA metabolism/modifications, lysis, phage
Enterococcus faecalis €153 Blood - . . . . .
Enterocoous faecalis 6f177 Blood . structural protein (Figure 2). LG1 encodes multiple ribonucleotide
Enterococcus faecalis ef134 Blood . reductases, implying that LG1 could perform de novo DNA
Enterococcus faecalis ef189 Urine - biosynthesis. Moreover, no antibiotic-resistant genes or virulence
Enterococcus fascalis ef101 Urine + genes were predicted in the genome of LG1. BlastN searches of the
Enterococcus faecals o116 urine - non-redundant database at NCBI reveals that LG1 genome exhibits
Enterococcus faecalis ef126 Urine + S . .
Enterococous faccalis o148 Urine N 90% to 98% nucleotide identity with a group of enterococcal phages,
Enterococcus faecium ef13 Blood _ such as Enterococcus phage ECP3 and vB_EfaM_Ef2.1.
Enterococcus faecium ef14 Urine - -
Enterococcus faecium ef15 Blood - Stablllty of LG1
Enterococcus faecium ef16 Urine - The optimal pH for storing LG1 was 7, and its viability was lost
+ indlicates the strain is sensitive to phage LG1 and forms clear plaque; — indicates the entirely when the pH was lower than 4 or higher than 11
strain is not sensitive to phage LG1. (Figure 3A). The phage titers were further monitored when
{ (K| Kk3sp 44 4 (]
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Phage baseplate
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FIGURE 2 | Genomic characterization of vB_EfaM_LG1. LG1 is a dsDNA phage with 231 proteins predicted based on sequence homology and five tRNA genes.
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LG1 was incubated at different temperatures. It was found to be
stable at different temperatures, maintained a titer of 10> after
60 min incubation at 70°C (Figure 3B), and was wholly
inactivated over 80°C. Besides, chloroform treatment did not
affect the phage titer, precluding the presence of lipid
components on the phage surface (Figure 3C). Finally, the
chloroform-treated phage was stored at 4°C, and its titer was
monitored for 3 months (Figure 3D). And the titer of LG1 did
not significantly decrease during this period, indicating LG1 was
relatively stable at 4°C, and this feature is vital to produce
phage agents.

The Phage-Antibiotic Combination
Significantly Inhibits the Development of
Phage Resistance and Disrupts the Biofilm
Phage resistance is quickly developed and is selected in vitro and
in vivo (Labrie et al., 2010). And phage resistance in E. faecalis
can be achieved through mutations of the receptors on the cell
surface (Duerkop et al., 2016). As expected, in the liquid culture,
phage LG1 was added to the log phase ef118 (OD600 = 0.5) to a
final titer of 5 x 10° pfu/ml, and LG1 could only inhibit E. faecalis
ef118 for several hours, and phage-resistant mutants regrow to a
high density within 24 h (Figure 4A). The sensitive antibiotic
cefotaxime (32 pg/ml) could inhibit the ef118, but the phage-
antibiotic combination shows the best killing efficiency
(Figure 4A). And in the in vitro biofilm model, cefotaxime
(32 pg/ml) is less effective in disrupting the established biofilm

B
thermal stability
10
=
E 5
35
@
(=] 61
?
3 4
5 2
E - ND
S8 e e A ®
temperature (°C )
D stability for storage
10-
E s
=
&
s °]
g .
57
'= n

T T T

NS S e R
Days

FIGURE 3 | Stability of LG1. (A) Phage LG1 is stable under pH4~11 but significantly inactivated under pH4 or above pH11. (B) LG1 is inactivated by 80°C treatment. (C) LG1 is
non-sensitive to chloroform treatment. (D) LG1 is stable for 3 months without a significant decrease of titer when stored at 4°C. ND, not detected.

than phage (5*10° pfu/ml) alone, and the phage-antibiotic
combination has a more significant effect in disrupting the
biofilm than single treatment (Figure 4B).

DISCUSSION

With an ever-increasing amount of antibiotic-resistant strains of
E. faecalis found in clinical and the difficulties in the treatment of
those caused by the biofilm formation (Arias et al., 2011; Palmer
et al,, 2011). A better strategy to constrain E. faecalis infection is
needed more than ever, and lytic bacteriophage is a promising
alternative treatment to fight multidrug-resistant E. faecalis (Al-
Zubidi et al., 2019). In this study, we isolated a dsSDNA phage
LG1, which effectively infects E. faecalis strains with a relatively
broad host range. Transmission electron microscopy showed
that the phage belongs to the Myoviridae family, and its genome
sequence exhibited similarity to other E. faecalis phages in the
Myoviridae family.

Phage stability is an essential parameter for manufacturing
phage agents (Pires et al., 2020). In Phagoburn project,
researchers found that the phage cocktail is significantly
inactivated because of long-term storage, and the phage titer is
as low as 10° pfu/ml per daily dose, which is one of the reasons
for the failure of this phage therapy clinical trial (Jault et al,
2018). LGI is stable under different conditions, including heat
and pH, and it can be stored at 4°C without significant loss of the
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FIGURE 4 | Phage-antibiotic synergism. (A) Phage could only inhibit the growth of E. faecalis for several hours, and then the phage resistance mutant grows to a
high density. (B) The phage-antibiotic combination has better efficacy in destroying the biofilm than phage or antibiotic alone (**P < 0.05).

titer for 3 months, which is an important parameter when LG is
included in a phage cocktail agent.

Phage resistance is also an issue in phage therapy. Because
bacteria are able to obtain phage resistance because of various
mechanisms, including mutations of the receptor, restriction and
modification systems, CRISPR-cas systems (Labrie et al., 2010;
Goldfarb et al., 2015; Shen et al., 2018b; Azam and Tanji, 2019),
and phage resistance have been reported in phage therapy cases
(El Haddad et al., 2019; Bao et al., 2020), which is a severe issue in
phage therapy. E. faecalis phage resistance has been investigated
previously, mainly through the mutation of phage receptor,
including membrane protein PIP for phage phiVPE25
(Duerkop et al.,, 2016) and enterococcal polysaccharide antigen
for phage (Chatterjee et al., 2019). Various approaches had been
suggested to inhibit the development of phage resistance. Phage-
antibiotic is the well-acknowledged method in treating other
pathogens, such as P. aeruginosa (Oechslin et al., 2017). This
study also suggests that phage-antibiotic combination is a better
strategy to treat E. faecalis infection.

Formation of biofilm is a severe issue in infections because the
established biofilm is extremely difficult to disrupt, and the
biofilm increases antibiotic resistance (Pires et al., 2017). Phage
effectively disrupts biofilm because phage could penetrate the
biofilm, and some phage encodes depolymerase to degrade the
biofilm matrix to destroy further the biofilm. Depolymerases can
be associated with the phage particle or be released during lysis of
the host bacteria. Depolymerases are enzymes to degrade the
extracellular polysaccharide. Therefore, it is particularly
interesting in the removal of biofilms. (Wu et al., 2019; Ferriol-
Gonzalez and Domingo-Calap, 2020).

Moreover, this experiment shows phage-antibiotic
combination has better effects in treating biofilms, which
would be a better approach to treat chronic E. faecalis when
biofilm might have already formed. The phage-antibiotic
synergism is mainly because of the different antibacterial
targets. And under certain conditions, phages provide an
adjuvating effect by lowering the minimum inhibitory
concentration for drug-resistant strains to enhancing the effect
of antibiotics (Liu et al., 2020). Overall, these data indicate phage-

antibiotic synergism has better treating efficiency than single
phage therapy.

Experimental Procedures

Bacterial Strains, Phages, and Culture Conditions
The bacterial strains in this work were listed in Table 1.
Enterococcus strains were collected from the Department of
Clinical Laboratory Medicine and grown aerobically on Luria-
Bertani (LB) broth at 37°C.

Bacteriophage LG1 was isolated from hospital sewage as
previously described (Duerkop et al., 2016). Briefly, the sewage
was pelleted, and the supernatant was filtered through a 0.45-pm
pore-size filter to remove particles. Then, 50-pl sample was
immediately mixed with 200 pl bacterial culture, and 4 ml of
molten LB soft agar (0.7%) was added and poured onto LB agar
plates, followed by overnight culture. Any formed plaque was
picked using a pipette, deposited in 1 ml of LB, followed by 10-
fold dilution, and double-layer agar assay to purify the phage.
The phage was purified by three consecutive rounds. Then, one
plaque from the third round was picked for this study.

Transmission Electron Microscopy

Phage particles were dropped on carbon-coated copper grids for
10 min. Then phosphotungstic acid (pH 7.0) was used to stain
the sample for 15 s and examined under a Philips EM 300
electron microscope. The sizes of the phage were measured based
on five randomly selected images using AxioVision LE.

Phage Titering and MOI Experiment

Phage titer was calculated by standard double-layer agar plate
assay. Briefly, 10-fold dilutions of phage suspension were mixed
with 200 ul host bacteria, then mixed with 5 ml molten 0.7% LB
agar broth. Then poured on a 1.5% agar plate. After overnight
incubation at 37°C, one plaque is calculated as a plaque-forming
unit (pfu). MOI experiments were performed by mixing log-
phase bacteria (OD600 = 0.5) with a different number of phages,
and the coculture was incubated at 37°C with shaking for 5 h.
Then the titer in the supernatant was calculated using a double-
layer agar plate assay.
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One-Step Growth

The one-step growth curve of LG1 was determined as described
(Zhong et al., 2020). Briefly, 1 ml of log-phase bacteria and 1 ml
of LG1 were mixed at an MOI of 1 and incubated at 37°C for
3 min. Then, the mixture was centrifuged at 4°C for 2min at a
speed of 12,000g, and the pellet was resuspended in 10 ml LB
medium. And samples were taken at the given time points, which
are immediately pelleted, and phage titer in the supernatant was
measured by directly using double-layer plate assay.

Adsorption Rate Experiments

Bacteriophage adsorption assay with various time points was
performed as previously described (Al-Zubidi et al., 2019).
Briefly, the log phase bacterial cultures were pelleted and
resuspended in LB medium to a final concentration of 5 x 10
CFU/ml. Then, phage was added to a final titer of 5 x 10° pfu/ml.
Then, the samples were cultured at 37°C for 60 min, and a 1-ml
sample was collected at the set time point and centrifuged at
16,000¢ for 1 min. The phages in the supernatant were titered
using the double-agar plating assays. At a given time point, the
adsorption rate was calculated as (the original phage titer — the
remaining phage titer)/the original phage titer.

Determination of Host Range

Ten E. faecalis and five E. faecium strains were selected as test
strains. The host range of phage LG1 was determined using spot
testing by dropping 1 ul of phage onto the double-layer soft agar
premixed with the test strain and cultured at 37°C for 18 h. The
formation of a clear plaque is considered as the sensitive host for
phage LGI.

Isolation of Bacteriophage DNA

The phage DNA extraction is performed as previously described
(Khan et al., 2021). Briefly, DNase I and RNase A were added to a
final concentration of 5 and 1 ug/ml, respectively, and the
purified phage particle was treated for 1 h at 37°C. Proteinase
K (final concentration of 50 pug/ml), EDTA (pH 8.0), and 0.5%
SDS were added and treated at 56°C for 1 h. Then, phage genome
DNA was extracted with saturated phenol (pH 8.0). After
centrifugation, the aqueous phase was extracted with
chloroform and mixed with the same volume of isopropyl
alcohol and stored at —20°C for 1 h. Then, phage DNA was
precipitated by centrifugation and was washed with 70% ethanol
and absolute ethanol, respectively. After drying, the precipitate
was dissolved in TE solution, and the phage DNA was stored
at —-80°C.

Genome Sequencing and Annotation

Phage genomic DNA was sequenced using an Illumina Hiseq 2500
platform (~1 Gbp/sample). Fastp (Chen et al., 2018) was used for
adapter trimming and quality filtering after demultiplexing the
raw reads. The read data were assembled using the de novo
assembly algorithm Newbler Version2.9 with default parameters,
and the assembled genome was annotated by RAST. The DNA

and protein sequences were checked for homologs with BLAST
manually. The genome map was drawn by a phage genome
visualization online software CPT Phage Galaxy (Ramsey et al.,
2020). The sequence data are available in the NCBI under
accession number MZ420150.

Stability Studies

To test the phage stability under various conditions, 10° pfu of
LGI was treated with different pH, temperature, or chloroform
for 60 min, then the titer of the phage was calculated by double-
layer agar assay. The LG1 was stored at 4°C, and its titer was
determined at the given time points for 3 months.

Biofilm Assay

Biofilms were examined by the crystal violet staining method as
previously described (Shen et al., 2018a). Briefly, 0.2 ml of log-
phase bacterial culture were added to 96-well polystyrene
microplates and incubated for 24 h at 37°C to establish
biofilm. Then, the untreated control wells were washed with
phosphate-buffered saline (PBS) and stained with crystal violet
for 15 min, which was solubilized in 0.2 ml of 95% ethanol, and
the biofilm biomass was estimated by measuring the OD 600,
which was determined using a SpectraMax M3 multimode
microplate reader. For the treatment groups, the wells were
washed and PBS, then 0.2 ml of phage or antibiotic was added
and incubated at 37°C for 4 h, the biofilm biomass was
determined by crystal violet staining method.

Statistical Analysis

All the experiments were performed three times, and statistical
analysis was performed using one-way ANOVA or t-test, and
statistical significance was assumed if the P value was <0.05.
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