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The genus Burkholderia contains over 80 different Gram-negative species including both
plant and human pathogens, the latter of which can be classified into one of two groups:
the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc).
Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and
both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great
interest in the development of novel vaccines and therapeutics for the prevention and
treatment of these infections. While Bcc pathogens Burkholderia cenocepacia,
Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror
threats, the incredible impact these infections have on the cystic fibrosis community
inspires a similar demand for vaccines and therapeutics for the prevention and treatment
of these infections as well. Understanding how these pathogens interact with and evade
the host immune system will help uncover novel therapeutic targets within these
organisms. Given the important role of the complement system in the clearance of
bacterial pathogens, this arm of the immune response must be efficiently evaded for
successful infection to occur. In this review, we will introduce the Burkholderia species to
be discussed, followed by a summary of the complement system and knownmechanisms
by which pathogens interact with this critical system to evade clearance within the host.
We will conclude with a review of literature relating to the interactions between the herein
discussed Burkholderia species and the host complement system, with the goal of
highlighting areas in this field that warrant further investigation.

Keywords: Burkholderia, melioidosis, glanders, cystic fibrosis, complement, immune evasion, lung infections,
virulence mechanisms
BURKHOLDERIA

The genus Burkholderia dates back to the early 1990s, when phylogenetic analysis of 16S rRNA
sequences of numerous Proteobacteria supported the departure of members of Pseudomonas
homology group II into a novel genus (Yabuuchi et al., 1992). Named after plant pathologist
Walter H. Burkholder, this genus consists of Gram-negative coccobacilli that are ubiquitous within
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the environment and consists of phytopathogens, as well as
obligate and opportunistic mammalian pathogens (Compant
et al., 2008).

Within the diverse Gram-negative organisms that comprise
the Burkholderia spp. are several important human pathogens. A
common feature across most virulent Burkholderia spp. is the
ability to persist both in extracellular spaces and intracellularly
within different host cell types, and subsequently evade immune
clearance. Thus, they have evolved a large number of strategies to
resist antibiotic-mediated effects as well as immune killing
mechanisms, including Type III (T3SS) and Type VI (T6SS)
secretion systems, actin polymerization, generation of
multinucleated giant host cells, and many others. One of the
most important host defenses that any intracellular or
extracellular pathogen must resist is the host complement
system, which is encountered immediately after bacteria enter
a vertebrate host. The goal of this review is to discuss the two
major groups of Burkholderia spp. that cause disease in
vertebrate animals and emphasize the data regarding how
these pathogens resist the host complement system, identifying
gaps in our knowledge that warrant investigation.
GROUP I: BURKHOLDERIA
PSEUDOMALLEI COMPLEX

The Burkholderia pseudomallei complex (Bpc) consists of
organisms whose genetic content suggests a common ancestral
strain similar to B. pseudomallei. The best-known members of this
group include B. pseudomallei, B. mallei, and B. thailandensis.

Burkholderia pseudomallei
B. pseudomallei is the causative agent of melioidosis, a disease
originally observed by physicians Alfred Whitmore and C.S.
Krishnaswami at Rangoon General Hospital in what is now
Myanmar (Whitmore and Krishnaswami, 1912). Originally called
Whitmore’s disease, this infection was renamed “melioidosis” ten
years after its initial discovery. Translated from Greek, melioidosis
means “an illness that resembles glanders” and pays homage to the
disease it most closely resembles (Whitmore and Krishnaswami,
1912; Stanton and Fletcher, 1921). Melioidosis is a severe febrile
disease endemic in tropical and sub-tropical regions, where patients
with septicemic melioidosis face a ~40% mortality rate even with
antibiotic treatment (White, 2003; Cheng and Currie, 2005). B.
pseudomallei has been nicknamed “the great mimicker” due to the
wide range of signs and symptoms ofmelioidosis, which often leads
to its misdiagnosis and delays appropriate treatment (Yee et al.,
1988). Even when positively identified, appropriate treatment of B.
pseudomallei infections is difficultdue to themultitudeofantibiotic-
resistancemechanisms this pathogen employs. Of note, over half of
all melioidosis patients worldwide have either known or
undiagnosed diabetes mellitus, making this co-morbidity the
most important risk factor for B. pseudomallei infections
(Wiersinga et al., 2018). As the global prevalence of diabetes
continues to rise, the incidence of melioidosis will likely increase
as well (Hodgson et al., 2013).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
Melioidosis can present in three different disease courses:
acute, chronic, or latent. Acute melioidosis is the most common
manifestation of this disease, accounting for 85% of cases. Acute
melioidosis is characterized by sepsis with or without
pneumonia, or the presence of localized abscesses (Currie
et al., 2010). Chronic melioidosis makes up 11% of cases and is
characterized as a less severe disease with symptoms persisting
for over 2 months (Currie et al., 2010). Latent melioidosis cases
are rare, comprising only 4% of cases, and is caused by
reactivation of B. pseudomallei from latent foci from previous
infection (Currie et al., 2010). While cutaneous inoculation is the
most common route of infection, aerosol delivery of B.
pseudomallei significantly increases its virulence, with a 99-fold
increase in disease potential observed in mice (Warawa, 2010).
For this reason, inhalation is considered the most lethal route of
infection. While aerosolized B. pseudomallei has been recognized
for its biological warfare potential, there have been no known
intentional exposure events. Regardless, due to the potential for
this organism to pose a severe threat to human health and safety,
B. pseudomallei is listed as a Tier 1 select agent and must be
worked with under biosafety level 3 (BSL-3) conditions.

Burkholderia mallei
B. mallei is the causative agent of the disease glanders. Unlike the
other Burkholderia discussed herein, B. mallei is an obligate
parasite that is unable to survive in the environment, and is thus
not isolated from the soil. Instead, this organism has evolved to
persist within more limited animal reservoirs, in particular
solipeds such as horses, mules, and donkeys (Van Zandt et al.,
2013). Examination of the genomes of Bpc organisms revealed
that B. mallei is a clone of B. pseudomallei that has lost large
segments of DNA (Godoy et al., 2003; Ong et al., 2004). This
divergence appears to have occurred around 3.5 million years
ago and resulted in the loss of genes involved in metabolism
(Nierman et al., 2004; Song et al., 2010). This genome reduction
pattern is consistent with the fact that B. mallei is not well suited
to survive in the environment, instead existing as an obligate
mammalian pathogen with a restricted host range (Nierman
et al., 2004).

The first description of glanders dates back to the third
century, when Aristotle wrote “The ass suffers chiefly from one
particular disease which they call ‘melis’” (Nierman et al., 2004;
Männikkö, 2011). Transmission of B. mallei occurs when the
bacterium is introduced into a new host, either by inoculation of
bacteria below the skin or through contact between infected
bodily fluids with mucosal surfaces, such as the eyes, nose, or
lungs. In both humans and equids, the course of infection is
heavily dependent on the route of transmission. Equine glanders
is characterized by the appearance of ulcerative nodules within
the body, fever, coughing, depression, and anorexia (Khan et al.,
2013). Notably, when equine B. mallei infection presents as
nodules on the animal surface, the disease is referred to as
farcy. In humans, glanders is a febrile illness characterized by
ulceration at the site of infection, though localized infections can
disseminate throughout the body and cause fatal septicemia
(Van Zandt et al., 2013). Notably, human-to-human
transmission has never been reported in the United States.
September 2021 | Volume 11 | Article 701362
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While glanders once affected humans throughout the world,
recent technological improvements have decreased our reliance
on solipeds for transportation. Testing and euthanasia of animals
exhibiting this disease also contributed to the decline in human
cases within developed countries. The last naturally occurring
case of human glanders in the United States was reported in
1934, and current human cases are sporadic and only occur
among those in direct contact with this bacterial isolate or
infected animals (Van Zandt et al., 2013). Though rare in
developed countries, glanders continues to affect humans and
animals in the Middle East, Southeast Asia, Africa, and Australia,
and treatment of these infections is hampered by the numerous
antibiotic-resistance mechanisms employed by B. mallei.

Although human cases have declined considerably, there is
still great interest in the development of preventative vaccines
and/or effective therapeutic strategies for glanders, as B. mallei
has an extensive history of use as a bioterrorism agent. Given this
organism’s continued potential to pose a severe threat to public
health and safety, B. mallei accompanies B. pseudomallei on the
list of Tier 1 select agents, and must also be worked with under
BSL-3 conditions.

Burkholderia thailandensis
When B. thailandensis was first isolated from a Thai soil sample, it
was believed tobe an avirulent, capsule-freeB. pseudomalleimutant
strain. Genotypic and phenotypic analysis of the isolate
demonstrated that it was not B. pseudomallei, but a unique
species altogether, and was named for the country in which it was
isolated (Smith et al., 1997). While B. thailandensis is considered
avirulent in humans, several cases of human infection have been
reported, as summarized by Gee and colleagues (Gee et al., 2018).
While B. thailandensis is readily distinguished from the other Bpc
organisms by its ability to assimilate arabinose as a sole-carbon
source, the expression of antibiotic-resistance mechanisms shared
by other Bpc strainsmake it no less challenging tomanage clinically
(Smith et al., 1997; Moore et al., 2004).

While relatively avirulent in humans, B. thailandensis causes
necrotizing pneumonia inmammalianmodels of infection, though
the dose at which 50% of the animals succumb to the infection
(LD50) is approximately 104-fold higher than LD50 values for either
B. pseudomallei or B. mallei (West et al., 2008; Fisher et al., 2012).
While B. pseudomallei and B. mallei require BSL-3 working
conditions for safe handling, the relatively innocuous nature of B.
thailandensis does not bear such restrictions and is thus approved
for use under BSL-2 conditions. Notably, the significant genomic
similarity between these strains makes B. thailandensis a suitable
model for the study of certain B. pseudomallei- and B. mallei-
associated virulence mechanisms without the need for BSL-3
facilities (Haraga et al., 2008).
GROUP II: BURKHOLDERIA
CEPACIA COMPLEX

The Burkholderia cepacia complex (Bcc) is a group of over 20
different Burkholderia opportunistic pathogens known to cause
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
severe disease in immunocompromised individuals, most
notably cystic fibrosis (CF) patients. CF is the most common
life-threatening genetic disease among the Caucasian population,
affecting approximately 1/2500 children born in this
demographic (Welsh et al., 2001). Caused by a mutated cystic
fibrosis transmembrane conductance regulator (CFTR) gene, this
disease is characterizedby the production of a viscousmucuswithin
the lungs which ultimately makes the affected patient particularly
vulnerable to respiratory illnesses. While Pseudomonas aeruginosa
is the most common opportunistic pathogen in the CF lung, Bcc
infections are particularly devastating to this population given the
severity of the ensuing disease.While chronic colonizationwithBcc
organisms has little impact on the clinical status of a CF patient,
colonization can quickly deteriorate into a systemic infection, called
“cepacia syndrome” (LiPuma et al., 2001). Cepacia syndrome is an
illness characterized by high fever, necrotizing pneumonia, and an
overall unfavorable prognosis (Isles et al., 1984; Mahenthiralingam
andVandamme, 2005). In addition todirectly contributing todeath
of CF patients, those colonized asymptomatically with certain Bcc
organisms lose the opportunity to undergo lung transplantation, a
well-recognized therapy for patients with end-stage lung disease
(Morrell and Pilewski, 2016). While successful transplantation can
greatly increase the quality of life and long-term survival of CF
patients, those colonized with Bcc pathogens prior to
transplantation experience a significantly poorer prognosis than
non-colonized CF patients, such that colonized individuals are
increasingly considered unfit for transplantation (Snell et al.,
1993; LiPuma et al., 2001; De Soyza et al., 2010). Further
compounding this issue, CF clinics have been known to
experience epidemic spread of transmissible Bcc infections across
their patients, who became exposed via inadequately-
decontaminated equipment or waiting rooms shared between
patients (Miyano et al., 2003). Due to the diverse antibiotic and
antimicrobial resistance mechanisms employed by Bcc organisms,
the bestway toapproach this spread ispatient cohorting. Since these
infections were first recognized as transmissible between patients,
CF clinics have employed strict policies whereby Bcc-colonized
patients remain separated from Bcc-uncolonized patients to
prevent intra-clinic spread (Ledson et al., 1998).

The nomenclature of Bcc isolates is complex, as these
organisms are indistinguishable by common typing methods
such as genomic fingerprinting and PCR (LiPuma et al., 2002;
Baldwin et al., 2007). Early studies used “B. cepacia” as an
umbrella term for these organisms, and care must be taken
when reviewing the literature to distinguish between when “B.
cepacia” is being used as a general term or if that specific species
is being discussed (Coenye et al., 2001). Fortunately, these strains
have more recently been characterized by their phylogenetic
differences into sub-classifications called genomovars (Ursing
et al., 1995; Vandamme et al., 1997). The Bcc organisms
discussed below include Burkholderia cenocepacia (prototypical
strain of genomovar III), Burkholderia multivorans (genomovar
II), and Burkholderia cepacia (genomovar I). While the Bcc
comprises numerous important pathogens, these organisms
have not been studied to the same extent as the Bpc
organisms. In addition, the majority of the work performed
September 2021 | Volume 11 | Article 701362
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with Bcc organisms used clinical isolates, which tend to fall under
genomovar III, B. cenocepacia.

Burkholderia cenocepacia
B. cenocepacia is the Bcc organismmost frequently isolated from the
CF lung; one analysis of over 600 cases wherein Bcc isolates were
recovered from CF patients across the United States found that B.
cenocepacia was the species recovered in 50% of total cases (LiPuma
et al., 2001; Reik et al., 2005). Unfortunately, B. cenocepacia is also
associated with higher rates of morbidity and mortality among CF
patients than other Bcc organisms (LiPuma et al., 2001;
Mahenthiralingam et al., 2001). Even asymptomatic colonization
with B. cenocepacia can have a profound impact on patients’ lives, as
chronic B. cenocepacia infection is a contraindication for lung
transplantation, whereas colonization with other Bcc species does
not have this limitation (Snell et al., 1993; De Soyza et al., 2010).
Furthermore, members of the B. cenocepacia ET12 lineage are
recognized as some of the most transmissible Bcc organisms
(Johnson et al., 1994). While patients that were not colonized
with Bcc organisms were already being kept separate from Bcc-
colonized patients in CF clinics, the discovery of transmissible
strains strictly of the B. cenocepacia species led to additional
policies to further separate these patients (Ledson et al., 1998).
Identification of conserved markers that can rapidly identify
transmissible isolates are needed to help CF clinics efficiently
prevent inter-patient spread of these devastating pathogens. While
the cable-pilin subunit gene (cblA) and B. cepacia epidemic strain
marker (BCESM) ORF esmR were briefly believed to be conserved
only in epidemic strains, a subsequent examination into the
frequency of these genes disagreed, demonstrating that these
genes are not in fact sufficient markers of strain transmissibility
(Mahenthiralingam et al., 1997; LiPuma et al., 2001).

Burkholderia multivorans
B. multivorans is the second-most commonly isolated Bcc organism
from the CF lung, with a reported rate of 38% (LiPuma et al., 2001;
Reik et al., 2005). Unlike most other Bcc isolates, the environmental
origin of this organism remains a matter of debate, as this organism
is often not isolated from soil samples (Peeters et al., 2016; Tavares
et al., 2020). While this organism routinely causes systemic infection
in immunocompromised individuals, the morbidity and mortality
of B. multivorans-caused cepacia syndrome is not as severe as
disease caused by B. cenocepacia (LiPuma et al., 2001;
Mahenthiralingam et al., 2001). While B. cenocepacia is the most
common Bcc organism transmitted between CF patients, intra-
clinic spread of B. multivorans has been observed on several
occasions as well (Whiteford et al., 1995; Vandamme et al., 1997;
Millar-Jones et al., 1998; Mahenthiralingam et al., 2000; LiPuma
et al., 2001; Mahenthiralingam et al., 2001). These findings suggest
that CF clinics should consider isolating B. multivorans-colonized
patients the same way as they isolate B. cenocepacia-
colonized patients.

Burkholderia cepacia
While B. cepacia is the namesake of this group of pathogens, this
organism is rarely isolated from humans; an analysis of over 600
CF patients colonized with Bcc isolates found that less than 3% of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the patients harbored B. cepacia of genomovar I (LiPuma et al.,
2001). While B. cepacia is generally believed to be less virulent
than the other Bcc organisms discussed herein, there has been a
single reported case of cepacia syndrome caused by B. cepacia
(Nash et al., 2011). Notably, in direct contrast to the pattern by
which they colonize humans, B. cepacia is more readily isolated
from the soil than either B. cenocepacia or B. multivorans
(LiPuma et al., 2001).
LIPOPOLYSACCHARIDE AND CAPSULE

Bacterial surface components such as lipopolysaccharide (LPS)
and capsular polysaccharide have the responsibility of interacting
with the outside environment and thus play an important role in
protecting bacteria against killing by host immune factors. In
particular, both structures are known to modulate the
interactions between bacteria and the complement section.
Thus, it important that we discuss these structures here, both
in general and in Burkholderia.

LPS is a glycolipid expressed in abundance on the surface of
most Gram-negative bacteria that is composed of 3 structural
domains: lipid A, core oligosaccharide, and O-antigenic
polysaccharide (Figure 1) (Raetz and Whitfield, 2002). The
acyl chains of lipid A comprise the hydrophobic section of LPS
that inserts into the outer leaflet of the outer membrane (Raetz
and Whitfield, 2002). Lipid A is often referred to as “endotoxin”
because it is held responsible for the toxicity of LPS, however LPS
as a whole is sometimes called “endotoxin” as well (Raetz and
Whitfield, 2002). The core oligosaccharide is comprised of non-
repeating sugar residues that are linked to the membrane-
anchored lipid A and extends out, away from the cell surface
(Heinrichs et al., 1998). Finally, the O-antigenic polysaccharide
(O-PS; also called O-antigen) is composed of a repeating
sequence of sugar residues that is attached to the core
oligosaccharide and extends further out from the cell (Wang
et al., 2010). The O-PS is the most diverse domain of LPS; its
composition often differs even within species (Kalynych et al.,
2014). Notably, the diverse nature of O-PS structures provides
the basis by which Gram-negative bacteria are often classified.
Dating back to the 1940s, O-antigen serotyping was used to
distinguish strains for clinical and epidemiological purposes
(Kauffmann, 1947; Sun et al., 2011).

LPS molecules are tightly packed on the outer membrane
surface, with an estimated surface area occupancy of 75%
(Lerouge and Vanderleyden, 2002). Given their abundance,
LPS are considered essential structural components for most,
but not all, Gram-negative bacteria (Zhang et al., 2013). LPS
performs numerous important functions, including providing a
permeability barrier against small molecules and modulating the
host immune response.

The permeability barrier formed by LPS prevents passage of
small molecules to the cell surface by both steric and polar means
(Bertani and Ruiz, 2018). The ability of extracellular compounds
to reach the bacterial surface is physically limited by the presence
of abundant tightly-packed LPS molecules (Nikaido, 2003). The
assembly of densely-packed LPS molecules is a result of
September 2021 | Volume 11 | Article 701362
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hydrophobic interactions between neighboring lipid A tails;
however, this pattern also brings together negatively-charged
phosphate groups, which stud the disaccharide backbones of
lipid A (Figure 1) (Nikaido, 2003). To allow these charged
phosphates to exist adjacent to one another, divalent cations
(i.e. Ca2+, Mg2+) are embedded between the LPS molecules to
neutralize their overall charge (Nikaido, 2003). The resulting
amphipathic environment helps prevent passage of small
molecules to the bacterial surface on the basis of polarity
(Carpenter et al., 2016).

LPS can also function to modulate the host immune response.
While LPS is a pathogen-associated molecular pattern (PAMP)
that can robustly induce a pro-inflammatory immune response
by activating host toll-like receptor 4 (TLR4), the extensive
diversity in LPS structures means that some pathogens express
LPS which is less stimulatory than others (Montminy et al., 2006;
Bertani and Ruiz, 2018). Furthermore, the expression of LPS –
and particularly O-PS – has been shown to prevent complement-
mediated cell lysis by preventing the assembly of membrane
attack complexes directly on the cell surface (Figure 1) (Murray
et al., 2006; Goebel et al., 2008; Woodman et al., 2012). In
particular, long O-PS chains have displayed an enhanced ability
to prevent complement-mediated direct killing in comparison to
short O-PS chains, indicating that one mechanism by which LPS
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
prevents serum killing is by physically blocking complement
deposition in close proximity to the cell membrane, thus forcing
C3 convertases and/or membrane attack complexes to form at a
distance away from the bacterial membrane, where they cannot
perforate and kill the cell (Figure 1) (Kintz et al., 2008).

Another important bacterial surface component is the
polysaccharide capsule, which can be expressed by both Gram-
positive and Gram-negative bacteria.While not all bacteria express
capsular polysaccharide, expression of capsule is an important
determinant of virulence, as bacteria that cause invasive disease
are often encapsulated (O’Riordan and Lee, 2004). For bacteria that
produce a capsule, this structure encases the bacterium and offers
protection against environmental stressors as well as effective
recognition by the host immune response.

Bacterial capsules are composed of viscous polysaccharides
that form a thick layer around the perimeter of the bacterium
(Baron, 1996). The hydrophilic nature of capsular polysaccharide
provides the bacteria protection against desiccation, allowing for
enhanced survival in the outside environment (Angelin and
Kavitha, 2020). After entering a host, bacteria must continue to
neutralize intra-host environmental stressors, such as
antimicrobial peptides. As described above, these compounds
kill bacteria by destabilizing the bacterial cell membrane (Bahar
and Ren, 2013). Expression of capsule confers protection against
FIGURE 1 | Burkholderia cell surface structures involved in evading complement-mediated killing. C3 convertase-mediated cleavage of C3 into C3a and C3b reveals
an unstable thioester bond on C3b (dark purple rectangle). If this protein is not generated close to the cell surface or other receptive structures, the thioester bond is
quickly hydrolyzed, and the protein loses its enzymatic activity or its ability to attach as an opsonin to the surface (red “X”, C3b in left panel). Many pathogenic
Burkholderia express capsular polysaccharide that extends quite distant to the cell membrane. This can provide protection from complement activation and
opsonization because its structure is not conducive to C3b-binding and, if binding does occur, the bound C3b is relatively distant from the bacterial cell membrane
to allow MAC formation. While the lipid A and core oligosaccharide structures of Burkholderia LPS are fairly conserved, there is considerable variation in the O-PS of
these bacteria (multi-colored hexagons). Analysis of LPS structures of representative Burkholderia spp. have demonstrated that these organisms harbor 4-amino-4-
deoxy-L-arabinose (Ara4N) modifications on the phosphate groups (red circles) of the lipid A disaccharide backbone. The expression of elongated O-PS moieties
stretching away from the cell surface can protect against complement-mediated killing by preventing C3 convertase formation close to the cell surface, and thus
prevent insertion of a MAC complex in the cell membrane. If C3 convertase forms close to the cell membrane (e.g. LPS core moieties, etc.), the exposed thioester of
C3b quickly binds nearby hydroxyl or amino groups (green check mark, C3b in right panel). Complement opsonins that bind distant from the cell surface can
promote killing by opsonophagocytosis if they can be recognized by phagocytic cells, however activation/binding near the surface promotes direct killing via
formation of MAC and bacterial lysis.
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antimicrobial peptides by limiting their ability to interact with
the bacterial outer membrane surface (Campos et al., 2004).

In addition to protecting against environmental stressors,
encapsulated bacteria can modulate the host immune response to
survive within the host in ways unencapsulated bacteria cannot. In
particular, bacterial capsules often prevent clearance by the host
immune response by inhibiting opsonophagocytosis (Domenico
et al., 1994; Thakker et al., 1998; Melin et al., 2010; Ali et al., 2019).
Opsonophagocytosis is the process by which materials slated for
degradation (i.e. microbes, apoptotic host cells) are bound by
opsonins, marking them for efficient uptake and clearance by
phagocytes. Successful target clearance depends on the interaction
between the opsonin and its phagocyte-expressed receptor. The
deposition of opsonin within capsular polysaccharide can impede
the ability of the opsonin to interact with its cognate host receptor,
preventing opsonophagocytosis and allowing for survival of the
encapsulated bacterium (Brown et al., 1982; Zaragoza et al., 2003).
This mechanism is consistent with the observation that growth of
encapsulated bacteria under high-capsule-expressing conditions
corresponds to enhanced inhibition of opsonophagocytosis
(Nanra et al., 2013). Furthermore, many pathogens have been
shown to incorporate host sialic acids into their surface, often
becoming an actual part of the capsule (Cress et al., 2014). This
activity masquerades the pathogen as a host cell, thus preventing
immune activation against the pathogen, as well as the putative
ability to bind host complement regulatory proteins.

Group I: Burkholderia
pseudomallei Complex
B. pseudomallei and B. mallei are encapsulated organisms that
expresses a number of important virulence factors, including LPS
O-antigenic polysaccharide (O-PS) and capsular polysaccharide
(Figure 1) (Perry et al., 1995; Reckseidler et al., 2001).

The prototypical B. pseudomallei LPSO-PS (previously referred
to as the B. pseudomallei type II O-PS) has the structure -3)-b-D-
glucopyranose-(1-3)-6-deoxy-a-L-talopyranose-(1- (Perry et al.,
1995). B. mallei is expected to express an identical O-PS, as the B.
mallei genome contains ORFs identical to those described as the B.
pseudomalleiO-PS biosynthetic gene cluster (DeShazer et al., 1998).
This is not surprising, given the clonal nature of these strains
(Godoy et al., 2003; Ong et al., 2004). B. thailandensis, another
highly similar organism, also expresses the B. pseudomallei O-PS
moiety (Brett et al., 1998). The lipid A disaccharide backbones of
these Bpc isolates are often modified with positively-charged 4-
amino-4-deoxy-L-arabinose (Ara4N) residues. This modification
decrease the overall negative charge of the bacteria and protect
against interaction with positively-charged antimicrobial peptides
or antibiotics (Novem et al., 2009).While not demonstrated in Bpc
organisms, expression of the Ara4N biosynthetic cluster is required
for the viability ofB. cenocepacia, and the samemay be true for Bpc
pathogens (Ortega et al., 2007). While not unique to Burkholderia,
this modification is not common to all Gram-negative organisms.

The B. pseudomallei capsular polysaccharide (previously
incorrectly identified and referred to as type I O-PS) is a polymer
of 1,3-linked 2-O-acetyl-6-deoxy-b-D-manno-heptopyranose
residues (Perry et al., 1995). B. mallei capsule is cross-reactive
with antiserum against B. pseudomallei capsule, however the vast
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
majority of the closely-related B. thailandensis strains are
unencapsulated and thus do not express this surface structure
(Brett et al., 1998; DeShazer et al., 2001). Of note, the B.
thailandensis variant strain E555 exhibits numerous B.
pseudomallei-like phenotypes, including expression of capsular
polysaccharide nearly identical to that of B. pseudomallei (Sim
et al., 2010). Importantly, it has been suggested thatB. thailandensis
strain E555 would serve as a better model to study how B.
pseudomallei interacts with host cells than the more frequently
used B. thailandensis strain, E264 (Kovacs-Simon et al., 2019).

Group II: Burkholderia cepacia Complex
The O-antigenic polysaccharide (O-PS) of Bcc strains are distinct
from those expressed by Bpc strains in that there is no strain-
specific consistency among them due to the selective pressure
environmental conditions put on the Bcc O-PS gene cluster
(Figure 1) (Butler et al., 1994; Chung et al., 2003; Hassan et al.,
2017; Ruskoski and Champlin, 2017). Strains expressing full-
length O-PS are sometimes described in the literature as having
“smooth LPS”, and strains expressing truncated or no O-PS are
described as having “rough LPS” (Butler et al., 1994). Of note,
while strains expressing smooth LPS are more resistant to killing
in serum than those expressing rough LPS, there is no association
between serum sensitivity and pathogenicity of clinical Bcc
isolates (Butler et al., 1994; Zlosnik et al., 2012). This could be
attributed to the fact that Bcc pathogens primarily infect
immunocompromised populations. Similar to Bpc strains, the
lipid A disaccharide backbones of Bcc LPS is modified with
cationic Ara4N residues which protect against the activity of
antimicrobial peptides (Cox and Wilkinson, 1991; Vinion-
Dubiel and Goldberg, 2003; Raetz et al., 2007; Hassan et al.,
2017). Notably, the expression of Ara4N biosynthesis enzymes is
required for B. cenocepacia viability, as they play a role in LPS
export to the outer membrane (Ortega et al., 2007; Hamad et al.,
2012). These phenomena are unique to Burkholderia.

Expression of capsular polysaccharide by Bcc isolates has been
suggested to influence strain virulence and, like the expression ofO-
PS, has been demonstrated to depend on environmental cues
(Chung et al., 2003; Ruskoski and Champlin, 2017). Isolates
expressing capsule are described in the literature as being
“mucoid”, while isolates lacking capsule are described as “non-
mucoid” (Cerantola et al., 2000; Ruskoski and Champlin, 2017).
THE COMPLEMENT SYSTEM

The complement system is an ancient immune surveillance system
andavital componentof the innate immune response (Ricklin et al.,
2010). This system is composed of a network of both soluble and
membrane-boundproteinswhichbecomeactivated viaoneof three
pathways – the classical pathway (CP), the lectin pathway (LP), or
the alternative pathway (AP). All of these three activation pathways
converge in activation of the C3 component and the subsequent
immune effector mechanisms.

Activation of the CP is initiatedwhen host antibodies bind to an
antigen, and this complex is recognized by the complement C1
complex (Figure 2). This complex is the Ca2+-dependent CP
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FIGURE 2 | Model for complement system activation and regulation. The complement system is a vital component of the innate immune response and can become
activated via one of three pathways – the classical pathway (CP), the lectin pathway (LP), or the alternative pathway (AP). The CP is activated when a circulating C1
complex recognizes and binds the Fc region of an antigen-antibody complex. This interaction activates proteases within the C1 complex to cleave C4 into C4a and
C4b fragments, and C2 into C2a and C2b fragments. C4b can covalently bind to nearby surfaces, and C2b can bind to the surface-bound C4b to form C4b2b, a
C3 convertase. The LP is activated when a circulating mannose-binding lectin (MBL) or ficolin complex recognizes and binds pathogen-specific sugar residues. This
interaction activates proteases within the MBL complex to cleave C4 into C4a and C4b fragments, and C2 into C2a and C2b fragments, once again forming C4b2b,
the C3 convertase common to both the CP and the LP activation pathways. The AP is unique in that it does not require the presence of specific microbial or
“danger” signals to become activated. Instead, the AP maintains a low level of constitutive activation. Successful AP activation occurs when activating surfaces are
unregulated, as healthy host cells are protected from complement-deposition by binding regulatory proteins. AP constitutive activation involves spontaneous
hydrolysis of C3 into C3a and the C3b-like molecule C3(H2O) in a process called “tick-over”. Factor B binds to C3(H2O), and cleavage of the bound Factor B by
Factor D produces C3(H2O)Bb, the soluble C3 convertase of the AP. All C3 convertases cleave C3 into C3a and C3b fragments, and C3b can covalently bind to
nearby surfaces. Factor B can bind to surface-bound C3b molecules and be cleaved by Factor D to form C3bBb, the membrane-bound C3 convertase of the AP.
This convertase can be bound by properdin to dramatically increase the half-life of this enzyme. Because Factor B can bind to C3b originating from any activation
pathway, any C3b bound to a receptive surface will be amplified via this AP pathway. The composition of this C3 convertase allows for an efficient cycle of C3b
generation and C3 convertase formation that can substantially amplify the complement response irrespective of which pathway initiated the response. The terminal
complement cascade is common to all activation pathways and leads to the formation of the membrane attack complex (MAC). In large numbers, MACs can disrupt
target cell membranes and cause cell death via osmotic lysis and/or loss of membrane integrity. Given the potent pro-inflammatory immune response produced by
complement activation, this system must be tightly regulated to prevent unintentional damage to healthy host cells. Regulatory proteins that dampen complement
activation and propagation are displayed in red, and regulators that enhance complement are shown in green.
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recognitionmolecule and responds to antigen-antibody complexes.
These interactions result in a conformational change that converts
the C1 complex from its inactive form to the active form
(Roumenina et al., 2005). The activated C1 complex cleaves
complement proteins C4 and C2 into C4a + C4b and C2a + C2b,
respectively. The larger cleavage products (i.e. “b” fragments) can
then come together on cell membranes to form the C3 convertase
for the CP, designated C4b2b. It is important to note that the
original C2 cleavage product nomenclature was somewhat
contentious, but was recently resolved (Bohlson et al., 2019). As
such, this convertase may appear as “C4b2a” in some texts.

The LP works similar to the CP and uses much of the same
downstream machinery, with the difference being that the LP is
initiated by innate recognition receptors rather than antibody
complexes (Figure 2). Mannose-binding lectin (MBL) is the
best-characterized recognition molecule of the LP, but ficolins
also serve to that capacity. These molecules circulate in complex
with MBL-associated serine proteases (MASPs) in a functionally
inactive form. Interaction between these recognition molecules
and certain pathogen-specific sugar residue patterns occur in a
Ca2+-dependent manner and leads to a conformational change
that activates the MASPs to cleave complement proteins C4 and
C2, and the cleavage products go on to produce a membrane-
bound C4b2b C3 convertase, identical to the CP C3 convertase
(Teillet et al., 2005).

Unlike the other two pathways, the AP does not require the
presence of specific “danger” signals or immune complexes to
elicit activation (Figure 2). Instead, this pathway monitors for
pathogen invasion by maintaining a low level of constitutive C3
activation by spontaneous hydrolysis in a process known as
“tick-over” (Lachmann and Halbwachs, 1975; Pangburn et al.,
1981). Successful AP activation occurs when activating surfaces
are unprotected by complement regulatory proteins (e.g. Factor
H) which inhibit subsequent complement component C3
activation. In the absence of this regulation, spontaneous
hydrolysis of C3 results in the formation of the intermediate
molecule C3(H2O) (“C3 water”). This molecule is able to bind
complement Factor B in a Mg2+-dependent manner, leading to a
conformational change on Factor B which exposes a cleavage site
for the serine protease Factor D. Proteolytic cleavage of Factor B
releases a Ba protein fragment, with the remaining C3(H2O)Bb
complex acting as the soluble C3 convertase of the AP (Pangburn
et al., 1981; Forneris et al., 2010).

Like the membrane-bound C3 convertase enzymes, this fluid-
phase C3 convertase can cleave C3 into the anaphylatoxin C3a and
an unstable C3b. C3b contains an exposed water-labile thioester
group that is rapidly hydrolyzed unless it has been generated close
enough to a receptive surface to covalently bind (Law and Dodds,
1997). Given the structural similarity between C3b and C3(H20),
Factor B is also able to bind to and undergo Factor D-mediated
cleavage upon surface-bound C3b molecules, forming C3bBb,
which acts as the membrane-bound C3 convertase of the AP.
This convertase can be bound by properdin, the only known
positive regulator of the complement system, which functions to
dramatically extend the half-life of membrane-bound catalytically-
active AP convertases (Fearon and Austen, 1975).
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The composition and function of this particular C3
convertase allows for an efficient cycle of C3b generation and
C3 convertase formation that can substantially amplify the
complement response. Because Factor B is capable of binding
to surface-bound C3b regardless of its pathway of origin, all
complement pathways are able to amplify the complement
response via this AP amplification loop (Lachmann, 2009).

Complement-Mediated Killing
Binding of C3b to the surface of microbes/cells that are unable to
prevent this deposition can lead to cell death via one of several
mechanisms. For the sake of this review, we will focus on the
complement-mediated direct- and indirect-killing pathways.

Complement-mediated direct killing involves complement
proteins alone. The binding of an additional C3b to an existing
C3 convertase results in the formation of a C5 convertase; these
complexes are C4b2b3b for the CP and LP, and C3bnBb for AP
(Figure 2). C5 convertases cleave the soluble complement
protein C5 to form a C5a anaphylatoxin and an unstable C5b
fragment. If C5b is not stabilized by binding to complement
protein C6, the protein is rapidly hydrolyzed. If the binding of C6
to C5b is followed by C7 attachment, the trimolecular complex
C5b-6-7 inserts into the target lipid bilayer via hydrophobic
interactions. This complex acts as a scaffold for the recruitment
of complement protein C8, as well as several units of C9, forming
a transmembrane pore called a membrane attack complex
(MAC) (Figure 2) (Podack et al., 1979). In large numbers,
MACs disrupt target cell membranes and cause cell death via
osmotic lysis and/or loss of membrane integrity.

In contrast, complement-mediated indirect killing involves
complement proteins working in conjunction with certain
immune cells to achieve target cell death via opsonophagocytosis.
Microbes/cells that cannot downregulate complement activation
become opsonized with numerous covalently-bound C3b
molecules. Recognition of these opsonins by C3 receptors on
phagocytes activates the immune cells to more efficiently
phagocytose and kill the target cell. Furthermore, anaphylatoxins
C3aandC5ageneratedduring thecomplementactivationprocesses
help recruit immune cells to the target cell to enhance the killing
process (Klos et al., 2009).

Complement Regulation
Due to the potent pro-inflammatory immune responses
produced by complement activation, it is important that this
system remains tightly regulated to limit activation to the
surfaces of pathogens and apoptotic cells, which is essential to
prevent unintentional damage to healthy host tissues.

Factor H is the master regulator of the AP, due to its ability to
dampen amplification of the complement response (Figure 2). In
both the fluid phase and on cell surfaces, Factor H downregulates
assembly of AP C3 convertases by competing with Factor B for
binding of C3b (Kazatchkine et al., 1979). In addition, Factor H
acts as a cofactor for Factor I-mediated cleavage of C3b into
iC3b, a protein fragment that cannot associate with Factor B and
thus cannot contribute to amplification of the complement
response (Weiler et al., 1976). Furthermore, Factor H can
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accelerate the decay of existingC3 convertases to further dampen the
complement cascade (Whaley and Ruddy, 1976). Expression of
binding sites for polyanionic molecules specifically found on
healthy host cell surfaces (e.g. glycosaminoglycans and sialic acids)
increases the affinity of FactorH to these cells ten-fold, thus allowing
Factor H to specifically protect healthy host tissues (Fearon, 1978;
Pangburn and Muller-Eberhard, 1978; Meri and Pangburn, 1990;
Ferreira et al., 2010). In the absence of Factor H, unregulated
spontaneous activation of complement leads to exhaustion of
serum components C3 and Factor B, and is associated with
inflammatory diseases such as atypical hemolytic uremic syndrome
and membranoproliferative glomerulonephritis (Schreiber et al.,
1978; Pickering and Cook, 2011; Roumenina et al., 2011).

The classical and lectin pathways are regulated by C4 binding
protein (C4bp) andC1 inhibitor (C1-inh) (Figure2). LikeFactorH,
C4bp is able to accelerate the decay of the C4b2b C3 convertase
(Gigli et al., 1979). Furthermore,C4bpacts as a cofactor for Factor I-
mediated degradation of C4b to prevent classical or lectin pathway
convertase formation altogether (Fujita et al., 1978). Of note, C4bp
can also recognize andmediate Factor I cleavage of C3b for further
inhibition of the complement cascade (Fukui et al., 2002). C1-inh is
a protease inhibitor that inactivates C1 proteases and MASPs to
suppress activation of the CP and LP, respectively (Ziccardi, 1981;
Rossi et al., 2001). This inhibitory activity is enhanced by host cell
surface receptors such as glycosaminoglycans, allowing for
preferential protection of these tissues over non-host cells
(Wuillemin et al., 1997).

Additional complement inhibitors include plasmin(ogen) and
vitronectin (Figure 2). Plasminogen circulates in plasma as an
inactive precursor to the proteolytic enzyme plasmin. Plasminogen
is able to bind C3b at a unique site, thereby avoiding competition
with FactorH for C3b binding (Barthel et al., 2012). Formation of a
tripartite complex between plasminogen, Factor H, and C3b
enhances Factor H cofactor activity, augmenting Factor I-
mediated cleavage of C3b to iC3b (Barthel et al., 2012). What’s
more, activated plasmin can directly cleave both C3b and C5 to
robustly inhibit the complement cascade inboth thefluidphase and
on cell surfaces (Barthel et al., 2012). Vitronectin downregulates the
assembly of the terminal complement pathway by binding to C8
and preventing formation of the lytic MAC pore (Choi et al., 1989;
Preissner et al., 1989).

Recruitment of Host Complement
Regulatory Proteins by Pathogens for
Immune Evasion
Many pathogens have evolvedmechanisms to escape complement-
mediated killing. A recent review examinedmicrobial complement
evasion strategies (Meri and Jarva, 2020). A few examples of
pathogens that recruit complement regulatory proteins will be
discussed briefly herein. However, a more comprehensive list is
provided in Table 1.

As described above, Factor H is a potent negative regulator of
complement activation and amplification. Pathogens that have
evolved to recruit Factor H to their surface are protected against
complement-mediated killing, ultimately allowing for survival
within the host. This protective mechanism was expertly
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reviewed recently by Ferreira and colleagues and will be briefly
described herein (Moore et al., 2021). The first microbe found to
bind Factor H as an immune evasion strategy was Streptococcus
pyogenes (Horstmann et al., 1988). Factor H binding by S.
pyogenes is primarily mediated by surface-exposed M proteins.
Strains expressing M protein variants that are unable to bind
Factor H accumulate significantly more complement opsonin
C3b on their surface and are more readily phagocytosed than
Factor H-binding strains (Peterson et al., 1979; Horstmann et al.,
1988). Neisseria meningitidis also expresses multiple Factor H-
binding proteins (Madico et al., 2006; Lewis et al., 2010; Lewis et al.,
2013). fHbp (formerly GNA1870) is the best characterized N.
meningitidis Factor H-binding protein, and this antigen is a
component of two licensed meningococcal vaccines (McNeil
et al., 2013; Esposito and Principi, 2014; Gandhi et al., 2016). The
ability to usurp host Factor H is not unique to bacterial pathogens.
Both the West Nile virus and human immunodeficiency virus
(HIV) express proteins that bind Factor H to improve viral
survival within the host (Pinter et al., 1995a; Pinter et al., 1995b;
Chung et al., 2006).Additionally, the fungal opportunistic pathogen
Candida albicans binds Factor H in its functionally active form to
downregulate complement activationand amplification (Meri et al.,
2002). Furthermore, the Factor H-binding ability is not limited to
proteins. Many pathogens have evolved to exploit the Factor H
inherent ability to bind sialic acid residues on host cells to their
advantage by either producing their own sialic acid moieties or
incorporating sialic acids from host cells onto the pathogen surface
(Ram et al., 1998; Vimr et al., 2004).

Although C4bp cannot impede amplification of the
complement response, its ability to downregulate the classical
and lectin pathways of complement activation make it an
attractive target for recruitment by pathogens. Similar to
Factor H-binding, recruitment of C4bp for pathogen survival
was first demonstrated with Streptococcus pyogenes and is also
mediated by surface-exposed M proteins (Thern et al., 1995).
The related pathogen Streptococcus pneumoniae does not express
M proteins, but instead expresses multiple different proteins that
bind C4bp for immune evasion (Dieudonne-Vatran et al., 2009;
Agarwal et al., 2012;Ramos-Sevillanoet al., 2015;Haleemet al., 2019).
Virulent Leptospira strains can bind C4bp, which corresponds with
acquisition of resistance to serum-mediated direct killing, indicating
that recruitment of C4bp offers protection against the host immune
responseandcontributes topathogenicity (Barbosaetal., 2009).Once
again, this immune evasion strategy is not limited to bacterial
pathogens. A Flavivirus protein common to the important human
pathogen dengue virus, West Nile virus, and yellow fever virus
directly interacts with C4bp to protect infected cells from
complement-mediated lysis (Avirutnan et al., 2011). In addition,
opportunistic Aspergillus fungal species also bind C4bp for immune
evasion (Vogl et al., 2008).

C1-inh can also be appropriated by pathogens to prevent
initiation of the classical and lectin pathways. The first report of
C1-inh recruitment by a pathogen appeared in 2004, when the
ability of the E. coli protein StcE to bind C1-inh to host cell
surfaces was described (Lathem et al., 2004). The importance of
this immune evasion strategy is highlighted by the fact that
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virulent Bordetella pertussis binds C1-inh whereas avirulent
Bordetella spp. do not (Marr et al., 2007; Marr et al., 2011).
Finally, binding of C1-inh to the surface of relapsing fever-
causing Borrelia spp. significantly enhances survival of these
bacteria in serum (Grosskinsky et al., 2010).

Recruitment of plasminogen to the pathogen surface can
amplify Factor H cofactor function that augments Factor I-
mediated cleavage of the opsonin C3b (Barthel et al., 2012).
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Furthermore, the bound plasminogen can be activated to
plasmin, which further protects the pathogen from the host
immune response by cleaving C3b and C5, preventing
complement activation in the surrounding area (Barthel et al.,
2012). These strategies are utilized by many important pathogens,
including Streptococcus pneumoniae, Haemophilus influenzae,
Borrelia spp., and Moraxella catarrhalis (Barthel et al., 2012;
Agarwal et al., 2013; Singh et al., 2015; Schmidt et al., 2021).
TABLE 1 | Abridged list of microbial receptors for complement regulatory proteins and their ligands.

Pathogen Host
Target

Pathogenic Component References

Aspergillus fumigatus Factor H AfEno1 (Vogl et al., 2008; Dasari et al., 2019)
C4bp AfEno1 (Vogl et al., 2008; Dasari et al., 2019)
Plasminogen AfEno1 (Dasari et al., 2019)

Bordetella pertussis Factor H unknown receptor (Amdahl et al., 2011)
C4bp filamentous hemagglutinin (Berggard et al., 1997)
C1-inh Vag8 (Marr et al., 2007; Marr et al., 2011)

Borrelia spp. Factor H CRASPs; Erp-family proteins (Brissette et al., 2009; Lin et al., 2020)
C4bp unidentified 43kD protein (Pietikainen et al., 2010)
C1-inh CihC (Grosskinsky et al., 2010)
Plasminogen CRASPs; Erp-family proteins (Brissette et al., 2009; Hallstrom et al., 2010; Lin et al., 2020; Schmidt et al.,

2021)
Candida albicans Factor H Gpm1 (Meri et al., 2002; Poltermann et al., 2007)

C4bp Gpm1 (Meri et al., 2004)
Plasminogen Gpm1 (Poltermann et al., 2007)
Vitronectin Gpm1 (Poltermann et al., 2007; Lopez et al., 2014)

Dengue Virus C4bp NS1 (Avirutnan et al., 2010; Avirutnan et al., 2011)
Vitronectin NS1 (Conde et al., 2016)

Escherichia coli C4bp OmpA (Prasadarao et al., 2002)
C1-inh StcE (Lathem et al., 2004)

Haemophilus influenzae Factor H Protein H, P5 (Hallstrom et al., 2008; Fleury et al., 2014; Rosadini et al., 2014; Langereis
et al., 2014)

C4bp unknown receptor (Hallstrom et al., 2007)
Plasminogen Protein E (Barthel et al., 2012)
Vitronectin Haemophilus surface fibrils; Protein E; Protein

F; Protein H; P4
(Hallstrom et al., 2006; Singh et al., 2011; Su et al., 2013a; Al-Jubair et al.,
2015; Su et al., 2016)

Human Immunodeficiency
Virus (HIV)

Factor H gp120; gp41 (Stoiber et al., 1995a; Stoiber et al., 1995b; Stoiber et al., 1996)
C4bp gp120 (Stoiber et al., 1995b)

Leptospira spp. Factor H Enolase (Meri et al., 2005; Salazar et al., 2017)
C4bp Enolase (Barbosa et al., 2009; Salazar et al., 2017)

Moraxella catarrhalis Factor H OlpA (Bernhard et al., 2014)
C4bp UspA (Nordstrom et al., 2004)
Plasminogen UspA (Singh et al., 2015)
Vitronectin UspA (Su et al., 2013b)

Neisseria gonorrhoeae Factor H Por1B, LOS (Ram et al., 1998; Madico et al., 2007)
C4bp Por1A (Ram et al., 2001a; Ram et al., 2001b)

Neisseria meningitidis Factor H fHbp (Madico et al., 2006)
C4bp PorA (Jarva et al., 2005)
Vitronectin OpcA; Msf (Griffiths et al., 2011; Hubert et al., 2012)

Streptococcus
pneumoniae

Factor H PspC (Dave et al., 2001)
C4b PspA; PspC; LytA; PepO (Dieudonne-Vatran et al., 2009; Agarwal et al., 2012; Ramos-Sevillano

et al., 2015; Haleem et al., 2019)
Plasminogen PepO (Agarwal et al., 2013)
Vitronectin Hic (Kohler et al., 2015)

Streptococcus pyogenes Factor H M Protein (Peterson et al., 1979; Horstmann et al., 1988)
C4bp M Protein (Thern et al., 1995)
Vitronectin Streptokinase (Ullberg et al., 1989)

West Nile Virus Factor H NS1 (Chung et al., 2006)
C4bp NS1 (Avirutnan et al., 2010; Avirutnan et al., 2011)

Yellow Fever Virus C4bp NS1 (Avirutnan et al., 2010; Avirutnan et al., 2011)
Yersinia spp. Factor H YadA; Ail (Biedzka-Sarek et al., 2008)

C4bp YadA; Ail (Kirjavainen et al., 2008)
Vitronectin Ail (Thomson et al., 2019)
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Finally, a growing number of pathogens have been shown to
bind vitronectin to their surface, where this regulatory protein
continues to prevent complement-mediated direct killing.
Pathogens that use this immune evasion strategy include
Streptococcus pneumoniae, Haemophilus influenzae, and Candida
albicans (Hallstrom et al., 2006; Singh et al., 2011; Su et al., 2013a;
Lopez et al., 2014; Al-Jubair et al., 2015; Kohler et al., 2015).
BURKHOLDERIA AND COMPLEMENT

Burkholderia pseudomallei Complex
The vast majority of studies assessing complement evasion by Bpc
strains were performed on B. pseudomallei strains. B. pseudomallei
clinical isolates are resistant to killing in normal human serum,
indicating they can prevent formation of significant levels of MAC
on their surface (Ismail et al., 1988; Egan and Gordon, 1996;
DeShazer et al., 1998; Woodman et al., 2012; Mulye et al., 2014).
While bacterial capsules are often associatedwith serum-resistance,
capsule-deficient B. pseudomallei mutants retain the same serum-
resistant phenotype displayed by their wild-type strain (Woodman
et al., 2012). Serum-sensitivity assays performed using B.
pseudomallei strains that are mutated in different outer surface
components indicated that the O-antigenic polysaccharide (O-PS)
is required for the serum-resistance phenotype (Figure 1)
(DeShazer et al., 1998; Woodman et al., 2012). This conclusion is
supported by the fact that the naturally unencapsulated organismB.
thailandensis, which expresses the sameO-PS as B. pseudomallei, is
also serum-resistant (DeShazer et al., 1998; Brett et al., 1998;
Woodman et al., 2012; Mulye et al., 2014). Notably, while the
serum-resistance phenotype of LPS-deficient B. pseudomallei is
attenuated in comparison to wild-type, this mutant strain is not
entirely serum-sensitive (Woodmanet al., 2012).Thesedata suggest
that the LPS expressed by theseBurkholderia strains aid in immune
evasion by physically preventing deposition of complement
proteins directly on the bacterial membrane (Figure 1).
Evaluation of the serum following incubation with B.
pseudomallei demonstrated intact hemolytic activity, ruling out
failure of complement activation. This finding has been supported
more recently in studies demonstrating that B. pseudomallei
infection causes an upregulation of complement genes in both
mouse and non-human primate models (Chin et al., 2010; Ward
et al., 2019).Together, these data suggest that anadditional, hitherto
unknown immune evasion mechanism is contributing to
Burkholderia serum-resistance (Egan and Gordon, 1996).

While the B. pseudomallei capsule is not necessary for serum
resistance, it remains an important feature for protection against
other complement effector mechanisms. Encapsulated B.
pseudomallei acquires significantly less C3 opsonin on its
surface compared to capsule-deficient B. pseudomallei mutant
strains, as well as the naturally unencapsulated B. thailandensis
(Reckseidler-Zenteno et al., 2005; Woodman et al., 2012; Mulye
et al., 2014). Quantification of C3 opsonin bound to the surface
of B. thailandensis variant strain E555, which expresses a B.
pseudomallei-like capsule, further supports these observations
(Sim et al., 2010).
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The levels of complement components bound to the surface
of Bpc organisms has a dramatic effect on the fate of the
bacterium. Even relatively low levels of serum opsonization of
B. pseudomallei and B. thailandensis will enhance bacterial
uptake by neutrophils. However, a higher critical threshold of
bound complement opsonin is required to promote
opsonophagocytic killing of Bcc organisms, and these same
levels are required to rapidly trigger robust reactive oxygen
species (ROS) production (Egan and Gordon, 1996; Woodman
et al., 2012; Mulye et al., 2014). Alternatively, while complement
opsonization enhances uptake of B. pseudomallei and B.
thailandensis by macrophages, these phagocytes cannot clear
the bacteria unless they have also been pre-activated with IFNg
(Mulye et al., 2014). No work regarding B. mallei interaction with
neutrophils has been published, but both serum- and antibody-
opsonized B. mallei are phagocytosed in greater numbers by
murine macrophage cell lines than unopsonized B. mallei
(Whitlock et al., 2008; Whitlock et al., 2009).

The role of opsonizing antibodies in promoting complement-
mediated killing of B. pseudomallei has also been described. While
Burkholderia-specific antibodies are not required for complement
activation or clearance of B. pseudomallei, their presence does
enhance neutrophil-mediated killing in a complement-dependent
fashion (Egan and Gordon, 1996; Ho et al., 1997). In fact, the
presence of B. pseudomallei-specific antibodies enhanced
complement deposition to the B. pseudomallei surface to levels
similar to that observed on unencapsulated B. thailandensis (Mulye
et al., 2014). However, antibodies alone are not sufficient to elicit
bacterial direct or opsonophagocytic killing on primary phagocytes
(Su et al., 2010; Mulye et al., 2014).

Studies have also compared the relative importance of different
complement-activation pathways in depositing complement
opsonins on B. pseudomallei outer surfaces. Complement
activation elicited by B. pseudomallei occurs largely via the
alternative pathway compared to the classical/lectin pathways
(Egan and Gordon, 1996; Woodman et al., 2012). B. pseudomallei
is relatively resistant to alternative pathway-mediated complement
opsonization, however serum-sensitiveB. pseudomalleimutants are
killed by mechanisms activated through the alternative pathway
(DeShazer et al., 1998; Woodman et al., 2012). Furthermore,
opsonizing complement fragments on the B. pseudomallei surface
were bound to the bacteria covalently via the canonical ester linkage
(Egan and Gordon, 1996; Woodman et al., 2012).

Burkholderia cepacia Complex
Relatively little work has been performed investigating the role of
complement in B. cepacia complex (Bcc) infection. While the Bcc
group contains important pathogens, B. cenocepacia is the most
extensively studied member of this group.

Similar to observations with Bpc organisms, the serum-
sensitivity profile of Bcc isolates is dependent on both the
expression of a bacterial capsule and the LPS O-PS (Butler et al.,
1994; Su et al., 2010; Ruskoski and Champlin, 2017). A notable
difference, however, is that expression of these virulence factors
varies considerably evenwithin each species (Figure 1). Indeed, the
expressionof both capsule andO-PSbyBcc isolates are significantly
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modulated by changes in the extracellular environment (Su et al.,
2010; Ruskoski and Champlin, 2017). While the expression of
capsule can influence serum survival, the major determinant of
serum resistance in Bcc isolates remains the O-PS. As such, the LPS
structure of these organisms has been the subject of more extensive
investigation than the bacterial capsule.

While the lipid A core-region is highly conserved between Bcc
organisms, the O-PS gene cluster experiences strong selective
pressure during chronic infection (Savoia et al., 2008; Hassan
et al., 2017). Strains that express intact O-PS are described as
having “smooth” LPS, whereas those with truncated or absent O-
PS are described as expressing “rough” LPS (Butler et al., 1994).
Interestingly, while Butler and colleagues found that strains
expressing smooth LPS are generally more resistant to serum-
mediated killing than those expressing rough LPS, they could
find no particular association between presence or absence of O-
PS and the ability of the isolate to infect vulnerable populations
(Butler et al., 1994). These findings were later reinforced when
Ortega and colleagues found that a defect in O-PS production by
B. cenocepacia strain K56-2 corresponds to loss of the serum-
resistant phenotype (Ortega et al., 2005; Maldonado et al., 2016).

The mechanism behind serum-killing of susceptible Bcc
strains has been minimally addressed. Early studies indicated
that the bactericidal activity of susceptible isolates is heat-labile,
suggesting involvement of the complement system (Butler et al.,
1994). Investigation into the involvement of the humoral
immune system on serum-mediated killing of Bcc isolates
concluded that, while the presence of specific antibody
enhanced bactericidal activity against these organisms, the
majority of the antibacterial activity in serum relies on the
complement system (Butler et al., 1994; Su et al., 2010); this is
similar to the observations with Bpc strains.

While the alternative pathway of complement activation is
primarily responsible for serum-mediated killing of Bpc
organisms, there is no evidence of alternative pathway
activation by Bcc isolates (Butler et al., 1994; Ortega et al.,
2005; Mulye et al., 2014). Selective inhibition of the classical
and lectin pathways by calcium chelation significantly attenuates
bacterial killing of susceptible isolates in pooled normal human
serum, suggesting a more important role for those pathways for
Bcc strains (Butler et al., 1994). Differentiation of whether the
classical or the lectin pathway bears greater responsibility for
killing of susceptible strains is unclear, as evidence has pointed in
both directions. On one hand, the lectin pathway recognition
molecule MBL has been shown to bind numerous Bcc clinical
isolates and lead to complement activation (Davies et al., 2000).
Furthermore, infection with Bcc organisms occurs more
frequently in cystic fibrosis patients that carry variant alleles
that express structurally abnormal MBL (Garred et al., 1999). On
the other hand, a more recent study which utilized classical
pathway-deficient C1q-depleted serum demonstrated that
bacterial killing of serum-sensitive B. cenocepacia strains was
dependent on classical pathway activation (Mil-Homens et al.,
2014). Overall, it appears that the exact mechanism behind
complement-mediated killing of susceptible Bcc isolates
warrants further investigation.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
CONCLUSIONS AND
FUTURE PERSPECTIVE

The genus Burkholderia contains many important pathogens
that warrant our attention and investigation. A common feature
across Burkholderia spp. is the ability to persist both
extracellularly and within different cell types, all the while
evading clearance by the host immune response. Due to the
essential nature of complement evasion for microbial persistence,
identification of microbial mechanisms for suppressing
complement activation and propagation may provide targets
for immune-based therapies.

Expression of surface proteins that recruit complement
regulators is a well-known mechanism of host immune evasion
used by a wide variety of pathogens (Table 1). The LPS- and
capsule-independent serum resistance phenotypes observed by
Burkholderia indicates that these bacteria bind one or more
complement regulators to evade clearance by the host immune
system. In particular, recruitment of Factor H by Bpc organisms
is an attractive explanation for the observed resistance to both
complement opsonization and complement-mediated direct
killing in serum. While binding C4bp, C1-inh, and plamin
(ogen) could also explain these phenotypes, the observation
that Bpc organisms B. pseudomallei and B. thailandensis resist
complement activation and opsonization via the alternative
pathway suggests an alternative pathway-specific evasion
strategy (Egan and Gordon, 1996; Woodman et al., 2012).
While recruitment of vitronectin also contributes to serum
resistance of pathogens, its mechanism of action involves
specifically inhibiting membrane attack complex formation.
While resistance to the action of membrane attack complexes has
been demonstrated by Burkholderia, there is no evidence that the
formation of these lytic complexes is directly inhibited, therefore
there is little reason to suspectBurkholderia recruit vitronectin as an
immune evasion strategy (Woodman et al., 2012). Conversely, Bcc
serumresistance appears tohave little todowith evading alternative
pathway activation. Instead, the classical and lectin pathways have
been implicated as important in Bcc pathogen virulence (Butler
et al., 1994;Garredet al., 1999;Davies et al., 2000;Mil-Homens et al.,
2014). Taken together, these data suggest that complement
regulators C4bp and C1-inh may play a more significant role in
immune evasion by this subset of Burkholderia pathogens.

To capture these extracellular host complement regulators,
pathogens express binding proteins on their surface. These
exposed binding proteins are susceptible to antibody binding and
thus make attractive targets for vaccine development, as has been
demonstrated with serogroup Bmeningococci (MenB) (Meri et al.,
2008). Most Neisseria meningitidis vaccines are developed against
the capsular polysaccharide of each N. meningitidis serogroup;
however, the MenB capsule possesses similar sugar moieties as
those foundon the surfaceofhumancells tobe sufficiently antigenic
(Finne et al., 1983). Rather than targeting the capsular
polysaccharide, currently available MenB vaccines instead target
the Factor H-binding protein fHbp (Gorringe and Pajon, 2012;
Shirley and Taha, 2018). Incidentally, due to the highly conserved
nature of this Factor H-binding protein, these vaccines appear to
September 2021 | Volume 11 | Article 701362
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have induced cross-protection against the closely related species
Neisseria gonorrhoeae (Azze, 2019). These findings indicate that
targeting Burkholderia proteins that bind complement regulators
may not only serve as therapeutic targets, but that such a vaccine
may be capable of protecting against more than one of these closely
related pathogens.

An additional therapeutic approach that involves preventing
complement regulator recruitment by pathogens was first
considered a decade ago and appears to be gaining traction in
recent years. Chimeric proteins were constructed in which the
common microbial binding sites of Factor H (domains 6-7 and 18-
20) were fused to the Fc receptors of immunoglobulin (Shaughnessy
et al., 2011). The binding of FH18-20/Fc to serum-resistant N.
gonorrhoeae was found to render many pathogenic strains serum-
sensitive. Furthermore, bindingof this chimericproteinwasobserved
to enhance complement opsonization to the surface of these bacteria
(Shaughnessy et al., 2016). Finally, application of FH18-20/Fc
significantly attenuated gonococcal infection in the mouse vaginal
colonization model (Shaughnessy et al., 2016; Shaughnessy et al.,
2020). Importantly, the observed therapeutic benefits of Factor H-Fc
chimeras are not limited toNeisseria; binding of FH6-7/Fc resulted in
increased complement opsonization and serum sensitivity of non-
typeableH. influenzae (Wong et al., 2016). Furthermore, the utility of
these chimeric proteins as therapies against additional Factor
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
H-binding pathogens is currently being evaluated. These findings
indicate that, if Burkholderia pathogens also bind Factor H, these
immunotherapeuticsmay also prove useful for the treatment of these
important diseases.

As the interactions between Burkholderia and the
complement system remain poorly studied, investigation into
complement regulatory protein recruitment mechanisms
employed by Burkholderia pathogens warrants further
investigation. Understanding these host-pathogen interactions
will be key for the development of novel therapeutics against
these important pathogens.
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