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Growing evidence has demonstrated that stress triggers gastrointestinal (Gl) disorders. This
study aimed to investigate how the acute cold water-immersion restraint (CWIR) stress
affects intestinal injury and gut microbiota (GM) distribution. Male C57BL/6 mice were used
to establish a CWIR animal model. Hematoxylin—eosin and periodic acid-Schiff staining
were performed to assess intestinal histopathological changes. Reverse transcription
quantitative polymerase chain reaction (RT-gPCR) analysis and immunofluorescence
staining were used to evaluate the expression of inflammatory cytokines and immune cell
infiltration in the intestinal tissues. The gut permeability and intestinal occludin protein
expression were determined through fluorescein isothiocyanate-dextran detection and
western blot, respectively. GM profiles were analyzed via high-throughput sequencing of
the fecal bacterial 16S rRNA genes. Results showed that CWIR induced more severe
intestinal mucosal injury compared to the control, leading to a significant increase in tumor
necrosis factor-o expression, but no infiltration of neutrophil and T cells. CWIR also resulted
in Gl disruption and increased the permeability of the intestinal mucosa. GM profiles showed
that CWIR reduced GM diversity of mice compared with the control group. Specifically,
aerobic and gram-negative bacteria significantly increased after CWIR, which was
associated with the severity of gut injury under stress. Therefore, acute CWIR leads to
severe intestinal damage with inflammation and disrupts the GM homeostasis, contributing
to decreased GM diversity. Our findings provide the theoretical basis for the further
treatment of intestinal disorders induced by CWIR.

Keywords: gut microbiota, cold water-immersion restraint stress, intestinal injury, inflammation, mouse models

INTRODUCTION

Stress can be caused by various external or internal stimuli, leading to the emergence of strong
defense systems, which may have a beneficial or harmful impact on the body (Dragos and
Tanasescu, 2010; Yaribeygi et al., 2017). Acute stresses like cold-restraint, restraint, or water-
immersion restraint can simulate the pathophysiology of stress-related mucosal disease (SRMD),
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highly prevalent in patients in intensive care units. Among these
three stress models, water-immersion restraint best resembles
SRMD, as previously shown by the significantly elevated ulcer
index, microvascular permeability, and decreased hexosamine
level (Saxena and Singh, 2017). Reportedly, serum corticosterone
and glucose concentrations in rats under water-immersion
restraint stress (WIRS, 23°C for 6 h) were significantly higher
than those in unstressed rats (Ohta et al., 2009). Plasma
epinephrine and norepinephrine levels were increased via the
activation of the plasma enzymes in fasted rats under 6 h of
WIRS (Arakawa et al, 1997). Ohta et al. demonstrated that
WIRS exposure of rats induced severe oxidative stress in immune
organs (Ohta et al., 2012). However, the pathogenesis of
intestinal mucosal injury induced by water restraint stress
remains unclear.

Mice exposed to cold-restraint stress presented gastric ulcer
and inflammation (Di Cerbo et al, 2020; Higashimori et al.,
2021). Further, 15-min cold exposure in mice increased their
gastric phasic activity and tone, whereas mice exposed to chronic
stress presented with no gastric response (Gourcerol et al., 2011).
A recent study also revealed that cold stress can induce neuronal
autophagy mediated by corticosterone excess in the
hippocampus in C57BL/6 mice (Xu et al, 2019). Moreover,
increased plasma corticosterone levels following exposure to
cold water stress may be modulated by MAPK and mTOR
signaling pathways (Feng et al.,, 2021). Cold water-immersion
restraint (CWIR) stress was found to be associated with gastric
mucosal lesions (Shian et al., 1995), but the evidence for its
related intestinal injury is scarce. Considering that gut
microbiota (GM) is an essential factor influencing intestinal
health (Wan et al,, 2019), the present study mainly investigated
possible mechanisms and microbiome alterations underlying
acute CWIR stress-induced intestinal mucosal damage. We
found that acute CWIR stress led to severe intestinal mucosal
injury with increased intestinal permeability. The GM diversity
was significantly reduced after CWIR administration, leading to
imbalanced aerobic to anaerobic proportion.

MATERIALS AND METHODS

Animals

We obtained 8-10 week old male C57BL/6 mice (weighing 24-25 g)
from the Animal Center of the Fourth Military Medical University.
Mice were housed in a specific pathogen-free level laboratory under
standard conditions (22°C-23°C, 12 h light/dark cycle, and 60% +
10% humidity) and provided with water and food. In order to
facilitate the microbiota study, the mice were rotated within
different cages (5 mice per cage) for more than two weeks after
weaning at the fourth week after birth. Then the mice were
randomly divided into control and CWIR groups for further
research. The inter-cage rotation and randomized grouping were
carried out to mitigate the potential cage effects on the intestinal
microbiota of mice (Goodrich et al., 2014; Caruso et al., 2019; Yang
et al, 2020). All experimental protocols and animal handling
procedures were conducted following the Care and Use of

Laboratory Animals Guide. This study was approved by the
Ethical Committee on Animal Experimentation of Northwestern
Polytechnical University and Fourth Military Medical University.

Acute CWIR Stress Model

Mice were fasted for overnight and restrained in polyvinyl chloride
tubes, as a protocol previously reported with slight modifications
(Shian et al.,, 1995; Szuran et al., 2000; Popova et al., 2006). The
tube with the animal was vertically immersed to the level of the
sternum xiphoid in water maintained at 10°C + 1°C for 1 h. Mice
subjected to the unstressed condition underwent the same
procedure without restraint and cold-water exposure (Landeira-
Fernandez, 2015; Saxena and Singh, 2017). After acute CWIR,
mice were immediately sacrificed, and their serum and intestine
tissues were obtained for further examination.

Intestinal Morphology

The morphometric analysis of the small intestine was performed
as previously described (Lin et al., 2020). Mice were sacrificed,
and the small intestinal tissues were carefully dissected and
immersed in 4% paraformaldehyde. After being embedded in
paraffin, tissues were cut into sections (5 um). Intestinal tissues
were subjected to hematoxylin-eosin (HE) and periodic acid-
Schiff (PAS) staining. For the HE staining, five representative villi
or crypt per slide were randomly selected and measured. Villus
height, crypt depth, and the V/C ratio were measured from each
villus set and crypt in the duodenum, jejunum, and ileum. For
PAS staining analysis, the average number of goblet cells per
entire enterocyte was calculated in each group.

Gut Leakage Determination

Intestinal permeability defect was determined through serum
detection of fluorescein isothiocyanate dextran (FITC-dextran
FD4; Sigma-Aldrich, St. Louis, MO, USA), a nonabsorbable
high-molecular-weight molecule, after the oral administration
of 12.5 mg FITC-dextran at 2 h after CWIR, as previously
reported (Guo et al., 2012; Sae-Khow et al., 2020). A
fluorospectrometer (microplate reader; Thermo Fisher
Scientific, Waltham, MA, USA) was used to measure the
serum FITC-dextran based on a standard curve of a reference.

Western Blot

Intestinal tissues were rapidly homogenized in liquid nitrogen
and stored at —80°C prior to western blot analyses. Total protein
was extracted using a RIPA lysis buffer, and the total protein
concentration was determined using a BCA kit, according to the
manufacturer’s instructions (Beyotime, Shanghai, China).
Proteins were separated using SDS-PAGE and transferred
onto PVDF membranes (Millipore, Bedford, MA, USA).
Membranes were blocked in 5% bovine serum albumin for 1 h
before incubation with occludin (sc-133256, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), claudin-1 (AF6504,
Beyotime Biotechnology Co., Shanghai, China), and B-actin
primary antibodies (AF5001, Beyotime Biotechnology). After
being washed with TBS-T, the membranes were incubated with
HRP-conjugated secondary antibodies (G-21040, Thermo Fisher
Scientific) for 2 h at 4°C. Protein signals were detected using a
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StarSignal system (GenStar, Beijing, China). Results were
obtained from four separate experiments.

Reverse Transcription Quantitative
Polymerase Chain Reaction (RT-qPCR)
Total RNA was extracted from intestinal tissues using TRIGene
reagent (GenStar), and converted to cDNA using the Hifair IT 1st
Strand cDNA Synthesis Kit (Yeasen Biotechnology, Shanghai,
China). qPCR was performed using SYBR qPCR Master Mix
(GenStar). Relative mRNA levels were calculated via
normalization to B-actin’s level. Relative gene expression was
analyzed based on the fold change (the 2-AACt method).

Immunofluorescence Staining

Immunofluorescence staining of tissues was performed on
paraffin sections as previously described (Mescher et al., 2017).
The tissue sections were incubated with primary antibodies
(Ly6G: GB11229, Servicebio, Wuhan, China; CD4: bs-0766R,
bioss Inc., Beijing, China; TNF-o: 346654, Zen bioscience,
Chengdu, China; and IL-1P: 516288, Zen bioscience) overnight
at 4°C in a humidified chamber. Following this, incubation with
Cy3-conjugated secondary antibodies and DAPI (Thermo Fisher
Scientific) were performed for 1 h at room temperature in an
antibody buffer before washing and mounting in an anti-
quenching medium (Thermo Fisher Scientific). Images were
captured using a fluorescent microscope (EVOS M7000 Cell
Imaging Systems, Thermo Fisher Scientific).

DNA Extraction and 16S Ribosomal

RNA Sequencing

Fecal samples were collected by using standardized collection
procedures. Four samples per group were used for 16S rRNA
sequencing. Microbial DNA was extracted and quantified. After,
the V3-V4 hypervariable region was amplified using 341F
(5>-CCTACGGGNGGCWGCAG-3") and 806R (5’-
GGACTACHVGGGTATCTAAT-3’) primers. Sequencing was
performed on a Illumina PE250 system by Gene Denovo
Biotechnology Co., Ltd (Guangzhou, China). The raw data
were quality-filtered using Usearch or DADA2 software.
Bioinformatic analysis was performed using Omicsmart, a real-
time interactive online platform for data analysis (www.
omicsmart.com). Alpha diversity on Operational Taxonomic
Units (OTU) levels was measured by Sob, Chaol, Shannon,
and Simpson indexes and compared using Welch’s t-test within
CWIR or control groups. Beta diversity was assessed using
unweighted unifrac distance. Principal coordinates analysis
(PCoA) was conducted according to the distance matrices. The
link between groups of mice and bacterial microbial profiles was
assessed using an Adonis test. The functional composition and
phenotype of the intestinal metagenome were predicted using
Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt2) and BugBase.

Statistical Analysis

Statistical data were analyzed using GraphPad Prism 6.0
(GraphPad Software, La Jolla, CA, United States). Data are
presented as the mean =+ standard error of mean (SEM). Welch
or Student’s t-test was used to compare values between the two
groups. Statistical significance was accepted at P < 0.05.

RESULTS

CWIR Induces Intestinal Mucosa

Injury Histologically

As presented in Figure 1A, histological changes in intestinal
tissue sections were detected by HE staining. The intestinal
mucosa in the control group exhibited a complete structure,
which was disrupted by CWIR treatment (Figure 1A). In
comparison with the control mice, CWIR mice showed
significantly decreased villus heights in the duodenum and
jejunum tissues, and notably reduced V/C ratios in the
duodenum, jejunum, and ileum (Figure 1B). However, the
crypt depth in the intestinal tissue sections was not different
between the two groups (Figure 1B). We further performed
immunofluorescence staining of the duodenum with anti-Ly6G
and CD4 antibodies to detect neutrophil and T cell infiltration.
As shown in Figure 1C and Supplementary Figure 1A, there
was no difference in neutrophil and T cell infiltration between
WT and CWIR mice. PAS staining showed that the goblet cells
(red) were dispersed among the epithelial cells, mainly in the
lower half of the villi (Figure 2A). Compared to the controls,
mice subjected to CWIR exhibited significantly reduced goblet
cell numbers in all the intestinal segments (Figure 2B).

CWIR Increases Intestinal Inflammation
and Intestinal Mucosal Permeability

To assess whether CWIR contributed to gastrointestinal
permeability defects, gut leakage was measured through FITC-
dextran detection in the serum. As shown in Figure 3A, the
FITC-dextran level in the plasma of the CWIR group was
remarkably higher than that in the control group (P < 0.001).
Western blot analysis also showed increased damage of the
integrity and tight junctions of the intestine in CWIR mice, as
demonstrated by the significant reduction of occludin protein
expression (Figure 3B). However, the control and CWIR groups
did not show any differences in terms of claudin-1 expression in
the intestine (Supplementary Figure 1B). Besides, RT-qPCR
analysis indicated that acute CWIR significantly increased
the level of inflammatory factor tumor necrosis factor-alpha
(TNF-0) in small intestine tissues. Although interleukin (IL)-1f
expression was increased, the increase was not statistically
significant. However, IL-8 and interferon (IFN)-7 levels did not
change significantly after CWIR (Figure 3C). These findings
were also confirmed by further immunofluorescence staining
analysis for TNF-o. and IL-1B in the small intestinal tissues
(Figures 3D, E).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org

October 2021 | Volume 11 | Article 706849


http://www.omicsmart.com
http://www.omicsmart.com
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

Zhang et al.

Acute CWIR Reduces GM Diversity

Jejunum

Control

CWIR

bar = 150 um.

600 3 Control
Hm CWIR

200+

Villus height (um)

8
- 5
; ;
g E

Duodenum  Jejunum  lleum

250 =3 Control
200 EN CWIR

Crypt depth (um)
a 3 @
o & 8 &
T T 7T

Duodenum  Jejunum  lleum

6 3 Control

*

= B CWIR

Duodenum  Jejunum  lleum

FIGURE 1 | Cold water-immersion restraint (CWIR) induces gut mucosal barrier disruption in the small intestine in mice. Different segments of the small intestine
were harvested 1 h post CWIR. (A) Hematoxylin—eosin (HE) staining of mouse intestinal tissues (magnification, 200x). Microscopic examination of the small intestinal
mucosa revealed marked villous thinning, shrinkage, and disorganization in CWIR mice. Scale bar = 100 um. (B) Villus height, crypt depth, and the villus/crypt (V/C)
ratio were measured in the duodenum, jejunum, and ileum in mice after CWIR administration or control. All data are shown as mean + SEM (n = 4-5 per group).

*P < 0.05, P < 0.01, **P < 0.001 vs. WT control. (C) Representative anti-Ly6G immunofluorescent photomicrographs of the duodenum. White arrow indicates
intestinal neutrophil infiltration (Ly6G positive, red, n = 3 per group). White arrowhead depicts erythrocyte-nonspecific staining, without DAPI nuclear staining. Scale

CWIR Decreases GM Diversity

To characterize GM variations in mice intestine after CWIR, 16S
rRNA amplicon libraries were constructed and sequenced from
cecal content, for each group. The analysis of beta diversity and
alpha diversity indicated a clear variety in the intestinal flora. The
PCoA plot revealed an obvious separation between the two
groups, confirming that the composition of the fecal
microbiota differed after CWIR stress (Adonis: P = 0.021)
(Figure 4A). Alpha diversity was measured through Sob,
Chaol, Shannon, and Simpson indices. Sob and Chaol
indicate the richness of species, whereas Shannon and Simpson
emphasize the richness and evenness in a region. It was shown
that CWIR treatment significantly reduced the overall bacterial
richness in the gut (Figure 4B). Except for 12 shared phyla and
79 shared genera, there was no unique phyla and only three
unique genera were observed in the CWIR samples, compared to

the control (Figure 4C). These results suggested that acute
CWIR triggered GM dysbiosis, leading to a decreased
microbiota diversity.

CWIR Affects the GM Abundance at
Phylum and Genus Levels

The enrichment of distinct bacterial communities in each group
at phylum and genus levels was assessed. As shown in Figure 5A,
Firmicutes, Proteobacteria, and Bacteroidetes were the most
abundant in the normal control group, as previously reported
(Long et al., 2020), while CWIR remarkably increased
Verrucomicrobia and decreased Proteobacteria abundance. At
the genus levels, Lactobacillus (30.41%) was the dominant
species in the normal group, followed by Akkermansia
(13.79%), and Cronobacter (8.21%). CWIR increased the
relative abundance ratio of beneficial bacteria Lactobacillaceae
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FIGURE 2 | Histology of mouse intestine stained with periodic acid-Schiff (PAS) reagent. (A) Representative images of PAS-stained goblet cells in the small intestine
(magnification, 200x). PAS stains carbohydrates in pink color. Scale bar = 100 um. (B) Numbers of goblet cells analyzed on the PAS-stained sections of the duodenum,
jejlunum, and ileum of mice following CWIR or control treatment. All data are shown as the mean + SEM (n = 4-5 per group). *P < 0.05, **P < 0.01 vs. WT control.

and Akkermansia (belongs to the phylum Verrucomicrobia) samples contained increased microbiota related to aerobic (P =
(Figure 5B). Relative abundance alterations at phylum and  0.044), gram-negative, and biofilm-forming, with reduced
genus levels in two groups were also clustered, as shown in  anaerobic, gram-positive, and stress-tolerant microbial
Figures 5C, D, respectively. These data indicated that CWIR-  communities (Figures 6B, C). Moreover, we assessed the bacterial
induced intestinal injury may change the composition of  abundance annotated in aerobic and anaerobic phenotypes, at a
intestinal flora, rather than reducing beneficial bacteria.  phyla level in each group. For aerobic bacteria, CWIR treatment
Bacterial co-occurrence networks in the CWIR samples  decreased relative bacterial abundance in the Proteobacteria,
showed that phylum Proteobacteria and Acidobacteria, and  Cyanobacteria, and Actinobacteria, but increased Bacteroidetes,
genus Shuttleworthia were the essential taxa exerting functions  Firmicutes, and Verrucomicrobia (Figure 6D). For anaerobic

in the intestine (Figures 5E, F). bacteria, relative abundance in the Bacteroidetes, Firmicutes, and

Proteobacteria were reduced, but Verrucomicrobia increased a lot
CWIR Alters the Microbiome Phenotypes (Figure 6E). These results suggested that the CWIR administration
in Mice Intestine disrupted the balance between aerobic and anaerobic bacteria in the

Furthermore, Phylogenetic Investigation of Communities by ~ Mice intestine.

Reconstruction of Unobserved States 2 (PICRUSt2) was used to

predict the Encyclopedia of Genes and Genomes (KEGG) pathways

associated with components of the GM. A majority of functional ~ DISCUSSION

biomarkers was enriched in metabolic pathways. Compared to the

control, CWIR reduced the metabolism in the following KEGG  Restraint stress was initially developed by Bonfils (1993) and

» o«

groups: “carbohydrate metabolism”, “metabolism of cofactors and  since then it has been widely used to mimic psychological stress
vitamins”, “amino acid metabolism”, “metabolism of terpenoids and (Bonfils, 1993; Bali and Jaggi, 2015). The role of stress in the
polyketides”, and “energy metabolism” (Figure 6A). Besides, 165  induction of cardiovascular diseases, brain injury, skin and GI
OTUs in the two groups were analyzed by BugBase to predict their ~ diseases have been previously documented (Caso et al., 2008;

microbiome phenotypes. In comparison with the control, CWIR ~ Kumar et al., 2020; Ren et al., 2021). Schultz et al. demonstrated
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that restraint stress damages mice intestine, leading to
aggravated inflammatory disorders of colitis (Schultz et al.,
2015). Additionally, the activation of stress-induced HPA axis
and sympathetic nervous system is known to cause dysregulation

A B
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FIGURE 3 | Effect of CWIR on the intestinal barrier function. (A) gastrointestinal (Gl) permeability barrier defect, as determined by fluorescein isothiocyanate (FITC)-labeled
dextran detection in CWIR injury mice or control mice. Leakage of FITC-dextran from the gut was measured (in serum) 2 h post oral administration. n = 10-11 mice per
group, P < 0.001 vs. WT control, Student’s t-test was used to compare the values between the two groups. (B) Representative western blot image and protein
quantification to detect occludin, a tight junction molecule, in the small intestine of CWIR injury mice or control mice. n = 5 per group, *P < 0.05 vs. WT control. (C) mRNA
levels of proinflammatory cytokines in the small intestine. All data are shown as the mean + SEM, Student’s t-test was used to compare the values between the two groups.
*P < 0.05 vs. WT control, n = 4-6 per group. (D) Representative anti-TNF-o. immunofluorescent photomicrographs of the duodenum. TNF-a-specific antibodies were
detected using Cy3-conjugated secondary antibodies (red), n = 3 per group; Scale bar = 150 um. (E) Representative photomicrographs of immunofluorescence against
IL-1pB of the duodenum. IL-1B-specific antibodies were detected using Cy3-conjugated secondary antibodies (red), n = 3 per group; Scale bar = 150 um. Nuclei were
counterstained with DAPI.

of GI hormones and increase oxidative stress (Bali and
Jaggi, 2015). Stress can induce the release of norepinephrine
in the hypothalamic paraventricular nucleus, pituitary-
adrenocortical, contributing to increased sympathoadrenal
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activity (Pacak et al., 1995). Also, it is known to cause
dysregulation of GI hormones, resulting in excessive
production of free radicals and increased oxidative stress
(Shian et al., 1995; McIntosh and Sapolsky, 1996; Bali and
Jaggi, 2015). These effects are part of the regulation on the
physiological functions of the intestine induced by stress. In
this present study, acute CWIR stress caused severe histological
damage in the intestinal mucosa, combined with increased
expression levels of inflammatory indicators, especially TNF-o.
However, the infiltration of neutrophil and T cell had no big
difference after CWIR stress. The intestinal mucosa forms the
most extensive contact surface between the body and the
intestinal cavity, and functions as a barrier to maintain body
health, through rapidly renewal and prevention of possible
invasion of harmful substances and pathogens (Camilleri et al.,
2012; Sanchez de Medina et al., 2014). In addition, CWIR stress
induced gastrointestinal disruption and increased intestinal
mucosal permeability.

The GM is a diverse and dynamic microbes’ population with
extensive and essential interactions with the digestive, immune,
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FIGURE 4 | Effect of CWIR on the gut microbiota in mice. (A) Principal coordinate plot (PCoA) of the unweighted unifrac distance at the Operational Taxonomic
Units (OTU) level. Significance between groups was analyzed by Welch’s t-test. The PCoA plot revealed an obvious separation between the two groups (Adonis:

P =0.021). (B) The alpha diversity indexes revealed significantly decreased ecological diversity in the fecal microbiome in CWIR mice compared with control mice.
(C) Effects of CWIR on the number of intestinal mucosa bacterial OTUs. The Venn diagram represents the number of shared and unique OTUs for the two groups at
the phylum and genus levels (through Omicsmart online platform). n = 4 per group. *P < 0.05 vs. Control.

and nervous systems (Huo et al.,, 2017; Marazziti et al., 2021).
The complex bidirectional communication systems between the
GI tract and the brain were initially termed “gut-brain axis” and
then renamed “microbiota-gut-brain axis”, considering the
pivotal role of GM in sustaining local and systemic
homeostasis (Lavelle and Sokol, 2020; Banfi et al., 2021). For
example, irritable bowel syndrome (IBS), a functional GI disease,
is related to the changes of microbiota—gut-brain axis, usually
manifested in stress or enteric infection. IBS is characteristic of
increased intestinal permeability, disrupted GM, and
inflammation. Here we found that CWIR also altered the GM,
causing significantly decreased microbiota richness. After
comparing the differences of candidate taxa in both groups at
phylum and genus levels, it was revealed that CWIR markedly
reduced fecal bacterial species compared to the control.
Moreover, PICRUSt2 analysis predicted that CWIR
significantly downregulated metabolic pathways such as
“carbohydrate metabolism”, “metabolism of cofactors and
vitamins”, and “energy metabolism”. Vitamins have been
demonstrated to have well-established roles in bacterial
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metabolism and can influence the composition of microbiota
community (Ellis et al., 2021). A previous study indicated that
WIRS led to increased concentration of gastric mucosal lipid
peroxide and myeloperoxidase activity, but decreased the gastric
vitamin E (Ohta et al., 2005). These findings suggested that
CWIR may lessen vitamin concentrations, thereby reducing their

related metabolism. In addition, intestine is an anaerobic
environment, and the loss of anaerobic bacteria or overgrowth
of aerobic pathobiont would directly contribute to the disruption
of normal intestinal function. Fecal aerobic bacteria are
composed of gram-positive bacteria—such as Staphylococcus
aureus and Staphylococcus epidermidis—and gram-negative
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bacteria—such as Escherichia coli and Pseudomonas aeruginosa.
Our results indicated that gram-positive bacteria were decreased
and gram-negative bacteria elevated in the CWIR samples. Since
gram-negative bacteria in gut are an endogenous source of
endotoxins, these alterations may also be associated with the
severity of gut inflammation. Also, microbiota related to stress
tolerance were depleted in CWIR feces, consistently with the
performance after stress. The low levels of anaerobic bacteria after
CWIR also contributed to significantly enhanced aerobic-related
phenotype of microbiome in mice intestine. In summary, acute
stress altered intestinal function as well as GM homeostasis in mice.

Acute CWIR stress caused severe intestinal injury with
increased intestinal inflammation and barrier disruption.
As GM presents a plastic response to various kinds of
physicochemical stress, we found that fecal bacteria were
rapidly remodeled in this acute CWIR stress mouse model, as
confirmed by the significantly reduced microbiota diversity.
These findings provide a theoretical basis for the further
treatment of CWIR-related intestinal disorders.
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