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Interactions between insect symbionts and plant pathogens are dynamic and complex,
sometimes involving direct antagonism or synergy and sometimes involving ecological
and evolutionary leaps, as insect symbionts transmit through plant tissues or plant
pathogens transition to become insect symbionts. Hemipterans such as aphids,
whiteflies, psyllids, leafhoppers, and planthoppers are well-studied plant pests that host
diverse symbionts and vector plant pathogens. The related hemipteran treehoppers
(family Membracidae) are less well-studied but offer a potentially new and diverse array of
symbionts and plant pathogenic interactions through their distinct woody plant hosts and
ecological interactions with diverse tending hymenopteran taxa. To explore membracid
symbiont—-pathogen diversity and co-occurrence, this study performed shotgun
metagenomic sequencing on 20 samples (16 species) of treehopper, and characterized
putative symbionts and pathogens using a combination of rapid blast database searches
and phylogenetic analysis of assembled scaffolds and correlation analysis. Among the 8.7
billion base pairs of scaffolds assembled were matches to 9 potential plant pathogens, 12
potential primary and secondary insect endosymbionts, numerous bacteriophages, and
other viruses, entomopathogens, and fungi. Notable discoveries include a divergent
Brenneria plant pathogen-like organism, several bee-like Bombella and Asaia strains,
novel strains of Arsenophonus-like and Sodalis-like symbionts, Ralstonia sp. and
Ralstonia-type phages, Serratia sp., and APSE-type phages and bracoviruses. There
were several short Phytoplasma and Spiroplasma matches, but there was no indication of
plant viruses in these data. Clusters of positively correlated microbes such as yeast-like
symbionts and Ralstonia, viruses and Serratia, and APSE phage with parasitoid-type
bracoviruses suggest directions for future analyses. Together, results indicate
membracids offer a rich palette for future study of symbiont—plant pathogen interactions.
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INTRODUCTION

Many insects that host microbial symbionts can also vector
significant plant pathogens (Hogenhout et al., 2008a;
Hogenhout et al., 2008b; Scholthof et al., 2011; Mansfield et al.,
2012; Weintraub et al., 2019; Shafiq et al., 2020), but investigating
the co-occurrence and forces underlying insect symbiont and
plant pathogen infection presents a challenge. Some data suggest
there could be an energetic cost of hosting symbionts, which
might reduce an insect’s plant pathogen vectoring ability, while
conversely, the benefits of symbionts might provide energy or
metabolic advantages that increase plant pathogen transmission
(Heck, 2018; Gonella et al., 2019). In developing a theory to
predict the outcomes of these interactions, part of the challenge is
their complexity. Insect symbioses tend to be richly multipartite,
including many species of bacteria and fungi along with their
phages and viruses. This complexity involves many insect body
sites (gut, salivary glands, fat body, hemolymph, bacteriomes)
and external ecological interactions that mediate symbiont and
pathogen exchange. As a final surprising dimension of
complexity in the dynamics of insect symbionts and plant
pathogens, several studies show that insect symbionts can
transfer through plant tissues and plant pathogens can evolve
readily into insect symbionts (Chrostek et al., 2017; Martinson
et al., 2020).

Hemipterans—especially aphids, whiteflies, psyllids,
leathoppers (Cicadellidae), and planthoppers (Fulgoromorpha)—
are the most well-studied vectors of plant pathogens, but few
studies have investigated treehoppers (Membracidae). Whereas
related Auchenorrhyncha hemipterans typically host two bacteria
in their symbiont organs (bacteriomes) that cooperatively
synthesize missing essential amino acids not present in their
plant-sap diet (Wu et al, 2006; Bennett and Moran, 2013;
Douglas, 2016; Mao et al, 2017), there are exceptions. Some
species have lost one of the obligate symbionts and gained a
replacement symbiont (Sudakaran et al., 2017; Matsuura et al.,
2018; Bell-Roberts et al., 2019). Other Hemiptera may have gained
numerous symbionts. For example, light microscopy studies show
Brazilian membracids host at least 28 diverse symbiotic microbes
with up to six microbial species cohabiting a bacteriome (Rau,
1943; Miiller, 1962; Buchner, 1965). It is unclear which of these
microbes are primary or obligate from the host’s perspective, or
secondary (facultative), functioning to enable their hosts to survive
biotic or abiotic stresses or thrive in particular niches (Oliver et al.,
2012; White et al., 2013; Oliver et al., 2014; Guidolin et al., 2018;
Santos-Garcia et al.,, 2018; Lemoine et al., 2020). Many
membracids further depend on additional behavioral symbioses
with ants, bees, and wasps (Delabie, 2001; Godoy et al., 2006;
Ibarra-Isassi and Oliveira, 2018; Klimes et al., 2018; Canedo-Junior
etal., 2019; dos Santos et al., 2019), which feed on the membracids’
secreted honeydew which, in turn, contains additional symbiotic
microbes (Leroy et al., 2011; Fischer et al., 2015; Calcagnile et al.,
2019; Shamim et al., 2019). However, there are few molecular
studies of membracid symbioses. To date, there is one genomic
study of a dual-symbiosis in a membracid (Mao et al., 2017) and
one 16S rRNA and microscopy-based study showing three or

four interacting microbial symbionts in two membracids
(Kobiatka et al., 2019). Both studies, however, focused on
membracids from the temperate climates, whereas membracid
taxonomy, ecology, and microbiota are richest in the neotropics
(Buchner, 1965; Cryan et al., 2000; Cryan et al., 2004; Deitz and
Wallace, 2012; Hu et al., 2019).

A few membracids in North America are considered
significant crop pests—specifically members of tribe Ceresini,
such as Spissistilus, Ceresa, and Stictocephala (alfalfa and buffalo
treehoppers) which cause swelling on stems or cuts that can
facilitate infections in soybean and alfalfa (Meisch and Randolph,
1965; Bailey, 1975); however, in the neotropics, an estimated 18
genera of treehoppers are found as crop pests (Godoy et al.,
2006). One study suggests Ceresa in Argentina may vector the
witches’ broom phytoplasma (ArAWB) (Grosso et al., 2014).
Further studies suggest membracids vector significant plant
viruses: Micrutalis (tribe Micrutalini) vectors the viral pseudo-
curly top disease (TPCTV) of tomatoes (Mead, 1986; Briddon
et al., 1996) and Spissistilus vectors a closely related DNA virus,
Grapevine red blotch-associated virus (GRBaV) (Bahder et al.,
2016). Membracids’ roles as vectors of plant pathogens are not as
well-studied as those of aphids, psyllids, and leathoppers, which
are more commonly found as crop pests. However, their
predominance on woody plants makes membracids prime
candidates worth investigating as possible vectors for
phytoplasmas specific to woody plants such as 16SrIll, 16SrX
(apple proliferation), or ESFY (European stone fruit yellows)
(Wilson and Weintraub, 2007). Some studies suggest hemipteran
secondary symbionts may travel between insects by passage
through plants (Chrostek et al, 2017; Li et al., 2018; Pons
et al, 2019), including Wolbachia, Rickettsia, Candidatus
Cardinium, Serratia, and Symbiopectobacterium (formerly
BEV), but these plant-insect-microbe exchanges have not been
studied in membracids.

The current study sought to characterize symbionts and
potential plant pathogens in membracids, including neotropical
species, examining co-occurrence and correlations in abundance as
an initial survey of this underexamined group. Our approach used
shotgun metagenomics of the membracid bacteriome and
surrounding tissues and hemolymph, searched for matches to
major bacterial plant pathogens (Mansfield et al., 2012) including
phytoplasmas (Hogenhout et al., 2008b), and DNA plant viruses
(Shafiq et al,, 2020), and an array of bacteriophage (Duron, 2014;
Rouil et al.,, 2020). Results showed our set of membracids hosted at
least nine types of potential plant pathogens, in addition to 12
primary and secondary endosymbionts, along with numerous
bacteriophages, and other viruses and parasites. Although our
study focused on bacteriomes and surrounding hemolymph, we
detected traces of phytoplasmas and spiroplasmas with no
indication of plant viruses and we detected significant correlation
between subsets of microbes present. Furthermore, we identified
divergent Brenneria plant pathogen-like organisms, potential
transitional strains of Arsenophonus-like symbionts, Ralstonia and
Ralstonia-type phages, Serratia, and APSE-type phages and
bracoviruses, indicating membracids may be host to a rich array
of symbiont-plant pathogen interactions.
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MATERIALS AND METHODS

Insect Collection and

Bacteriome Dissection

To obtain a phylogenetically diverse collection of membracids,
sampling was performed over several years in the US and Brazil
(permits and registration: SISBIO 46555-6; SisGen A350676 and
R848FAD). Adult insects were collected by sweep net or by
inspection of branches with capture in large plastic zip-closure
bags. Sample collection site details are shown in Supplementary
Table S1. Insects were preserved at -80°C prior to dissection in
Brazil or the U.S. Insects were photographed and identified
morphologically to genus or species prior to dissection.
Microdissection to extract bacteriomes was performed on
insects, one at a time, on ice trays with forceps and micron
pins washed with bleach and 70-95% ethanol between each
insect. For dissections, insects were placed in 100 pl of sterile
phosphate buffered saline. Under 20-60X magnification, the
posterior portion of the abdomen (~last three segments) was
removed with forceps and a dissection needle, then tissue
containing the bacteriomes was removed with micron pins and
placed in labeled tubes, pooling several individuals collected at a
single site together, to increase DNA yield (number of pooled
individuals per sample: BM11 = 6, BM13-1 = 8, BM13-2 = 4,
BM4 = 8, BM43 = 5, BM44 = 8, BM50 = 3, BM51 = 2, BM53 = 4,
BMS56 = 8, BM59 = 5, BM65 = 1, BM69 = 4, Cer = 4, Ent = 2,
Gar = 8, MemA = 10, MemE = 12, MemM =16, Pub = 3). Due to
the small size of bacteriomes, dissection was performed
conservatively, allowing the inclusion of small amounts of
surrounding abdominal hemolymph and host tissues including
fat body cells.

DNA Extraction and lllumina Library
Preparation and Sequencing

To isolate and sequence DNA from pooled bacteriome tissues, we
used either the Qiagen DNeasy Blood & Tissue Kit (Valencia, CA)
or the Qiagen AllPrep DNA/RNA/miRNA Kit (Valencia, CA)
following the manufacturer’s directions. DNA quantity and
quality were assessed on the Nanodrop spectrophotometer.
Library preparation for samples ‘Cer’, ‘Ent,, ‘Gar’, and Pub’ was
performed as described previously (Brown et al., 2014). For all other
samples, libraries were prepared as follows: approximately 0.2 to
1 pg of DNA was used with the QIAseq FX DNA Library Kit
(Valencia, CA) following the manufacturer’s directions except with
modified fragmentation times and AMPure bead concentrations
optimized to target 450550 bp inserts. Library quality and quantity
was assessed on the Agilent 2200 TapeStation. Libraries were
normalized and pooled before sequencing on Illumina HiSeq,
with 150 PE cycles performed at Genewiz, Inc (NJ).

Sequence Assembly

To assemble reads for analysis, reads were filtered and trimmed
using Trimmomatic v.0.38 (Bolger et al., 2014) and overlaps in
paired reads were identified and joined together using Pear
v0.9.11 (Zhang et al., 2014). Filtered paired and merged reads
were de novo assembled with metaSPAdes v.3.13.0 (Bankevich
et al, 2012; Nurk et al., 2017) using error correction and kmers

(-k 25,33,43,53,65,87,101,115). Assembly quality and basic
statistics were evaluated using Quast v5.0.1 (Gurevich
et al., 2013).

Database Searches

To identify microbes within the samples and confirm insect
taxonomic identification, assembled scaffolds were processed by
a three-step blast pipeline, using custom scripts. Briefly, to
increase the speed of large blastn searches, scaffolds were first
subjected to blastn in BLAST+ v2.10.1 (Camacho et al., 2009)
against small custom target databases: a database of cytochrome
oxidase (COI) genes from hemipterans, a database of 16S rRNA
sequences from select bacteria including a wide range of
endosymbionts, a database of 18S rRNA genes from fungi
including a wide range of yeast-like symbionts, a database of
phytoplasma/mycoplasma genomes downloaded from GenBank
(NCBI; National Center for Biotechnology Information), and a
virus and phage genome database compiled from the widest
possible range of viral and phage genomes from NCBI. Samtools
(Lietal., 2009) faidx was then used to extract the blast hit regions
matching each custom database. These hit regions were then
subjected to a second blastn search against all sequences in the nt
database, extracting taxonomic data with the resulting hits.
These hits were then filtered for the top blast match per
scaffold, using a simple grep, to extract separately the full-
length scaffolds corresponding to the desired hits matching
taxonomic groups of interest (e.g., ‘bacteria’, ‘fungi’, ‘viruses’,
‘bugs’, ‘eukaryotes’, and ‘mycoplasmas’). Finally, the full scaffolds
extracted above were subjected to a final blastn against the nt
database to confirm that each scaffold matched the organismal
clade previously identified.

Abundance and Correlation Analysis

To assess the relative abundance and correlation between
symbionts, plant pathogens, and other microbes within the
membracids, we performed several filtering and analysis steps.
First, we selected only scaffolds with top blastn hit to bacteria,
fungi, insects, or viruses, removing any contaminants with high
blastn sequence identity to common human microbiota or
viruses. Next, we selected only scaffolds with blast hit length
>40 bp and evalue >0.03 and bitscore >52. We then removed hits
below 83% hit identity to the target (except with virus hits, for
which we set a lower threshold of >70%). We also removed hits
<48 bp length, except for phytoplasma and viruses, which we
kept at the >40 bp threshold. To estimate and normalize
coverage, kmer coverage was converted to absolute coverage
with the equation C = (Ck R)/(R-K+1), where C is total coverage,
Ck is kmer coverage, K is the length of kmers, and R is read
length. For hits to the same species within a sample, coverages
were added (i.e., combining variants) to assess total abundance.
Final absolute coverages for all relevant hits were normalized
based on the host insect’s COI gene coverage. Abundance and
presence/absence were calculated, normalizing for within-
sample abundance after COI normalization, plotting results
using the function ‘heatmap’ in R. Spearman rank correlation
was calculated for a matrix including all blastn hits, organized by
taxa. Spearman rho values and p-values were calculated and
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plotted using several R packages: ‘Hmisc’ v4.5-0 (Harrell
Miscellaneous) program ‘rcorr’ which calculates a matrix of
Spearman’s rho rank correlation coefficients for all pairs of
columns for non-missing elements, using midranks for ties,
specifying method = “spearman”, corrplot with order =
“hclust”, hclust.method = “average”, and for plotting, using
packages ‘tidyr’, ‘tibble’, ‘ggplots2’, ‘corrplot’. P-value were
corrected for multiple testing using the Benjamini and Hochberg
(1995) method (FDR) in R with ‘p.adjust’ “BH”. Matching hits
were classified into predicted categories (primary or secondary
symbionts, entomopathogens or viruses, or potential pathogenic
or beneficial plant associated microbes) based on metadata with
matching references in NCBI (e.g., host insect or plant source and
keywords indicating its role) combined with literature surveys on
matching species or strains. Because some matches, such as
Pantoea, Enterobacter, and Serratia can be potentially insect-
associated, but are most often studied and reported as plant-
associated, for the purposes of this study, we classified these as
putative or potential plant pathogens. Similarly, those matching
strains with possible beneficial functions or more rarely, other
functions, were classified for this study as “potentially beneficial”
plant-associated bacteria. These classifications are by no means
definitive, but instead serve as a tentative best assessment of
potential functional class.

Phylogenetic Analysis
To confirm the taxonomic identity and evolutionary place of the
membracids sampled, we extracted partial cytochrome oxidase I
(COI) sequences from our scaffolds and performed phylogenetic
analyses with other membracid and outgroup sequences
downloaded from GenBank. While the COI mitochondrial
locus is not ideal for inferring deep phylogenetic relationships
in the Membracidae, it is useful as an abundant marker likely to
produce sufficient coverage for samples with lower sequencing
depth and provides databases of additional species for
comparison. Resolving deep relationships among major
membracid clades was not the primary goal of this study. COI
sequences were aligned with Mafft v1.0.4 (Katoh and Standley,
2013) within the Geneious Prime v2020.0.4 (Biomatters, Ltd)
suite. Maximum likelihood phylogenetic analysis was performed
using RAXML v4.0 (Stamatakis, 2014) with the GTR Gamma
nucleotide model, with rate heterogeneity alpha estimated, and
with rapid bootstrapping and search for the best-scoring ML tree
(-f a -x 1) with 100 replicates. Bayesian inference phylogenetic
analysis was also performed on the same alignment block using
MrBayes v2.2.4 (Huelsenbeck and Ronquist, 2001; Ronquist et al.,
2012) with substitution model GTR+G with 4 categories, and
Markov chain Monte Carlo settings of: chain length 1,100,000,
4 heated chains, heated chain temp 0.2, subsampling frequency 200,
Burn-in length 100,000, with random seed 31,569, and priors with
unconstrained branch lengths GammaDir (1,0.1,1,1), checking for
convergence with minESS >200. Phylogenies were displayed using
FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/), and image
annotations were added in Adobe Illustrator.

To confirm microbial (bacterial and fungal) sequence
identities and relationships, phylogenetic analyses were
performed on 16S and 185/28S rRNA regions extracted from

our scaffolds, combined with the top 250 to 500 blastn hits from
GenBank. Alignments and phylogenetic analyses were
performed as described above for the COI region.

RESULTS

Membracid Microbiota Diversity

and Abundance

In total, from the 20 sequenced treehopper samples comprising
8,609,965 scaffolds of >500 bp length adding to 8,708,441,348 bp
of assembled sequence of which 5,539 scaffolds were over 10,000
bp and 189 scaffolds were over 50,000 bp with largest scaffold
length 642,820 bp (see Supplementary Table S2), blastn top
matches revealed over 133 potential strains or variants of
bacteria, fungi, viruses, and parasites. There were 12 major
groups of primary or secondary symbionts, with Arsenophonus,
Candidatus Sulcia and Candidatus Nasuia (hereafter denoted
simply Sulcia and Nasuia), Rickettsia, Candidatus Sodalis
(hereafter denoted Sodalis), and Bombella sp. being the most
abundant, based on 16S rRNA gene hits, in this order (Figure 1).
Much less abundant symbionts included Burkholderia,
Wolbachia, Yeast-like symbionts/Ophiocordyceps, Candidatus
Hamiltonella (hereafter denoted Hamiltonella), Candidatus
Gullanella (hereafter denoted Gullanella), and Sulfuriferula sp.
There were 11 groups of potential entomopathogens including
putative endogenous nudivirus, with the latter being most
relatively abundant, based on viral genome hits, followed by
Iridovirus Liz-CrlV, and entomopoxviruses (Figure 1). There
were nine groups of bacteriophages, with Wolbachia phage WO
and Hamiltonella-type APSE phages being most common,
followed by Sodalis phage and Ralstonia phage (Figure 1).
There were trace levels of parasitoid wasps, but relatively high
levels of the Cotesia-type bracovirus (Figure 1). Among potential
plant pathogens and plant-associated microbes, the most
abundant groups were Brenneria-like and Pectobacterium-like
strains, followed by Pantoea agglomerans, Spiroplasma spp.,
Candidatus Phytoplasma species (hereafter denoted Phytoplasma
spp.), and Serratia sp. However, the Spiroplasma and Phytoplasma
abundances were calculated based on genome-wide hits, because we
did not find significant long 16S rRNA hits to either of these
mycoplasma groups (Figure 1). Additional notable plant
pathogens found include a distant match to the pathogenic fungi
Claviceps africana and a highly similar match to the plant pathogen
Ralstonia solanacearum.

Relative Abundance of Potential Primary
and Secondary Symbionts in Membracids
Based on morphological identification, combined with COI blastn
searches and phylogenetic analysis, our sampled treehoppers
included 19 samples within family Membracidae, and one sample
in a sister-family Aetalionidae, together comprising 8 tribes, 13
genera, and 16 species. The membracids sampled fell within
subfamilies Centrotinae, Smiliinae, and Membracinae, in tribes
Gargarini, Ceresini, Polyglyptini, Amastrini, Micrutalini,
Aconophorini, and Membracini, most of which were supported
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FIGURE 1 | Relative abundance of primary and secondary membracid symbionts, entomopathogens, bacteriophages, parasitoids and their viruses, and potential
plant pathogens (classified based on predominant function of closest blast hit), combined for all membracids, expressed as percentage of read coverage per each
group shown in the figure, after normalizing between samples based on membracid cytochrome oxidase | (COI) gene coverage, calculated as a percentage of the read
coverage for assembly scaffolds with blast hits to 16S rRNA genes (for bacteria), 18S rRNA genes (for fungi), or genomes for viruses and mycoplasmas or spiroplasmas.

clades in both Bayesian and Maximum Likelihood analyses
(Figure 2). Presence/absence and abundance of microbes and
pathogens within these samples shows a varied pattern of primary
or secondary symbionts, entomopathogens, entomoviruses,
bacteriophages, parasitoids and viruses, and possible plant
pathogens (Figure 2). All species hosted the primary symbiont,
Sulcia, with the average coverage of 282X, but with Sulcia occurring
at varying abundances relative to other organisms (Figure 2).
Phylogenetic analyses suggested these Sulcia symbionts formed a
strongly supported monophyletic clade with similar phylogenetic
topology to that of their hosts (Supplementary Figure S1). The
second primary symbiont, betaproteobacteria Nasuia, appeared to
be missing entirely for four species (Aetalion reticulatum, Micrutalis
calva, Guyaquila tenuicornis, and Calloconophora sp.) (Figure 2).
Remaining membracid Nasuia strains formed a well-supported
monophyly with relationships that appear similar to those of the
host (Supplementary Figure S2).

Common or abundant secondary or perhaps primary
replacement symbionts included Arsenophonus, Sodalis, Rickettsia,
Wolbachia, and Bombella sp. Rarer or occasional symbionts were
Burkholderia, Hamiltonella, Gullanella, Acetobacteraceae/
Saccharibacter, and Sulfuriferula sp. Phylogenetic analysis of
Arsenophonus 16S rRNA (Figure 3 and Supplementary Figure
S3) showed most of these isolates clustered within a supported
clade, with no monophyletic sub-clade for those strains from

membracids; however, many samples contained more than one
distinct sequence of the 16S rRNA gene. None of our sequences
clustered with either of the two plant pathogenic groups of
Arsenophonus-like organisms, Candidatus Phlomobacter
fragariae and the ‘SMC proteobacterium isolates’, renamed Ca.
Arsenophonus phytopathogenicus (Figure 3). Similarly, our
sequences did not group with the Aschnera or ‘ALO-3’ clades
comprising proposed obligate endosymbionts. One sample
(BM59 Calloconophora sp.) included a more distantly placed
Arsenophonus-like variant that clustered close to the adelgid
endosymbiont clade Candidatus Hartigia pinicola. Fewer samples
hosted Sodalis-like 16S rRNA sequences, but these formed no clear
monophyly for strains from membracids, and several sequence
variants were found within some samples (Supplementary Figure
$4). Rickettsia formed two distinct clades: one clustered exclusively
with hemipteran-host Rickettsia, and the other clade having
polytomy with widely diverged insect hosts (Supplementary
Figure S5). The Wolbachia sequences in these samples fell into
supergroups A and B, widespread in insects (Supplementary
Figure S6). Acetobacteraceae, including Bombella sp., Asaia sp.,
and Saccharibacter sp. were found in several samples at high
abundances. Phylogenetic analyses of representative 16S rRNA
gene sequences showed Asaia sp. in Aetalion reticulatum and a
distinct clade of Bombella sp. in six membracid samples
(Supplementary Figure S7). Five samples hosted yeast-like
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FIGURE 2 | Phylogenetic tree and abundance plot of symbionts and plant pathogens of membracids in this study. Phylogeny is based on 956 aligned positions of the partial cytochrome oxidase | (COl) gene,
generated using Bayesian 50% majority rule in MrBayes with GTR+G with 4 rate categories model, and showing posterior probabilities on branches (a similar topology with similar support was generated by RAXML
GTR+Gamma with 100 bootstrap replicates). Specimens included in this study are shown in bold font. The presence and abundance plot is based on blastn hits to assembly scaffolds of symbionts, microbes, and
pathogens, is depicted in the abundance heatmap as read coverage normalized as a percentage of the read coverage per scaffolds with blast hits from each sample, shown in color legend. Categories in
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FIGURE 3 | Phylogeny of Arsenophonus-like sequence based on 1,562 aligned positions of the 16S rRNA gene for sequences from GenBank and membracid
samples in this study (bold blue font). Maximum likelihood phylogeny reconstruction was performed in RAXML GTR+Gamma with 100 bootstrap replicates.
Supported nodes that were obtained from Bayesian 50% majority rule analysis in MrBayes with GTR+G with 4 rate categories are shown as values on branches as
ML bootstrap/Bayesian posterior, with the latter values in bold font. Various Arsenophonus-like groups organisms are highlighted with color shading (yellow — most
secondary symbiont Arsenophonus, red — clade with adelgid symbionts, blue — plant pathogenic organisms). The position of the obligate symbiont Aschnera and
ALO-3 clade is indicated in orange font. A phylogeny including additional shorter scaffolds is shown in Supplementary Figure S3.

symbionts or potentially entomopathogenic fungi in the Closely related samples (i.e., in the same species or same genus)
Ophiocordyceps-like groups, forming four distinct clusters,  shown in Figure 2 generally had more similar symbiont patterns,
phylogenetically (Supplementary Figures S8, S9). e.g., Harmonides sp., Enchenopa spp., and Membracis spp.
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FIGURE 5 | Spearman correlation heatmap of symbionts, plant pathogens, and other microbes and viruses in membracids. Abundances were normalized to the
membracid’s cytochrome oxidase (COI) gene coverage before analysis of correlation. Spearman’s rho R-values are depicted with blue to orange shading, from
negative to positive. Statistically significant p-values after FDR correction using the Benjamini and Hochberg (1995) method, showing values <0.05 are represented
with dark orange dots. Putative plant pathogen names are depicted in dark orange bold font, and putative primary or secondary membracid symbiont names are

orange font in Figure 5) for the Pectobacterium sp. + Wolbachia/
Arsenophonus, Phytoplasma spp. +Bombella/Burholderia/
Hamiltonella, Enterobacter sp. + Gullanella, and Ralstonia sp. +
Aphid yeast-like symbiont. Within these groups, numerous
entomopathogens and entomovirus taxa and phage were clustered.

Statistical support for Spearman rho, after Benjamini and
Hochberg (1995) correction, produced several strongly positively
associated taxa (high R-values) with p-values < 0.05 (Tables 2, 3).
Among correlations with putative plant-pathogenic taxa
(Table 2), Brenneria sp. was significantly correlated with insect
microvirus and a parasitoid, Enterobacter sp. was significantly
associated with Gullanella and various phage and bracoviruses,
Ralstonia sp. was associated with Aphid yeast-like symbionts and
Ralstonia-type phages, Serratia sp. was associated with Indivirus
and parasitoids, and Phytoplasma spp. was associated with
Hamiltonella, Burkholderia, and several phages.

Among positively correlated primary and secondary
symbionts and other taxa (Table 3), many of these associations

were between bacterial symbionts and their presumptive phages.
Other associations with symbionts were described previously, in
Table 2 and in clustered boxes described for Figure 5.

DISCUSSION

As a step toward discovering how symbionts impact vectoring of
plant pathogens in an underexplored group of phloem-feeding
insects, we performed this metagenomic sequencing study on
membracids. We found, as expected based on historical studies
of membracids from Brazil (Rau, 1943; Buchner, 1965), that
these insects host a rich collection of primary and putative
secondary symbionts, suggesting this group may be a model
group for studying complex microbial interactions. Furthermore,
from just 16 insect species using community metagenomics and
a rapid blast pipeline, we found 12 potential symbiont clades, 9
groups of bacteriophages, 9 putative plant pathogen groups, and
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TABLE 2 | Statistically significant correlations between relative abundances of putative plant-pathogens (classified based on predominant function of closest blast hit)

and other organisms and viruses in membracids.

Possible plant pathogen Correlated with R-values p-values
Brenneria sp. Blackfly microvirus SFO2 1 0
Enterobacter sp. Ca. Gullanella endobia 1 0
Ralstonia solanacearum Aphid yeast-like symbiont 1 0
Enterobacter sp. Hamiltonella phage APSE8 1 0
Serratia rubidaea Indivirus ILV1 Indivirus 1 0
Serratia rubidaea Lysiphlebia japonica 1 0
Enterobacter sp. Plant-beneficial bacteria 0.999775138 0
Enterobacter sp. Diolcogaster facetosa bracovirus 0.99966794 0
Enterobacter sp. Cotesia sesamiae bracovirus 0.99586849 0
Ralstonia solanacearum Ralstonia phage RpY1 0.98284616 3.47E-13
Ralstonia solanacearum Ralstonia phage DU RP I 0.958970237 7.30E-10
Enterobacter sp. Bacteriophage APSE 0.923562133 1.46E-07
Pectobacterium odoriferum Sulfuriferula sp. SGTM 0.873963533 1.02E-05
Brenneria sp. Nasonia vitripennis 0.863438078 1.97E-05
Serratia rubidaea Other Bacteria/Fungi 0.766561734 0.001457883
Phytoplasma spp. Bombella sp. 0.725382699 0.004946463
Phytoplasma spp. Acinetobacter phage Bphi 0.64893415 0.030102282
Phytoplasma spp. Burkholderia phage phi6é 0.64893415 0.030102282
Phytoplasma spp. Burkholderia sp. 0.64893415 0.030102282
Phytoplasma spp. Hamiltonella defensa 0.64893415 0.030102282
Phytoplasma spp. Rhabdochlamydia crassificans 0.64893415 0.030102282
Phytoplasma spp. Enterobacter phage Tyrion 0.64893415 0.030102282
Phytoplasma spp. Endogenous nudivirus 0.640134401 0.035908217

Spearman’s ‘rho’ R-values and BH-FDR corrected p-values (<0.05).

many other viruses and parasites, suggesting our approach could
be promising if applied on a broader scale. We included
membracid root taxa (Aetalion) (Cryan et al, 2000; Cryan
et al., 2004; Costa, 2009; Dietrich et al., 2017; Evangelista et al.,
2017; Skinner et al., 2020), taxa reported previously as symbiont-
rich (Enchophyllum) (Rau, 1943), known virus-vectoring taxa
(Micrutalis), and major crop pests (Spissistilus and Ceresa).
Putative plant pathogens included the ‘soft rot’ group of
Enterobacteriales, Brenneria sp. and Pectobacterium sp., as well
as other gammaproteobacteria such as Enterobacter sp., Pantoea
agglomerans, and Serratia sp. Amongst these, Brenneria was
most remarkable: Brenneria spp. are not previously known to be
transmitted by insects, yet we found sequence matches that
occurred at high coverage in two samples (Harmonides sp.
membracids). Despite solid phylogenetic placement next to
plant pathogenic Brenneria strains, the membracid Brenneria-
like 16S rRNA gene sequences were highly divergent, suggesting
an increased evolutionary rate, as is common in endosymbionts.
However, without further study, we can only speculate on the
features of this new Brenneria variant based on the group in
which it is found. Importantly, Brenneria are relatives to three of
the ‘top 10’ ranked plant pathogens Erwinia, Dickeya, and
Pectobacterium (Mansfield et al., 2012) and are pathogens
causing numerous diseases (cankers) of woody plants,
including the deep bark canker of walnut (Brenneria
rubrifasciens) and acute oak decline (Bremmneria goodwinii)
(Hauben et al, 1998; Bakhshi Ganje et al, 2021). They are
noted for producing several unique compounds, such as the
red pigment rubrifacine that may contribute to its virulence by
inhibiting electron transport in mitochondria. Brenneria species
also use sucrose to synthesize levan-type fructans for storage and

defense (Liu et al., 2017), which may be of interest in hemipterans
whose phloem diet is dominated by sucrose (Shaaban et al., 2020).
The Brenneria strain did not, however, closely group with the
broadly symbiotic group, Symbiopectobacterium, which includes
recently evolved symbionts that independently colonized tissues of
various arthropods and nematodes from plant pathogenic ancestors
(Martinson et al., 2020; Vallino et al., 2021). Thus, the Brenneria-
like sequences may reflect another independent case of a transition
from plant pathogen to insect symbiont. Conversely, these sequences
could simply be plant pathogens vectored by membracids.
Correlation analyses showed positive associations between
the Brenneria and Pectobacterium strains and an insect
microvirus, Sulfuriferula, and a parasitoid, but there was no
other statistically supported association, suggesting no obvious
interaction between primary or secondary symbionts and these
Pectobacteriaceae. The Serratia strain found in this study was
also correlated with a virus (Indivirus) and parasitoids. In
contrast to the Brenneria strains, the Serratia strain showed
high similarity (98% 16S rRNA) to Serratia rubidaea, a
widespread plant pathogen. Notably, some Serratia species
seem to circulate in both plants and hemipterans (Pons et al.,
2019), for example, Serratia symbiotica, which likely helps its
host digest plant proteins by secreting proteases (Skaljac et al.,
2019). However, the Serratia strain occurred in one sample as a
short scaffold and so any further analysis would require more
data. Pantoea, a different enterobacterial plant pathogen that can
be found in various settings including in insects (Walterson and
Stavrinides, 2015), was found here only at very low coverage as a
short ~85 bp match; therefore, it was not analyzed further.
Similarly, while we found a sequence with 98.3% 16S identity
to Ralstonia solanacearum, one of the top 10 plant pathogens, we
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TABLE 3 | Statistically significant correlations between relative abundances of primary and secondary symbionts of membracids and other organisms and viruses in the samples.

Possible primary or secondary symbiont

Aphid yeast-like symbiont
Asaia sp.

Asaia sp.

Asaia sp.

Burkholderia sp.
Burkholderia sp.
Burkholderia sp.
Burkholderia sp.
Burkholderia sp.
Burkholderia sp.

Ca. Gullanella endobia
Ca. Gullanella endobia
Hamiltonella defensa
Hamiltonella defensa
Hamiltonella defensa
Hamiltonella defensa
Saccharibacter floricola
Saccharibacter floricola
Ca. Gullanella endobia
Ca. Gullanella endobia
Ca. Gullanella endobia
Aphid yeast-like symbiont
Aphid yeast-like symbiont
Asaia sp.
Saccharibacter floricola
Ca. Gullanella endobia
Wolbachia

Sulfuriferula sp. SGTM
Burkholderia sp.
Hamiltonella defensa
Nasuia

Nasuia

Nasuia

Nasuia

Rickettsia

Bombella sp.

Bombella sp.

Bombella sp.

Bombella sp.

Bombella sp.

Bombella sp.

Bombella sp.

Bombella sp.
Arsenophonus
Bombella sp.
Burkholderia sp.
Hamiltonella defensa
Bombella sp.

Correlated with

Ralstonia solanacearum
Escherichia phage ST20
Saccharibacter floricola

Scale drop disease virus
Acinetobacter phage Bphi
Burkholderia phage phi6
Enterobacter phage Tyrion
Enterobacter phage Tyrion
Hamiltonella defensa
Rhabdochlamydia crassificans
Enterobacter sp.

Hamiltonella phage APSE8
Acinetobacter phage Bphi
Burkholderia phage phi6
Enterobacter phage Tyrion
Rhabdochlamydia crassificans
Escherichia phage ST20
Scale drop disease virus
Plant-beneficial bacteria
Diolcogaster facetosa bracovirus
Cotesia sesamiae bracovirus
Ralstonia phage RpY1
Ralstonia phage DU RP I
Ophiocordyceps/Hirsutella
Ophiocordyceps/Hirsutella
Bacteriophage APSE
Wolbachia phage WO
Pectobacterium odoriferum
Nasuia

Nasuia

Acinetobacter phage Bphi
Burkholderia phage phi6
Enterobacter phage Tyrion
Rhabdochlamydia crassificans
Sodalis phage phiSG1
Acinetobacter phage Bphi
Burkholderia phage phi6
Burkholderia sp.

Enterobacter phage Tyrion
Hamiltonella defensa
Rhabdochlamydia crassificans
Phytoplasma spp.
Endogenous nudivirus
Wolbachia

Sodalis phage phiSG1
Phytoplasma spp.
Phytoplasma spp.

Nasuia

R-values p-values
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0.999775138 0
0.99966794 0
0.99586849 0
0.98284616 3.47E-13
0.958970237 7.30E-10
0.924240111 1.41E-07
0.924240111 1.41E-07
0.923562133 1.46E-07
0.888277599 3.69E-06
0.873963533 1.02E-05
0.840735118 6.69E-05
0.840735118 6.69E-05
0.840735118 6.69E-05
0.840735118 6.69E-05
0.840735118 6.69E-05
0.840735118 6.69E-05
0.78471752 0.000791184
0.738623268 0.003379958
0.738623268 0.003379958
0.738623268 0.003379958
0.738623268 0.003379958
0.738623268 0.003379958
0.738623268 0.003379958
0.725382699 0.004946463
0.684129279 0.014570816
0.676898466 0.017160695
0.650415481 0.030102282
0.64893415 0.030102282
0.64893415 0.030102282
0.633747909 0.040568676

Spearman’s ‘rho’ R-values and BH-FDR corrected p-values (<0.05). (several rows in this table are also shown in Table 2).

found this in only a single sample (MemA Micrutalis calva from
Texas). This Ralstonia was positively correlated with Ralstonia-
type phages, as might be expected; however, Ralstonia-type
phages were also found in two other U.S. samples (MemE
Enchenopa binotata from Illinois and MemM Spissistilus
festinus 2 from California), suggesting possible undetected
Ralstonia in these samples. Phages of plant pathogens are
increasingly becoming of interest for possible biocontrol of
bacterial plant disease (Buttimer et al., 2017; Alvarez et al., 2019).

Phytoplasma species are wall-less phloem-infecting plant
pathogenic bacteria that require both hemipteran insects and

plants in their life cycles and occur in a wide range of woody
plants; as such, they might be expected to occur in membracids.
Their transmission and life cycle traits, and interactions with
existing symbiont have been characterized in leathoppers
(Cicadellidae) and planthoppers (Hogenhout et al., 2008b; Ishii
et al,, 2013; Weintraub et al.,, 2019). Because Membracidae is a
clade nested within the polyphyletic Cicadellidae (Skinner et al.,
2020), authors have speculated that membracids might be
expected to be important phytoplasma vectors (Wilson and
Weintraub, 2007). Phytoplasmas appear most abundant in
tropical and subtropical regions and one study from South
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America indicated a phytoplasma occurred in the membracid
Ceresa (Grosso et al., 2014). Thus, it was surprising to find no 16S
rRNA matches to Phytoplasma in these membracids, despite an
initial search database of >5000 Phytoplasma 16S genes.
Although we found eight samples with scaffolds having short
matches to the large Phytoplasma genomic databases (including
1820 genomes), these are not strongly convincing that these
membracids vector phytoplasmas. Although the path of these
bacteria is through the stylet, intestine, hemolymph, and salivary
glands (Weintraub et al., 2019), we expected that our
bacteriome-focused dissections and sequencing depth would
incidentally include phytoplasmas if they are present. With the
caution that Phytoplasma vector status is ambiguous in these
data, we note that there were some significantly positive
associations in abundance between phytoplasmas and Bombella
sp., phage, and other symbionts, suggesting perhaps ecologically
common sources of these bacteria or bacterial fragments. Within
order Hemiptera, Spiroplasma species reported thus far only
from leathoppers (Weintraub et al,, 2019) where they can be
either plant pathogens or be vertically transmitted as secondary
symbionts, but we found short and low-similarity genome
matches to this group as we did for phytoplasmas.

Whereas most viruses of plants have single-stranded RNA
genomes and therefore would not be detected in this DNA
sequence-based study, we searched for a wide range of DNA
plant viruses, expecting to potentially discover some of these,
especially those vectored by hemipterans including treehoppers
(Mead, 1986; Briddon et al., 1996; Bahder et al., 2016; Varsani
et al, 2017; Shafiq et al., 2020). We did not find any
geminiviruses, including those related to Topocurvirus which
includes the Micrutalis-vectored pseudo-curly top virus, TPCTV,
or Grablovirus which includes the Spissistilus-vectored
Grapevine red blotch-associated, GRBaV. Although most
Geminiviridae are persistent or semipersistent and circulative
in their hosts (Shafiq et al., 2020), therefore potentially found in
the hemolymph or tissue surrounding the bacteriomes in this
study, these are ssDNA viruses that form a dsDNA intermediate
in the plant host but may not form a dsDNA phage in the insect,
unless they are propagative. For most geminiviruses, it is not
clear if they are propagative in the host. We also did not detect
Caulimoviridae, which are dsDNA reverse transcribing viruses
mostly transmitted by a range of hemipterans (Shafiq et al,
2020), although it is unclear how many of these viruses are
circulating and propagative in the insects, suggesting perhaps
these plant viruses could be vectored by these treehoppers but
not easily detected by these methods.

Among the most abundant presumed secondary symbionts,
we found these membracids to be dominated by the genera
Arsenophonus, Rickettsia, Sodalis, and Bombella, each of which
has members that can be found within plants or causing
pathogenicity to plants (Crotti et al., 2016; Chrostek et al., 2017;
Gonella et al,, 2019). In general, secondary symbionts are diverse
functionally, often enabling their hosts to survive a wide range of
biotic or abiotic stresses (Gottlieb et al., 2008; Oliver et al., 2012;
White et al., 2013; Oliver et al., 2014; Su et al,, 2015; Sudakaran
et al., 2015; Guidolin et al., 2018; Santos-Garcia et al., 2018;

Lemoine et al., 2020). The prevalence, abundance, and
phylogenetic analyses presented herein provide some hints, and
many open questions, about how these bacteria function in these
samples. The high abundance of Arsenophonus in these data has
several possible explanations: its 16S rRNA gene occurs in
multiple copies per genome (Sorfova et al., 2008) rather than as
a single copy as for many endosymbionts including primary
symbionts Sulcia and Nasuia, and remarkably Arsenophonus
might occur as an abundant hypersymbiont living nested
within the cells of the primary symbiont Sulcia (Kobialka et al.,
2016), in which case it could occur at high copy number.
Regardless, the abundant and phylogenetically dispersed place
of most of these Arsenophonus-like sequences suggest the pattern
typical of facultative symbionts (Novakova et al., 2009). The lack
of similarity to plant-pathogenic Arsenophonus-like organisms (P.
fragariae and Ca. Arsenophonus phytopathogenicus, formerly
‘SMC proteobacteria’) suggests it is unlikely that these strains play
this role. Similarly, the lack of similarity to the two probable
obligate Arsenophonus-like organisms, Aschnera and ALO-3
(Duron, 2014; Santos-Garcia et al., 2018), suggests no evidence
for this role in the sampled membracids. However, the discovery
of one variant that clusters at the root of the adelgid symbiont
clade (Ca. Hartigia pinicola) as sister to outgroup pathogens
suggests a potentially distinct or perhaps parasite-to-commensal
transitional function in this organism. Additionally, the typical
Arsenophonus strains appear to have at the root of the tree a
variant (accession KF751212.1) symbiotic in Stomaphis spp.,
which are hemipterans specializing on stems and roots of trees,
raising the question of this diet as ancient in the Arsenophonus
hosts. Ultimately, multi-locus Arsenophonus phylogenomics will
be important in uncovering these relationships more accurately,
particularly because the 16S rRNA tends to multi-copy in this
group (Sorfova et al, 2008) along with comparative omics
analysis and detailed microscopy to understand these
symbionts, particularly given the observation that Arsenophonus
can live within the cells of the primary symbiont Sulcia (Kobiatka
et al,, 2016).

Our finding of distinct strains of the symbiotic acetic acid
bacteria (Acetobacteraceae).

Bombella (formerly Candidatus Parasaccharibacter apium),
Asaia, and Saccharibacter floricola, is a novel finding and of
special interest in the sugar metabolism of these insects which
secrete sugary honeydew to engage trophobiosis with ants and
bees. Saccharibacter floricola (Jojima et al., 2004) specifically is
bee-associated (Smith et al., 2020). Asaia and Bombella spp.
occur in tropical plants and can be plant growth promoters
(Crotti et al., 2016), whereas in insects they can stimulate the
innate immune system, increase the rate of larval development,
and provide insecticide resistance (Chouaia et al., 2010; Chouaia
etal., 2012; Mitraka et al., 2013; Comandatore et al., 2021). They
can transmit horizontally and vertically, crossing from the gut to
the hemolymph and eggs. As symbionts, they likely play a major
role in metabolizing sugars to acids (Dong and Zhang, 2006;
Crotti et al, 2010); thus, we hypothesize this group to be
potentially very important in the observed strong associations
between ants and bees and the seven samples of membracids in
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which we found them. Based on the level of sequence divergence
between the membracid Bombella isolates and other Bombella sp.
together with the fact that most of the Bombella sequences were
similar or identical, we speculate that there may be horizontal
transfer of Bombella either between these membracids and their
tending hymenopteran insects, or with plants.

Other symbionts exhibited patterns typical for their respective
groups, as they occur in other Hemiptera. For example, Rickettsia
was dispersed amongst samples and the phylogenetic tree as a
typical facultative, partially vertically transferred symbiont, with
similar sequences within a host-species. In most cases, Rickettsia is
considered parasitic, but there is also evidence that some strains
may confer survival benefits (Hendry et al., 2014). Sodalis showed a
similar pattern in these data, with phylogenetically dispersed
strains, consistent with multiple environmental to secondary
symbiont transitions. However, two 16S rRNA gene sequences
matching Sodalis, both from the membracid Membracis tectigera
(BM13-2), displayed significant sequence divergence, which could
suggest a transition in these strains from secondary to primary
endosymbiont (Toju et al., 2010), or possibly pseudogenization of
16S rRNA gene copies. Although we found several matches to
other symbionts (Wolbachia, Burkholderia, Hamiltonella,
Gullanella, and Sulfuriferula sp.), the most notable of these was
a high coverage 99.02% 16S rRNA match to a Burkholderia
strain that is endophytic, living within the tissues of palm
leaves. The strain, initially named Burkholderia sp. JS23, was re-
named Chitinasiproducens palmae (Madhaiyan et al., 2020). Its
occurrence at high coverage in this membracid sample is a
mystery, but interestingly, this same Burkholderiaceae clade
includes the Mycoavidus bacteria, which are endohyphal
bacteria of the fungus Mortierella elongata (Ohshima et al., 2016).

As expected, all sampled membracids hosted Sulcia, which
almost certainly serves to synthesize amino acids missing from
the bugs’ phloem diet, but four samples were missing the
betaproteobacteria co-symbiont Nasuia, that normally
cooperatively synthesizes the remaining amino acids (Bennett
and Moran, 2013; Douglas, 2016; Mao et al.,, 2017). Given the
scope of the present study, it remains unclear whether other bacteria
or yeast have become replacement symbionts in samples that are
missing Nasuia. However, it is noteworthy that we discovered four
distinct sequences matching Ophiocordyceps/Hamiltonaphis-like
symbionts, three of which occurred in species that were missing
Nasuia (BM11 Aetalion reticulum, MemA Micrutalis calva, and
BM53 Guyaquila tenuicornis). Numerous studies from aphids,
leathoppers, and other hemipterans suggest that yeast-like
symbionts are common and can emerge as co-symbionts or
replacement symbionts (Fukatsu and Ishikawa, 1996; Suh et al.,
2001; Sacchi et al., 2008; Nishino et al., 2016; Meseguer et al., 2017;
Matsuura et al., 2018).

In addition to the Ralstonia phage discussed previously, two
other groups of phages were highly abundant: the Hamiltonella-
type APSE phages and Wolbachia phage WO, and in general, we
found correlation in abundances between bacteria and their
presumptive phages, as expected. The APSE phage, well-
studied for its parasitoid-protective toxin in Hamiltonella
defensa (Oliver et al., 2012; Oliver et al., 2014; Su et al., 2015),

particularly in aphids and whiteflies (Rouil et al.,, 2020), is
commonly integrated into Arsenophonus through lateral gene
transfer (Duron, 2014). The infrequency of Hamiltonella and
widespread occurrence of APSE in these membracids suggest
perhaps Arsenophonus serves as the APSE host in these species.
Despite this potential protection from parasitoids conferred by
the APSE phage, these membracids showed signs of parasitoid
infection, particularly in the level of wasp-specific bracoviruses,
especially Cotesia-type bracovirus. These dsDNA viruses act as
mutualists for their wasp hosts, contributing to immune
suppression of the parasitized insect once injected along with the
wasp’s eggs. While bracoviruses are best-known from braconid
wasps specifically parasitizing Lepidoptera, discoveries of these virus
sequences in Hemiptera previously (Peng et al., 2011; Cheng et al.,
2014) and in the present study raise interest in further study of these
viruses and related Polydnaviridae in Hemiptera. The high
bracovirus levels in these data could also arise from bracovirus
horizontal gene transfers into the membracids, as has been observed
in other hosts (Cheng et al., 2014; Chevignon et al., 2018). The low
levels of parasitoid DNA compared with parasitoid virus DNA in
these data could also be explained by our focus on bacteriome tissue,
from which most parasitoid wasp DNA, if present, would likely be
missed. Finally, despite the opposite biological effects of these two
abundant viruses, APSE and bracoviruses, in our data, rather than
being negatively correlated, they were significantly positively correlated.

In conclusion, genomic sequence analysis of this kind cannot
directly predict insect vector capacity nor microbe pathogenicity;
however, these genomic analyses can be invaluable for uncovering
previously overlooked microbial associations. Although
membracids have been long studied for their exceptional
morphological traits, such as the elaborate pronotum, there is
scant data on their microbial associations and vectoring potential.
These results showed a rich array of microbes and viruses, including
plant pathogens and potential allies, painting a preliminary picture
of some critical taxa and interactions worth further research.
Furthermore, this study generated a large amount of assembled
genomic data with thousands scaffolds that are long enough for
future in-depth analysis of gene content. We suggest future studies
should investigate the prevalence, function, and mechanisms of
these potentially interacting microbes, and potential vectored
microbes identified here, such as the Brenneria-like bacteria,
Serratia, Ralstonia, mycoplasmas or spiroplasmas, and various
associated phages. Specifically, co-occurrence patterns leave
uncertainty as to role and function of these microbes which
should be addressed with phylogenomic analyses, FISH and TEM
microscopy, comparative genomics and studies to assess possible
HGTs and pseudogenes, and of course wherever possible also
controlled infection experiments.
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