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Nan Jiang, Fengjiao Yang, Lingjun Wang and Biying Zhou*

Department of Parasitology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China

Cysticercus cellulosae (C. cellulosae) excretes and secretes antigens during the parasitic
process to regulate the host immune response; however, resulting immune response and
cytokine production in the host during infection still remains unclear. We used C.
cellulosae crude antigens (CAs) as controls to explore the effect of excretory secretory
antigens (ESAs) on T-cell immune responses in piglets. C. cellulosae ESAs induced
imbalanced CD4+/CD8+ T-cell proportions, increased the CD4+Foxp3+ and CD8+Foxp3+

T-cell frequencies, and induced lymphocytes to produce interleukin-10, which was mainly
attributed to CD4+ and CD4−CD8− T cells. The ESAs also induced Th2-type immune
responses. The results showed that the ability of C. cellulosae to escape the host immune
attacks and establish a persistent infection may be related to host immune response
regulation by the ESAs.
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INTRODUCTION

Taenia solium (T. solium) is a cestode parasite that has zoonotic importance and is harmful to
human health. Its developmental stages include four life cycles: eggs, oncospheres, larvae, and adults
(Arora et al., 2017). Both larval form of this parasite, termed as Cysticercus cellulosae and the adult
worms, are responsible for human disease. Adult parasites of T. solium infected the human intestine
and caused taeniasis, whereas, C. cellulosae infected the subcutaneous tissues, muscle, brain, eyes,
and other sites of intermediate host and caused cysticercosis, and neurocysticercosis (NCC) is the
most serious form of the disease (Gonzales et al., 2016). Patients with NCC exhibit varying
symptoms; these can be asymptomatic or have mild clinical manifestations (e.g., headache,
dizziness, and occasional seizures) to a severe neurological syndrome (e.g., seizures, intracranial
hypertension, hydrocephalus, cerebrospinal fluid blockage, cognitive deficit, and other features),
which is chronic with a very high mortality rate (Fleury et al., 2016; Gonzales et al., 2016).

Parasitic infections are an important public health problem worldwide (Gazzinelli-Guimaraes
and Nutman, 2018). Helminth parasites can regulate and evade host immune attacks through
various means (Maizels and McSorley, 2016). Regulatory T cells (Tregs) could produce interleukin
(IL)-10 and transforming growth factor (TGF)-b to suppress host immune responses (Arce-Sillas
et al., 2016); thus, immune escape by parasites may be attributed to Tregs production. Host
gy | www.frontiersin.org September 2021 | Volume 11 | Article 7282221
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immunity determines parasite susceptibility (Tharmalingam
et al., 2016), and CD4+ T cells play important roles in host
immunoregulation (Zhu et al., 2010). Dendritic cells (DCs) are
the most efficient antigen-presenting cells (Clotilde and
Amigorena, 2001), which can present foreign antigens to naive
CD4+ T cells, which then activate and differentiate into Tregs and
helper T cells (Th), including Th1, Th2, and Th17. Th1-type
immune responses inhibit infections, and Th2-type immune
responses aggravate infections (Tharmalingam et al., 2016).

Both larval and adult form of T. solium excrete and secrete
various products into the host; these products make direct
contact with the hosts’ immune system and interfere with
immunoregulation (Hewitson et al., 2009; White and
Artavanis-Tsakonas, 2012; Sun et al., 2019). Among these
products, excretory secretory antigens (ESAs) include many
antigenic substances, which can be obtained in vitro via
cultivation technology (Iddawela et al., 2007; Stefan et al.,
2011; Wang et al., 2017). Compared with parasitic crude
antigens (CAs) and soluble antigens (SAs), ESAs are involved
in parasitic pathogenesis and immune evasion and are
considered diagnostic and treatment targets (Hayam et al.,
2013; Gazzinelli-Guimaraes and Nutman, 2018). For example,
CD4+ and CD8+ T-cell proliferation are decreased and the mice’s
immunoreaction to the worms is suppressed when mice are
infected with ESAs from adult hookworms, thus increasing the
worm’s ability to survive in the host (Nicholas and Blaise, 2017).
ESAs from adult nematodes can selectively inhibit interferon
(IFN)-g and IL-2 production, but not IL-4 or IL-10 production,
in CD4+ and CD8+ T cells of rat mesenteric lymph nodes. It
shows that Th2 immune responses are closely related to
persistent parasitic infections (Uchikawa et al., 2000).

C. cellulosae ESAs from T. solium induced angiogenesis in the
brains of rat models of NCC, which may be related to the NCC
pathology (Carmen-Orozco et al., 2019). Studies have shown that the
sensitivity and specificity of enzyme-linked immunoelectrotransfer
blots (EITB) for detecting anti-ESA antibodies in the serum of
patients with NCC were higher than the lower molecular mass
(LMM) antigenic fractions of C. cellulosae. Moreover, detecting
anti-ESA antibodies via enzyme-linked immunosorbent assay
(ELISA) enables evaluating the treatment responses of these
patients. C. cellulosae survival is directly related to the existence of
anti-ESA antibodies, and these antibodies can be used in new
diagnostic tests and subsequent treatments (Molinari et al., 2002;
Atluri et al., 2010; Atluri et al., 2014; Paredes et al., 2016). Thus, we
conducted this study to explore the effects of C. cellulosae ESAs
from T. solium on the immunoresponses of T lymphocytes.
MATERIALS AND METHODS

Animals and Infection
A whole adult T. solium worm was obtained from a patient with
taeniasis from a taeniasis-endemic area in Yajiang, Ganzi,
Sichuan Province. To generate T. solium larvae, each healthy
piglet was infected by feeding 5 pieces mature gravid proglottids
from the worm at the Animal Experimental Center of Zunyi
Medical University. There were 12 piglets in this infection
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
experiment, including 10 piglets in the infection group and 2
piglets in the control group. The healthy piglets were confirmed
to be pathogen-free before infection and raised under standard
conditions. The Animal Care and Use Committee of Zunyi
Medical University approved the experiments.

Preparation of C. cellulosae ESAs and CAs
To prepare the ESAs and CAs of the T. solium larvae, the infected
piglets were euthanized 2–3 months postinfection, and C.
cellulosae were harvested from the muscle tissue. The C.
cellulosae were washed three times in physiological saline and
sterile phosphate-buffered saline (PBS: 0.02 M Na2HPO4/
NaH2PO4, 0.15 M NaCl, pH 7.2), then cultivated at 37°C and
5% CO2 in RPMI 1640 medium (cat. #31800, Solarbio, Beijing,
China) containing penicillin G (100 U/ml) and streptomycin
(100 mg/ml). Then the culture supernatants were collected
aseptically after 72 h. The supernatants were filtered through
0.22 mm sterile filters, then concentrated by transferring them
into a 3 kDa ultrafiltration tube (cat. #UFC900396, Millipore,
MA, USA). The liquid after concentration was C. cellulosae ESAs,
and its protein concentration was determined using a Bradford
protein assay kit (cat. #UFC0010, Solarbio, Beijing, China) per
the manufacturer’s instructions and stored at −80°C until used.

The C. cellulosae CAs were prepared as previously described
with some modifications (Verastegui et al., 2001). The C.
cellulosae were collected and washed three times with
physiological saline and PBS, then homogenized in a
homogenizer (70 Hz/s, 10 s/time) at 4°C until completely
lysed. The supernatants were collected via centrifugation as C.
cellulosae CAs, and its protein concentration was measured using
a Bradford protein assay kit per the manufacturer’s instructions
and stored at −80°C until further use.

Peripheral Blood Mononuclear
Cell Isolation
Peripheral blood mononuclear cells (PBMCs) were isolated as
previously described with minor modifications (Valent et al.,
2017). Briefly, under sterile conditions, 10 ml of heparinized
anticoagulated blood was collected from the healthy piglets via
jugular venipuncture and diluted 1:1 with sample diluent according
to the lymphocyte separation solution kit (cat. #LTS1110, TBD
Sciences, Tianjin, China) as per manufacturer’s instructions. The
diluted blood was added to the surface of an equal volume of
separation liquid. The solutions were centrifuged at 2,500 rpm for
20 min according to the density gradient centrifugation to obtain
the PBMCs layer. PBMCs were collected and washed twice with
cleaning solution. Erythrocyte lysis buffer (cat. #R1010, Solarbio,
Beijing, China) was used to eliminate erythrocyte contamination.
PBMCs were suspended in RPMI 1640 medium with 10%
inactivated fetal calf serum (cat. #11011-8611, Sijiqing, Zhejiang,
China) after ensuring that the cell viability exceeded 95% via trypan
blue staining.

Cell Cultures
To analyze the effects of ESAs and CAs on mitogen-induced
lymphocyte proliferation, PBMCs were cultured in 96-well plates
at 1×106 cells/well at 37°C and 5% CO2 and separately incubated
September 2021 | Volume 11 | Article 728222
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with control medium, concanavalin A (ConA, 10 mg/ml) (cat.
#C5275, Sigma, Saint Louis, MO, USA), ESAs (40 mg/ml), or CAs
(40 mg/ml). Phytohemagglutinin (cat. #P8090, Solarbio, Beijing,
China) was added to a final concentration of 2.5 mg/ml after
cultivation for 3 h. Cells were harvested on day 2, stained with
CD4 and CD8, and analyzed via flow cytometry.

To further analyze whether ESAs and CAs can induce Treg
production, PBMCs were incubated in 96-well plates at 1×106

cells/well and treated with control medium, ConA, ESAs, or CAs
for 48 h under standard conditions. The cells were then collected
and analyzed for Foxp3, CD4, and CD8 expression by flow
cytometry. Foxp3 and Helios mRNA expression levels were
calculated via quantitative real-time PCR (qRT-PCR).

To investigate whether ESAs and CAs can induce IL-10
production, PBMCs were cultured in 96-well plates at 1×106/
well and added with ESAs, CAs, 2 mg/ml lipopolysaccharide
(LPS: cat. #L2880, Solarbio, Beijing, China), ESA+LPS, CA+LPS,
or control medium. The culture supernatants were harvested
after 24 h, and IL-10 expression was measured via ELISA.

The lymphocyte subsets expressing IL-10 were evaluated via
intracellular cytokine staining. PBMCs were cultured in 96-well
plates at 1×106/well and stimulated with ESAs, CAs, LPS, ESA+
LPS, CA+LPS, or control medium. During the last 12 h of
culturing, 5 mg/ml of Brefeldin A (cat. #abs810012, Absin,
Shanghai, China) was added to block intracellular cytokine
secretion into the extracellular area. After 24 h, the cells were
stained with IL-10, CD4, CD8, IL-10, and Foxp3 and analyzed
via flow cytometry.

T-Lymphocyte Polarization
Healthy piglets were anesthetized, 20 ml bone marrow was
extracted, and the bone marrow precursor cells were isolated
under sterile conditions. The cells were cultured under standard
conditions, and the immature DCs were induced. The purity of
immature DCs was more than 80% by flow cytometry. To
determine the influence of C. cellulosae ESAs and CAs on T-cell
polarization, CD4+ T cells were enriched from the spleens of the
healthy piglets via positive selection using anti-CD4 magnetic beads
(cat. #130-091-652, Miltenyi Biotec, Bergisch Gladbach, Germany)
and a lymphocyte separation solution kit (cat. #LTS1110, TBD
Sciences, Tianjin, China) as per manufacturer’s instructions. CD4+

T cells at 1×107 were co-cultivated with 1×106 immature DCs in 96-
well pates and added with ESAs (40 mg/ml), CAs (40 mg/ml), ConA
(10 mg/ml), or control medium stimulation. The medium was
removed via centrifugation, and 10 ng/ml pig recombinant IL-2
(cat. #ab238302, ABCAM, Cambridge, UK) was added to promote
polarization and maintain T-lymphocyte activity when 24 h of
culture. After 48 h, the culture supernatants were collected, and the
expression levels of IFN-g (Th1), IL-4 (Th2), and IL-17 (Th17) were
analyzed via ELISA.

Flow Cytometry and Antibodies
For cell surface staining, cells were washed twice in precooling
staining buffer, then resuspended in staining buffer and
incubated with primary antibodies for 30 min on ice in the
dark. Cells were then washed once with staining buffer and
resuspended in it. The antibodies were used as CD4a:PE-Cy7
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(clone #561473, BD Pharmingen, Franklin Lakes, NJ, USA) and
CD8a:AF647 (clone #561475, BD Pharmingen, Franklin Lakes,
NJ, USA). To detect the intracellular antigens, cells were first
incubated for 30 min with surface-labeled antibodies, then
washed and resuspended in staining buffer. Cells were then
fixed and permeabilized for 45 min with transcription factor
buffer (cat. #562574, BD Pharmingen, Franklin Lakes, NJ, USA)
as per manufacturer’s instructions, then incubated with
intracellular antigens fluorescent antibodies for 45 min on ice
in the dark. The antibodies were used as CD4a:PE-Cy7, CD8a:
AF647, Foxp3:FITC (clone #11577382, Thermo Fisher,
Waltham, MA, USA), and IL-10:PE (clone #12710841, Thermo
Fisher, Waltham, MA, USA).

ELISA for Cytokine Secretion
Cytokine secretion was detected using pig IFN-g, IL-4, and IL-17
ELISA kits (cat. #SEA056Po, Cloud-Clone Corp., Wuhan, China).
The culture supernatants were collected, and then the cytokine
production levels were analyzed as per manufacturer’s instructions.

qRT-PCR
The relative changes of Foxp3 and Helios mRNA expression levels
in the PBMCs were measured via qRT-PCR. The primer sequences
used were pig GAPDH (F: 5′-TCGGAGTGAACGGATTTGGC-3′,
R: 5′-TGACAAGCTTCCCGTTCTCC-3′), pig Foxp3 (F: 5′-
GGTGCAGTCTCTGGAACCAAC-3′, R: 5′-GGTGCCAGTG
GCTACAATAC-3′), and pig Helios (F: 5′-AGGAGGTACATG
GTGACTCA-3′, R: 5′-CTCACAGGACACCTCAGGAC-3′).
TRIzol universal total RNA extraction reagent (cat. #D424,
Tiangen) was used to extract total RNA from the stimulated cells
per the manufacturer’s instructions. Reverse transcription and qRT-
PCR were performed using RevertAid First Strand cDNA synthesis
kit (cat. #K1622, Thermo Fisher) and FastStart Universal SYBR
Green Master (Rox) (cat. #04 913 914 001, Roche, Basel,
Switzerland). The cycle conditions were one cycle at 95°C for 15
s, 56°C for 30 s, and 72°C for 20 s for 44 cycles. The relative Foxp3
and Helios mRNA expression levels were determined via the
2−DDCT method.

Statistical Analysis
One-way analysis of variance was used for multiple-group
comparisons, and the least significant differences test was used for
pairwise comparisons between groups. P<0.05 was considered the
lowest statistically significant; P<0.01 was considered moderately
statistically significant; P<0.001 was considered the highest
statistically significant.
RESULTS

C. cellulosae ESAs and CAs Induced CD4+

and CD8+ T-Lymphocyte Responses
Piglet PBMCs were cultured with ESAs and CAs for 48 h, then
the CD4+ and CD8+ T-cell subset expressions were detected via
flow cytometry. The ESAs-induced CD8+ T cells increased to
levels near those of ConA. Compared with the normal controls,
the CAs-induced CD8+ T cells were elevated, but CD4+ T cells
September 2021 | Volume 11 | Article 728222
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were decreased, and both levels were lower than those of ConA
(Figure 1). Compared with CAs, ESAs induced a significant
increase in CD4+ and CD8+ T cells (Figures 1A, B). Thus, both
C. cellulosae ESAs and CAs can stimulate an immune imbalance
in the T-lymphocyte subsets.

C. cellulosae ESAs and CAs Stimulated
Tregs Subsets Expression
The effects of C. cellulosae ESAs and CAs on Treg production were
checked. We analyzed the expressions of Treg subsets via flow
cytometry. C. cellulosae ESAs increased Foxp3+ lymphocyte
expression and had a statistical significance. The CAs also slightly
increased the Foxp3+ lymphocytes, but the increase was not
statistically significant compared with the controls (Figure 2A).
Tricolor flow cytometry showed that C. cellulosae ESAs stimulated
CD4+ and CD8+ lymphocytes, which are the main source of Foxp3
expression. CAs stimulated only the production of CD4+Foxp3+

Tregs (Figures 2B, C). Neither the ESAs nor the CAs ofC. cellulosae
significantly affected the expressions of CD4+CD8+Foxp3+ or
CD4−CD8−Foxp3+ Tregs (Figures 2D, E).

C. cellulosae ESAs and CAs Decreased
the Relative Foxp3 and Helios mRNA
Expression Levels
Because Foxp3+ Tregs also express Helios, we preliminarily
detected the mRNA expression levels of Foxp3 and Helios in
PBMCs stimulated with C. cellulosae ESAs and CAs via qRT-
PCR. Compared with those of the normal controls, C. cellulosae
ESAs and CAs significantly reduced the Foxp3 and Helios
mRNA expression levels in the PBMCs (Figures 3A, B).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
IL-10 Secretion in PBMCs
PBMCs were stimulated with ESAs and CAs for 24 h, then the
culture supernatants were collected, and the IL-10 secretion
levels were detected via ELISA. In the absence of LPS, both C.
cellulosae ESAs and CAs increased the IL-10 secretion in the
PBMCs compared with that of the controls. Additionally, C.
cellulosae ESAs induced lower IL-10 secretion levels than did the
CAs. However, stimulating the ESAs and CAs with LPS
significantly reduced the IL-10 secretion levels. Compared with
CAs+LPS, ESAs+LPS decreased the IL-10 secretion (Figure 4).

C. cellulosae ESAs and CAs Induced IL-10
Expression in Lymphocytes
To further investigate IL-10 expression in lymphocytes, we used
tricolor flow cytometry to detect the IL-10+, CD4+IL-10+, CD8+IL-
10+, and CD4+/−CD8+/−IL-10+ lymphocyte frequencies. Without
LPS, both C. cellulosae ESAs and CAs significantly increased the
IL-10+ lymphocyte frequencies. Additionally, the induction effects
of the ESAs and CAs on IL-10+ lymphocytes were stronger in the
presence LPS (Figure 5A). CD4+ T lymphocytes were the main
sources of C. cellulosae ESA- and CA-induced IL-10 secretion
(Figure 5B). ESAs also induced CD4−CD8−IL-10+ lymphocyte
expression (Figure 5D). Conversely, IL-10 expression was
significantly inhibited in the CD8+ and CD4+CD8+ T
lymphocytes (Figures 5C–E). When cells were co-cultured with
C. cellulosae ESA+LPS and CA+LPS, the CD4+IL-10+ lymphocyte
frequencies increased markedly, but the CD8+IL-10+ lymphocyte
expression decreased significantly (Figures 5B, C). C. cellulosae
ESAs stimulated with LPS significantly inhibited the frequency of
CD4+CD8+IL-10+ cells but increased the expression frequency of
A

B

FIGURE 1 | T cells immune response assay. The frequencies of CD4+ and CD8+ T lymphocytes were detected by flow cytometry. (A) Cysticercus cellulosae CA
inhibited the expression of CD4+ T lymphocytes but ESA had no significant effect on them. Cysticercus cellulosae ESA significantly induced the expression of CD4+ T
lymphocytes compared with CA. (B) Both Cysticercus cellulosae ESA and CA induced the production of CD8+ T lymphocytes, and compared with CA, ESA
significantly stimulated the expression of CD8+ T lymphocytes. All dates were represented by means ± SD, ***P < 0.001.
September 2021 | Volume 11 | Article 728222
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CD4−CD8−IL-10+ cells. However, C. cellulosae CAs stimulated
with LPS decreased the CD4−CD8−IL-10+ cells production
(Figures 5D, E).

Co-staining IL-10 and Foxp3 without LPS revealed that C.
cellulosae ESAs inhibited the Foxp3+IL-10+ lymphocyte
production, but no significant differences were noted between
the CAs and the controls. Interestingly, only C. cellulosae CAs
reduced the Foxp3+IL-10+ lymphocytes expression when
combined with LPS (Figure 6).

Th1, Th2, and Th17 Cell Differentiation
To investigate the modulatory effects of C. cellulosae ESAs and
CAs on Th subset production, IFN-g, IL-4, and IL-17 secretion
levels were examined via ELISA. DC-CD4+ T cells exposed to
C. cellulosae ESAs and CAs produced different cytokine levels
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
(Figures 7A–C). Stimulation with C. cellulosae CAs significantly
induced IL-4, IL-17, and IFN-g secretion, and the IL-4 and IL-17
secretion levels were higher than those of the positive controls.
However, C. cellulosae ESAs strongly promoted IL-4 and IL-17
secretion, but it was lower than that of the CAs. Importantly,
both ESAs and CAs dramatically induced IL-4 production
(Figure 7D). Therefore, C. cellulosae ESAs and CAs
stimulation played strong regulatory roles in Th cell immune
responses by altering the cytokine secretion.
DISCUSSION

Cysticercosis is a complex disease involving host-parasite
interactions. The extent and nature of the host immune
A

B

D E

C

FIGURE 2 | Tregs inducing assay. PBMCs were stimulated for 48 hours with Cysticercus cellulosae ESA and CA respectively, then the cells were collected and
measured the expression of Tregs subsets via flow cytometry. (A) Cysticercus cellulosae ESA significantly induced the expression of Foxp3+ lymphocytes, while, CA
had no obvious impacts on the expression. (B) Both Cysticercus cellulosae ESA and CA could promote the frequency of CD4+Foxp3+Tregs. (C) The frequency of
CD8+Foxp3+ Tregs was increased only by Cysticercus cellilosae ESA. (D, E) Both Cysticercus cellulosae ESA and CA had no effects on the expression of
CD4+CD8+Foxp3+ and CD4-CD8-Foxp3+Tregs. Dates were expressed as the means ± SD, *P < 0.05, **P < 0.001, ***P < 0.001.
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response, as well as the active immunomodulatory mechanisms
produced by the parasite, determine the disease occurrence and
development (Garcia et al., 2014). Under normal conditions, T-cell
subsets regulate each other and maintain a balanced immune
function. In this study, C. cellulosae ESAs and CAs increased the
number of CD8+ T cells without significantly changing or
decreasing the number of CD4+ T cells, thus decreasing the
CD4+/CD8+ T-cell ratios. Thus, the immune imbalance induced
by cysticercosis may be related to regulation of the T-cell immune
responses by C. cellulosae ESAs and CAs, indicating that these two
have potential regulatory roles in lymphocytes homeostasis.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Similar to human Tregs, CD4+Foxp3+ T cells are markers of
porcine Tregs, and porcine CD8+Foxp3+ Tregs have also been
identified (Wang et al., 2016). Tregs can exert suppressive
functions by prompting secretion of the immunosuppressive
cytokines, IL-10 and TGF-b, as well as play important roles in
immunotolerance and immune homeostasis (Georgiev et al.,
2019). The transcription factor, Foxp3, a dominant regulator
and highly specific marker of Tregs, is the prerequisite for Treg
cells to produce and exert their immunosuppressive effects (Deng
et al., 2019). Foxp3-defective Tregs have decreased IL-10 and
TGF-b production levels and weaker suppression abilities (Jia
et al., 2015). During parasitic infections, Tregs are increased and
exert immunosuppressive functions, enabling the parasites to
escape immune attack and survive for long periods in the host.
Here, C. cellulosae ESAs induced Foxp3 expression in piglet
lymphocytes, but the CAs showed no significant differences
compared with those of the controls. These results are similar
to those of a previous study on Toxocara canis ESAs in canine
Foxp3+ Tregs (Junginger et al., 2017). The results showed that C.
cellulosae ESAs may induce Treg production and exert
immunosuppressive effects in natural hosts. Further analysis of
the lymphocyte subsets expressing Foxp3 showed that ESAs and
CAs promoted Foxp3 expression in CD4+T lymphocytes, which
are typical immunosuppressive cells. Additionally, C. cellulosae
ESAs also induced production of CD8+Foxp3+ Tregs, which
inhibited T-cell activation and proliferation and induced de
novo generation of CD4+Foxp3+ Tregs (Erika et al., 2012).
These results were similar to those of previous studies in that
induction of Tregs by parasitic ESAs was more significant than
that of CAs (Wang et al., 2015; Grainger et al., 2020). The
differences in Treg subsets induced by ESAs and CAs may be
related to the different components of the two antigens. In
summary, ESAs and CAs could induce Treg expression, which
may be one mechanism by which C. cellulosae evades the host
immune attacks.

Foxp3+ Tregs can be divided into Helios+ and Helios− Tregs in
mice. In human Tregs, Helios knockout downregulated Foxp3
expression, thereby weakening Treg inhibition (Eyad et al., 2015).
A B

FIGURE 3 | qRT-PCR revealed the mRNA expression levels of Foxp3 and Helios in PBMCs. (A) The Foxp3 mRNA expression quantity was inhibited by Cysticercus
cellulosae ESA and CA compered with 1640 group. (B) Similiar to the change of Foxp3, ESA and CA also reduced the mRNA expression level of Helios inPBMCs.
Results were expressed as the mean ± SD, ****P < 0.0001.
FIGURE 4 | IL-10 secretion. The secretion level of IL-10 in cultured
supernatant was measured by ELISA. Cysticercus cellulosae ESA and CA
treated PBMCs for 24 hours without LPS, ELISA showed both ESA and CA
could be capable to induce IL-10 secretion. But, under the presence of LPS,
the secretion of IL-10 was inhibited by ESA and CA in PBMCs. Dates were
represented by means ± SD, *P < 0.05, **P < 0.01, ***P < 0.001.
September 2021 | Volume 11 | Article 728222
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qRT-PCR was used to detect relative mRNA expression levels of
Foxp3 and Helios in ESA- and CA-stimulated cells to preliminarily
evaluate the change trend of Foxp3 and Helios in these cells. The
relative expression trend of the Helios mRNA coincided well with
the Foxp3 mRNA in PBMCs stimulated with T. solium larva ESAs
and CAs and were significantly lower than those of the controls.
One study found reduced Foxp3 mRNA levels in splenocytes and
placental cells in mice infected with Toxoplasma gondii (Ge et al.,
2010). Helios was originally thought to be expressed only in Tregs,
but studies have shown that it is also expressed in CD8+ cells, NK
cells, B cells, and other human and mouse cells, but its function in
these cells is unclear (Eyad et al., 2015; Thornton and Shevach,
2019). In summary, whether porcine Foxp3 and Helios are
expressed in immune cells other than CD4+ and CD8+ T cells
and whether play immunosuppressive roles in these immune cells
require further study.

IL-10 is an inhibitory anti-inflammatory factor that inhibits T-
cell proliferation by inhibiting the production of proinflammatory
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
factors and downregulating the expression of MHC-II and
costimulatory molecules on the surface of antigen-presenting cells
and directly acts on T cells to induce an unresponsive state (Kumar
et al., 2019; Ouyang and O’Garra, 2019; Saraiva et al., 2019). Clinical
malaria models and human studies have shown that IL-10 could
inhibit antiparasitic immunity (Kumar et al., 2019). In our study, C.
cellulosae ESAs and CAs stimulated IL-10 secretion in PBMCs,
which is similar to the findings of previous (Javaid et al., 2016). In
summary, increased IL-10 secretion may inhibit the host’s immune
responses against cysticercosis, leading to a persistent infection. One
study showed that LPS induced IL-10 synthesis and release
(Chanteux et al., 2007). In addition to Treg cells, IL-10 is also
derived from Th2, CD4, and CD8 T lymphocytes (Weiss et al.,
2011). Additionally, C. cellulosae ESAs and CAs significantly
inhibited IL-10 secretion in the presence of LPS. This result may
be related to the interregulation of IL-10 among different cells.

Three-color flow cytometry showed that CD4+ T lymphocytes
were mainly responsible for ESA- and CA-induced IL-10
A

B D EC

FIGURE 5 | IL-10+ lymphocyte assay. The production of IL-10+ lymphocyte subsets by flow cytometry. (A) Both Cysticercus cellulosae ESA and CA induced the
production of IL-10+ lymphocyte. (B) CD4+T lymphocyte was the main source Cysticercus cellulosae ESA and CA-induced IL-10 expression. (C) In the presence or
absence of LPS, Cysticercus cellulosae ESA and CA significantly inhibited the expression frequency of CD8+IL-10+ lymphocyte. (D) Cysticercus cellulosae ESA could
be induced the expression of CD4-CD8-IL-10+ cell under the presence or absence of LPS. While, CA only decreased the expression in the presence of LPS.
(E) Similar to (C), the production of IL-10 in CD4+CD8+ lymphocyte was inhibited by Cysticercus cellulosae ESA. All dates were shown as the means ± SD,
*P < 0.05, **P < 0.01, ***P < 0.001.
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expression. Their production can inhibit nitrous oxide pathway-
mediated insecticidal immunity and protect parasites from host
immune attacks (Zhou et al., 2014). Additionally, ESAs can also
induce production of CD4−CD8−IL-10+ T lymphocytes, which
can express IL-10 in vitro and inhibit CD4+ T-cell proliferation
(Passos et al., 2017). Thus, CD4+IL-10+ and CD4−CD8−L-10+ T
cells play essential roles in immunoregulation of parasitic
infections, which may be one mechanism of immune evasion
by C. cellulosae. ESAs and CAs can also regulate the production
of IL-10+ lymphocytes via LPS-related pathways, but the specific
molecular mechanism remains unclear. Although ESAs and CAs
can induce the IL-10+, CD4+IL-10+ and CD4−CD8−IL-10+T
lymphocyte production, it is unknown whether these cells
represent Tregs. Further found ESAs inhibited Foxp3+IL-10+

cell production, but CAs did not. In summary, IL-10 secretion in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
lymphocytes induced by C. cellulosae ESAs and CAs may be
unrelated to Foxp3 expression; the two were likely independent
of each other and exerted inhibitory effects.

Th cells specialize in producing effector cytokines and play
significant roles in adaptive immune responses. Activated CD4+

T cells can obtain different effector phenotypes, such as those of
Th1, Th2, and Th17 (Bianchi et al., 2000). IFN-g produced by
Th1 and IL-4 produced by Th2 can amplify themselves but
antagonize each other (Wan and Flavell, 2009). Once infected,
the pathogens will actively regulate the immune balance of Th1/
Th2 cells and escape from host immune attacks. Both C.
cellulosae CA and ESA stimulation led to imbalanced Th
immune responses and dominated by Th2-type immunity,
which could be interpreted as the manifestation of cytokine
cross-regulation. Th2-type immune responses are related to
FIGURE 6 | The production of Foxp3+IL-10+lymphocyte. The co-expressing Foxp3 and IL-10 cell were detected via tricolor flow cytometry, which shown that the
production of Foxp3+IL-10+ lymphocyte was inhibited by Cysticercus cellulosae ESA. Besides, CA had significantly decreased the production only under the
presence of LPS. Results were expressed as the mean± SD, *P < 0.05.
A B DC

FIGURE 7 | Th cytokines secretion. The secretion levels of IFN-g, IL-4 and IL-17 were measured by ELISA. (A) Only Cysticercus cellulosae CA induced IFN-g
secretion, ESA had no effect on it. (B) Both Cysticercus cellulosea ESA and CA significantly induced the production of IL-4 and the latter was higher than the former.
(C) Cysticercus cellulosae CA obviously up-regulated the secretion level of IL-17 compared with ESA. (D) Both Cysticercus cellulosae ESA and CA dramatically
induced IL-4 secretion. All dates were represented by means ± SD, *P < 0.05, **P < 0.01, ***P < 0.001.
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parasite susceptibility (Mendlovic et al., 2015), which may be one
reason for the persistent development of cysticercosis. C.
cellulosae CAs induced Th2-type immune responses more
significantly than did the ESAs, which may be related to the
different abilities of DCs antigen presentation induced by the two
antigens and the change in Th-type responses with the infection
course. The specific immunoregulatory mechanism requires
further study (Xu et al., 2016; Musumeci et al., 2019).
CONCLUSION

In summary, both C. cellulosae ESAs and CAs induced T-cell
immune imbalances, which in turn induced immunosuppressive
Treg cells, IL-10, and Th2-type immune response production.
These may be related to the ability of C. cellulosae to evade the
host immune attacks. Our research provides an experimental
basis for developing anticysticercosis treatments and disease
control strategies, but the cellular and molecular mechanisms
involved in regulation of the host immune responses by
C. cellulosae require further study.
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