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Rabies represents a typical model for spillover of zoonotic viral diseases among multiple
hosts. Understanding the success of rabies virus (RV) in switching hosts requires the
analysis of viral evolution and host interactions. In this study, we have investigated the
structural and sequence analysis of host receptors among different RV susceptible host
species. Our extensive bioinformatic analysis revealed the absence of the integrin plexin
domain in the integrin b1 (ITGB1) receptor of the black fruit bats in the current annotation
of the genome. Interestingly, the nicotinic acetyl choline receptor (nAChR) interaction site
with the glycoprotein (G) of RV was conserved among different species. To study the
interaction dynamics between RV-G protein and the RV receptors, we constructed and
analyzed structures of RV receptors and G proteins using homology modeling. The
molecular docking of protein-protein interaction between RV-G protein and different host
receptors highlighted the variability of interacting residues between RV receptors of
different species. These in silico structural analysis and interaction mapping of viral
protein and host receptors establish the foundation to understand complex entry
mechanisms of RV entry, which may facilitate the understanding of receptor mediated
spillover events in RV infections and guide the development of novel vaccines to contain
the infection.

Keywords: rabies virus, receptors, spillover, phylogenetic analysis, in silico, docking
INTRODUCTION

Rabies is a lethal zoonotic viral disease which causes serious behavioral changes and neurological
disorders in a wide range of hosts with a high fatality rate of up to 100% (Hueffer et al., 2017). Rabies
virus (RV) is an enveloped negative-stranded RNA virus and belongs to the family Rhabdoviridae
with bullet-shaped virion particles with a size of ~200 nm. The viral genome encodes five
transcriptional units for nucleocapsid protein (N), phosphoprotein (P), matrix protein (M),
glycoprotein (G), and RNA-dependent RNA polymerase or large protein (L) (Jackson, 2013).
Viral RNA is encapsulated by N protein which forms the ribonucleoprotein (RNP) and acts as a
template for viral replication and transcription. The RNP together with P and L form the viral
replication complex, which is surrounded by a lipid bilayer containing the viral G protein
protruding as spikes from the viral surface. The M protein has been proposed to bridge the RNP
gy | www.frontiersin.org October 2021 | Volume 11 | Article 7361141
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and the cytoplasmic domain (CD) of G protein to form the
bullet-shaped virion (Pulmanausahakul et al., 2008).

Owing to the location of G protein on the viral surface, it is
considered the major determinant of tissue tropism. The RV
exhibits a broad host spectrum, highlighting the importance of G
protein in interacting with multiple host receptors (Jackson,
2013). The RV-G protein is a type I membrane glycoprotein
which is translated on membrane-bound ribosomes and inserted
cotranslationally into the endoplasmic reticulum (ER) in an
unfolded form. The folding of transmembrane proteins occurs
in three topologically and biochemically distinct environments:
the ER lumen, the ER membrane, and the cytosol. The structural
organization of RV-G protein indicated the constitution of three
domains; ectodomain, transmembrane domain (TMD), and the
cytoplasmic domain which can fold independently of each other
(Maillard and Gaudin, 2002). Three different states have been
demonstrated for the G protein. The native state (referred as “n”)
is detected at the virus surface and is known to be responsible for
receptor binding. The activated hydrophobic state (A) interacts
with the target membrane as the primary step in the fusion
process, and the fusion-inactive conformation state (I) (Gaudin
et al., 1999). These distinct states are governed by pH
equilibrium, where the I state is triggered by low pH, forming
a more elongated conformation than that in the n state,
rendering them antigenically different (Gaudin et al., 1999).
Cleavage of the signal peptide results in the formation of the
mature protein. The G protein undergoes cellular modification
processes, whereby carbohydrates (glycans) are attached to
specific amino acid side chains in protein. Appropriate folding
of G glycoprotein is mainly dependent on the N-glycosylation
sites, which increase the solubility of folding intermediates and
facilitate the interaction with chaperones (Wojczyk et al., 2005).

Cellular receptors are regarded as the primary pathway
through which viruses can gain access to the host. The ways by
which viruses can unlock the host cells using the viral attachment
proteins is considered the most fundamental aspect in viral
invasion of the host cells. The RV interacts with a wide range
of receptors by which it enters cells of different host species.
Successful infection occurs only when a receptor can initiate the
full viral life cycle from cell recognition to release the genome
into the cell for replication and protein synthesis. Elucidating the
preferences of RV in binding and attaching to certain types of
host receptors is a point of interest which may provide insights
into how entry mechanisms may be targeted therapeutically
(Maginnis, 2018). Following attachment of the RV-G protein
to host receptors, the virus is internalized when it reaches the
endocytic zones. RV is transported into clathrin-coated pits by
the filopodia. The filopodia are actin-enriched cell surface
protrusions with which the cell probes the extracellular
environment (Xu et al., 2015).

Nicotinic acetyl choline receptor (nAChR), a well-known host
receptor for RV, is a pentameric ligand-gated ion channel which
is present in neuromuscular junctions, mediating intraneuronal
communication in central and peripheral nervous systems
(Lafon, 2005). Recently, it has been observed that cells lacking
nAChR are still susceptible to RV infection. Additionally, RNA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
interference (RNAi)-mediated depletion of different receptors
was carried out to explore the role of the various RV receptors.
The most recently discovered RV receptor is integrin beta 1
(ITGB1) (Shuai et al., 2019). ITGB1 is a transmembrane cell
surface receptor and consists of one a and one b subunits. The
expression of ITGB1 is predominantly observed in the skeletal
muscle. The cell lines expressing ITGB1 are human embryonic
kidney cells (HEK293) and mouse neuroblastoma cells (N2a)
(Shuai et al., 2019). Another novel RV receptor, metabotropic
glutamate receptor subtype 2 (mGluR2), has recently been
identified. It belongs to the G protein-coupled receptor family
that is abundant in the central nervous system. Several human
and murine cell lines (i.e., HEK293, N2a and neuroblastoma cells
SK-N-SH, SK cells) express mGluR2 receptors and can be
successfully infected with RV (Wang et al., 2018). Neural cell
adhesion molecule (NCAM) is another well-known RV receptor
which is a cell adhesion glycoprotein of the immunoglobulin
superfamily, and it is mainly concentrated in synaptic regions
and at the neuromuscular junction (NMJs). Its main role is
mobilization and cycling of synaptic vesicles in addition to
synaptogenesis (Lafon, 2005). Additionally, other components
of the cell membrane, such as gangliosides and heparin sulfate
were recognized to play a role in the entry of RV to hosts
(Lafon, 2005).

Despite the availability of substantial information on the RV
infectivity, there is a gap in understanding the mechanism by
which the G protein can interact with different receptors for
initiation of the infection. In the current study, we aim to
underpin the evolutionary differences among different RV
receptors in humans, dogs, and bats with disclosure of the
possible in silico-predicted mechanisms by which the G protein
can interact with the different receptors in different host species.
The presented data provide insights into these interactions to
open avenues for the prevention and control of RV infection
in future.
MATERIALS AND METHODS

Construction of Data Sets
To investigate the differences among RV receptors in different
species, protein sequences were retrieved from NCBI (Agarwala
et al., 2018) by BLAST search. All sequences for each of the
proteins were downloaded and collated in a FASTA format.

Alignment of the Protein Sequences
Multiple sequence alignment for protein sequences of host
receptors were performed using DNASTAR Laser Gene version
17.0.2.1 (Burland, 2000), using the MUSCLE method
(Edgar, 2004).

Primary Structure Analysis of Receptors
The protein sequences of ITGB1, mGluR2, nAChR, and NCAM
receptors in different host species (humans, dogs, and black fruit
bats) were retrieved from GenBank (Agarwala et al., 2018).
Physicochemical properties of proteins, molecular weight,
October 2021 | Volume 11 | Article 736114
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theoretical isoelectric point (pI), instability index, and grand
average of hydropathicity (GRAVY) were identified by
ProtParam (Gasteiger et al., 2005).

Domain Organization for RV Receptors
Domain organization for different RV receptors in different
species were analyzed by Pfam (http://pfam.xfam.org) (Finn
et al., 2016), InterPro (http://www.ebi.ac.uk/interpro/)
(Mitchell et al., 2015), and CDD databases (Marchler-Bauer
et al., 2015). Schematic diagrams for domains in the different
protein receptors have been represented by PROTTER software
(Omasits et al., 2014). Signal peptide, transmembrane, and low
complexity regions within receptors in different species were
retrieved from SMART (Letunic et al., 2015) and SignalP
databases (Armenteros et al., 2019).

3D Structure Model Building and
Quality Assessment
The 3D structure models for RV receptors (ITGB1, mGluR2,
nAChR, and NCAM proteins), RV-G protein of Egyptian strain
(QEU57979.1), and RV-G protein of bat-related group
(BAE95290.2) were generated using I-TASSER (Yang et al.,
2010). The 3D structures generated by I-TASSER were based
upon threading, fragment assembly, and iteration. The best model
was selected according to the confidence score (C-score) which
represented the quality of predicted models by I-TASSER. The C-
score range was between (−5 and −2), where the higher the C-
score, the higher the confidence of a model and vice versa. After
predicting the protein model, structure and stereochemical
analyses were performed and the predicted 3D structures were
visualized and annotated using PyMOL software (DeLano, 2002).

Molecular Docking Simulations
The predicted structures were used for protein-protein docking
studies using GRAMM-X software (Tovchigrechko and Vakser,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
2006). Docking studies were performed for the Egyptian RV-G
protein against each of RV receptors from human, dog, and black
fruit bat. In addition, in silico interactions between RV-G protein
related to bat strain were mapped with different receptors.

Analysis of the Docking Complex
The docking complexes obtained from GRAMM-X were
uploaded to PDBsum (Laskowski et al., 2018) and PDBePISA
(Battle, 2016) servers for analysis of the protein-protein
interactions. Identification of hydrogen bonds, interacting
interfaces, nonbonded contacts, salt bridges, Gibb’ free energy
of binding (DGint, kcal/mol), pores, and tunnels in protein
complexes were carried out. Mapping of the docking complexes
was performed using PYMOL software (DeLano, 2002).
RESULTS

Computational Analysis of Primary
Structure of RV Receptors
The physicochemical properties of ITGB1, mGluR2, nAChR,
and NCAM were compared among different species (human,
dog, and black fruit bat) based on their amino acid (a.a.)
composition as summarized in Table 1. Investigation of the
hydrophobic nature of the RV receptors was assessed by GRAVY
values. The range of GRAVY values for ITGB1 and NCAM were
negative, revealing their overall hydrophilic nature. In contrast,
positive GRAVY values identified in mGluR2 and nAChR
proteins indicated their hydrophobic nature. To test the
stability of different receptors, the instability index values were
estimated. Instability indices for mGluR2, nAChR, and NCAM
were all below 40, indicating the stability of these proteins in all
species examined. However, the ITGB1 in human and dogs were
considered relatively unstable, compared with ITGB1 from black
TABLE 1 | Physicochemical parameters computed using expasy’s protparam tool for signal peptide, transmembrane, and low complexity regions of RV receptors were
determined by SMART.

ITGB1 mGluR2 nAChR NCAM

Human Dog Bat Human Dog Bat Human Dog Bat Human Dog Bat

Number of a.a. 798 801 741 872 872 872 482 457 457 858 857 760
Molecular weight 88,415 88,592 82,000 95,567 95,714 95,579 54,545 51,878 51,911 94,574 94,491 83,788
Theoretical pI 5.27 5.33 5.24 8.50 8.50 8.49 5.78 5.56 5.82 4.79 4.82 4.80
Instability index 41.12 40.7 39.2 37.3 39.32 36.76 31.9 35.5 31.9 36.6 36.6 39.4
GRAVY −0.40 −0.39 −0.42 0.09 0.09 0.10 0.18 0.21 0.20 −0.41 −0.40 −0.31
Signal peptide (aa) 1–20 1–20 – 1–18 1–18 1–18 1–20 1–20 1–20 1–19 1–19 1–19
Transmembrane region (a.a) 729–751 729–751 672–694 4–13 4–16 4–16 258–280 233–255 233–255 724–746 723–745 –

301–314 483–498 301–314 292–309 267–284 267–284
795–809 795–809 795–809 319–341 294–316 294–316
833–854 829–853 454–476 429–451 429–451

Low complexity regions (a.a) 729–757 729–757 672–700 – – – 6–19 6–12 5–20 252–261 723–738 596–615
289–306 264–281 267–284 807–819 808–818 746–759
328–341 303–316 294–316

429–451
October 202
1 | Volume
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The accession number of ITGB1 in human, dog, and bat are NP_596867.1, XP_022261846.1, and XP_006903905.2, respectively. The mGluR2 accession numbers in human, dog, and
bat are NP_000830.2, XP_541867.2, and XP_006909212.1, respectively. The nAChR accession numbers are NP_001034612.1, NP_001003144.1, and XP_006921280.1 in human,
dog, and bat, respectively. The NCAM accession numbers used in this study are NP_851996.2, XP_005619557.1, and XP_006912868.1, respectively.
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fruit bat which had an instability index below 40. The number of
amino acid residues, signal peptide, transmembrane, and low
complexity regions were predicted and are summarized in
Table 1. Interestingly, the signal peptide in black fruit bat
ITGB1 was missing according to SMART and SignalP
databases in the sequence that is available in the current
genomic annotation.

Domain Organization of
Different Receptors
A schematic representation of the domain organization of
human ITGB1, mGluR2, nAChR, and NCAM receptors are
shown in Figures 1A–D, respectively. The 3D structures of the
receptors highlighting each domain are also shown
(Supplementary Figures S1A–D). Analysis of the human
ITGB1 a.a. sequence (Figure 1A) revealed six distinct domains.
The integrin plexin domain, a short disulfide-rich domain (a.a.
from 25 to 76) located at the N-terminus of integrin beta chains,
was also present in dog ITGB1, but interestingly was the only
domain absent in black fruit bat (Supplementary Figure S1A).
The longest domain within ITGB1 is the von Willebrand A
(VWA) domain, encompassing the region from a.a. 36 to 464.
The smallest domain in ITGB1 is the integrin beta epidermal
growth-like factor domain 1 (a.a. 466–495). In addition, an
epidermal growth factor (EGF)-like domain 2 (a.a. 599–630)
and integrin beta tail domain (a.a. 640–728) were also identified.
The most distal domain was the cytoplasmic domain (a.a. 752–
798). The mGluR2 receptor was structurally divided into three
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
domains (Figure 1B). The large extracellular region is the ligand
binding domain of the group II metabotropic glutamate receptor
(a.a. 6–458). The cysteine-rich domain (CRD) (a.a. 469–546) is
characterized by highly conserved cysteine residues forming
disulfide bridges . Linked to the CRD domain is a
transmembrane domain composed of seven transmembrane
helices (7 TMD) (a.a. 567–833 a.a.). All domains were similarly
present in dogs and black fruit bat. The domain organization
analysis of the nicotinic acetyl-choline receptor nAChR
(Figure 1C) demonstrated a large conserved extracellular
domain (a.a. 22–256). Four transmembrane regions named as
neurotransmitter gated ion channel (a.a. 263–468) were followed
by a cytoplasmic loop (Albuquerque et al., 2009). A similar
domain arrangement was also present in dog and black fruit bat
within the nAChR. Analysis of the neural cell adhesion molecule
(NCAM) domain architecture revealed an extracellular portion
of NCAM which is composed of five N-terminal Ig-like domains
and two fibronectin type III domains which form a dimeric
glycoprotein composed of disulfide-linked subunits. NCAM
domain arrangement was the same in dog and black fruit
bat (Figure 1D).

Protein Sequence Alignment
Analysis of sequence similarities of receptors among different
species was crucial for mapping the differences within the
interaction site of the receptors with the RV-G protein. For
each of the four RV receptors, protein sequences from human,
dog, and black fruit bat were aligned (Figures 2A–D). Analysis of
A B

DC

FIGURE 1 | General representation of human (A) ITGB1, (B) mGluR2, (C) nAChR, and (D) NCAM highlighting different domains and most relevant features. The
graphs were generated using PROTTER v1.0.
October 2021 | Volume 11 | Article 736114
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the ITGB1 protein sequences from human, dog, and black fruit
bat (Figure 2A) revealed that the VWA domain represented the
most variable region among species, where dog showed 15 a.a.
differences in comparison with human and 18 a.a were variable
between black fruit bat and human. The area of greatest
homology among the ITGB1 protein was the EGF-1 domain
where only one a.a. varied between species. There were five
different a.a. residues in the integrin plexin domain between
human and dog. Similarly, within the EGF-2 domain, four and
five a.a. residues showed differences in black fruit bat and dog,
compared with human. Both dog and black fruit bat showed nine
a.a. residue difference in the tail domain relative to human. The
differences in these residues (1–728 a.a) may be crucial, since the
ITGB1 ectodomain constitutes the interaction site with the RV-G
protein, as was pointed out in a previous study (Shuai et al.,
2019). Our results highlight the sequence homology within the
mGluR2 protein alignment among the different species
(Figure 2B). The ligand-binding domain showed the least
sequence similarity between species where eight and 10 a.a.
residues were different in black fruit bat and dog, respectively,
in comparison with human. The CRD domain only showed three
a.a. differences between black fruit bat, dog, and human. Only
four amino acid residues were different in the transmembrane
domain between human, dog, and black fruit bat. Considering
that the binding site of RV-G with nAChR was previously
mapped to be on the ax subunit between residues 173 and 204
(Lafon, 2005), one major finding in our study (Figure 2C) was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
the high conservation of this region among human, dog, and
black fruit bat. The interaction site of NCAM with RV-G protein
has not been previously determined. Our results showed the a.a.
differences of NCAM domains among the different species. As
shown in Figure 2D, the first immunoglobulin domain and
second and third immunoglobulin I-set domains were the most
conserved regions among all species. On the other hand, the first
immunoglobulin I-set domain showed the most variable region
among the three species where eight and 10 a.a. residues differ in
black fruit bat and dog, respectively, compared with human.
Black fruit bat NCAM displayed the highest variability in its
fibronectin type III domain where 26 residues were variable,
while only one residue differed in dog with respect to human.

Analysis of the Predicted 3D Structures
of Receptors
The 3D structures of different receptors were predicted using the
ITASSER online server. The best predicted model structures were
chosen according to the maximum confidence score which was
calculated according to threading templates significance
(Supplementary Figures S1A–D). The C-score ranged from −5
to −2 (the higher the value, the higher the confidence and vice
versa). For human ITGB1, a model with a C-score of 0.40 was
selected; for dog ITGB1, a model with a C-score of 0.37 was
chosen; and for bat, a model with C-score of 0.23 was selected.
For mGluR2, 3D structures of the dog (C-score, −0.13) human
(C-score, −0.13), and black fruit bat (C-score, −0.19) were chosen.
A B

D

C

FIGURE 2 | Multiple protein sequence alignment of (A) ITGB1, highlighting the different residues in integrin plexin domain, VWA domain, EGF-like domain (1 and 2),
and integrin beta tail domain. (B) mGluR2, highlighting the different residues in ligand-binding domain, cysteine-rich domain, and seven transmembrane domains.
(C) nAChR, highlighting the nAChR interaction site with RV-G among human, dog, and black fruit bat. (D) NCAM, highlighting the different residues in
immunoglobulin and fibronectin domains between human, dog, and black fruit bat domains.
October 2021 | Volume 11 | Article 736114
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For nAChR, the best model in human had a C-score of −0.37, dog
with a C-score of 0.05, and black fruit bat with a C-score of 0.35.
NCAM C-scores of 3D structures were as follows: human, −0.69;
dog, −0.79; and black fruit bat, 0.10.

Protein-Protein Interaction Prediction
To elucidate the mechanism by which the RV-G protein interacts
with different receptors, protein-protein docking was performed
using GRAMMX. Analysis of the docking complexes was
resolved through PDBsum and PDBePISA servers .
Additionally, mapping the interacting hydrogen bonds, salt
bridges, and the DGint was also performed (Table 2). The
DGint value which expresses the solvation free energy gain
upon assembly formation (total solvation energies of assembled
structures-solvation energies of isolated structures) was determined
as well (Pantsar and Poso, 2018). The RV-modeled 3D structure of
Egyptian strain G protein was utilized to undertake the docking
against different receptors. The docking complex of human ITGB1
and Egyptian RV-G protein indicated five interactionsmediated by
hydrogen bonds between residues of ITGB1 VWA and EGF-1-like
domain with the RV-G protein in addition to formation of one salt
bridge between Glu340 of human ITGB1 and His438 of the RV-G
protein (Figure 3A). A relatively more stable docking complex
between dog ITGB1 VWA domain and RV-G protein of DGint

−20.8 kcal/mol was mapped (Figure 3B). The stability of the
docking complex might be due to formation of four hydrogen
bonds between VWA domain of dog ITGB1. Four salt bridges
between Lus156, Asp287, Glu340, and Glu347 in dog ITGB1 and
Asp429, His105, His438, and Arg103 in the RV-G protein were
identified. Predicted interactions of the integrin beta tail domain
from black fruit bat ITGB1 showed bonding with RV-G protein
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
through three hydrogen bonds (Figure 3C). Our results showed that
the G protein ectodomain is responsible for binding to ITGB1 in
different hosts (Figures 3A–C). Our modeling of the interaction
betweenmGluR2 in human and dogwithRV-Gprotein showed that
the interactions were only mediated by the hydrogen bonds in the
seven-transmembrane domain of mGluR2 (Figures 4A, B).
Intriguingly, 10 hydrogen bonds were at the interface between the
ligand-bindingdomainofmGluR2 fromblack fruit bat and theRV-G
protein (Figure 4C), along with formation of four salt bridges
between Lys24, Arg107, and His129 in black fruit bat mGluR2 and
Glu430, Asp427, and Asp420 in the RV-G protein. Interestingly, the G
protein ectodomain, transmembrane, and cytoplasmic domains all
appear to play a role in interactions of G protein with mGluR2 in
different hosts (Figures 4A–C). The nAChR extracellular domain of
human and black fruit bat interacted with RV-G protein through
three hydrogen bonds (Figures 5A, B). Surprisingly, the docking
complexwith dog nAChR showedneither hydrogen bonds nor any
salt bridges with the RV-G protein which needs further
investigation. It was observed that the G protein ectodomain was
responsible for interactions with nAChR in human and bat
(Figures 5A, B). Two hydrogen bonds mediate the interaction
between human NCAM and RV-G in the docking complex
(Figure 6A). A salt bridge was noticed between residues Arg177 in
human NCAM and Asp429 within the RV-G protein. Modeling of
the dog NCAM-RV-G docking complex demonstrated nine
hydrogen bonds (Figure 6B). A total of five hydrogen bonds were
mapped in the docking complexbetweenblack fruit batNCAMand
RV-G protein (Figure 6C). The RV-G ectodomain was the
interacting part with human and dog NCAM, while both the RV-
G ectodomain and cytoplasmic domains may interact with
bat NCAM.
October 2021 | Volume 11 | Article 736114
TABLE 2 | Analysis of docking complex ITGB1-RV-G, mGluR2-RV-G, nAchR-RV-G, and NCAM-RV-G proteins in human, dog, and black fruit bat, highlighting the
hydrogen bonds, interacting interfaces, nonbonded contacts, salt bridges, DGint, pores, and tunnels within the docking complex.

Docking-complex Hydrogen bonds Interacting interfaces Non bonded contacts Salt bridges DGint (kcal/mol) Pores Tunnels

ITGB1 5 39 233 1 −21.5 24 2
Human 36
ITGB1 4 42 236 4 −20.8 13 2
Dog 38
ITGB1 3 35 294 − −26.2 13 9
Black fruit bat 33
mGluR2 4 32 206 − −29.7 9 3
Human 31
mGluR2 1 37 278 − −32.6 12 8
Dog 38
mGluR2 10 33 224 4 −18.4 12 1
Black fruit bat 33
nAChR 3 27 207 − −22.8 10 10
Human 28
nAChR − 34 219 − −31.9 9 8
Dog 37
nAChR 3 24 188 − −24.7 6 9
Black fruit bat 30
NCAM 2 27 187 1 −14.9 23 10
Human 28
NCAM 9 36 280 − −20.9 16 8
Dog 34
NCAM 5 37 194 − −19.3 11 10
Black fruit bat 31
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Interestingly, we have performed further docking analysis and
compared the interaction of bat ITGB1 with the G protein of the
bat RV group as shown in Figure 7. Our results show the
formation of four hydrogen bonds between bat ITGB1 and bat-
related RV-G protein (Figure 7A), while only two hydrogen
bonds were mapped between bat ITGB1 and the G protein of the
dog-related group (Figure 3C). To elucidate if the interaction of
human ITGB1 will be stronger with bat- or dog-related RV-G
proteins, we modeled the docking complex of human ITGB1
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
with bat RV-G protein (Figure 7B). The best model predicted an
interaction mediated by only one hydrogen bond between
human ITGB1 and bat RV-G protein, in contrast to the five
hydrogen bonds created upon interaction of human ITGB1 with
dog RV-G protein (Figure 3A). For checking the accuracy of the
docking results, we have tested if nonsusceptible host to RV
(chicken) will show any interacting residues with G protein. Two
docking complexes were modeled as follows: chicken nAChR–
dog G protein and chicken ITGB1–dog G protein. Unexpectedly,
A

B

C

FIGURE 3 | (A) Residues involved in hydrogen bonds within the docking complex of human ITGB1 with RV-G protein, Egyptian strain (QEU57979.1). (B) Residues
involved in hydrogen bonds within the docking complex dog ITGB1-RV-G protein, Egyptian strain (QEU57979.1). (C) Residues involved in hydrogen bonds within the
docking complex black fruit bat ITGB1-RV-G protein, Egyptian strain (QEU57979.1). Docking complex (ITGB1-RV-G Egyptian strain); ITGB1 colored in cyan,
interacting a.a residues colored in green, RV-G protein colored in violet, interacting a.a residues colored in yellow.
October 2021 | Volume 11 | Article 736114

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Khalifa et al. Structural Insights Into Rabies Virus Entry
A

B

C

FIGURE 4 | (A) Residues involved in hydrogen bonds within the docking complex human mGluR2-RV-G protein, Egyptian strain (QEU57979.1). (B) Residues
involved in hydrogen bonds within the docking complex dog mGluR2-RV-G protein, Egyptian strain (QEU57979.1). (C) Residues involved in hydrogen bonds within
the docking complex black fruit bat mGluR2-RV-G protein, Egyptian strain (QEU57979.1). Docking complex (mGluR2-RV-G protein, Egyptian strain); mGluR2
colored in golden yellow, interacting a.a residues colored in green, RV-G protein colored in violet, interacting a.a residues colored in yellow.
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chicken nAChR–dog G protein complexes showed seven
hydrogen bonds (Figure 7C). While in chicken ITGB1–dog G
protein, four hydrogen bonds were mapped (Figure 7D).
DISCUSSION

Little is known about the mechanisms by which RV crosses
species barriers. Studying the differences among RV receptors in
different species through which the RV is capable to jump among
different host species will provide novel insights into controlling
spillover events. The capability of RV-G protein to bind wide
range of receptors from different protein families and expressed
by diverse cell types remain elusive and puzzling (Lafon, 2005;
Wang et al., 2018; Shuai et al., 2019). In order to unravel some of
these mechanisms, we performed structural and protein-protein
interaction analysis of all known RV receptors and investigated
the possible mechanisms by which the G protein may enter into
diverse cell types in different host species. Interestingly, some
differences were observed especially for the ITGB1 domain
organization of black fruit bat which showed absence of
integrin plexin domain and signal peptide (Table 1). Signal
peptides have an important role in protein sorting and
localization and its absence is a matter of interest and warrant
future investigation. The absence of an N-terminal signal peptide
among orthologous proteins might be linked to the absence of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
the integrin plexin domain (N-terminal domain) in ITGB1 from
black fruit bat in comparison with ITGB1 in other species
(Hönigschmid et al., 2018). On the molecular level, protein-
protein interactions are the basis of life. Mapping and modeling
the protein interactions through computational approaches
(docking) can improve our understanding of the interactions
occurring in vivo, though with less accuracy (Tovchigrechko
et al., 2002). In the current study, we analyzed the protein-
protein interactions between the RV-G protein and ITGB1 in
different species (Figures 3A–C). Results obtained from ITGB1
and RV-G protein docking are consistent with previous studies
which identified that the interaction site between ITGB1 and RV-
G protein within residues 1–728 a.a on the ITGB1 ectodomain
(Shuai et al., 2019). Also, our analysis showed that the G protein
ectodomain was the interacting site with ITGB1 in human, dog,
and bat. Regarding mGluR2, none of the previous studies have
identified the interaction site with RV-G protein. Our analysis
for the docking results indicated the importance of the
transmembrane domain specifically in humans and dogs to
interact with RV-G protein. In contrast, in black fruit bat
mGluR2, the hydrogen bond with RV-G protein was within
the ligand binding domain. The diversity in orthologous protein
domains interacting with RV-G protein is plausible. Despite the
sequence similarity shared by proteins, divergent functions and
interactions are commonly observed (Hönigschmid et al., 2018).
Although, the interaction site for nAChR with RV-G protein has
A

B

FIGURE 5 | (A) Residues involved in hydrogen bonds within the docking complex human nAChR-RV-G Egyptian strain (QEU57979.1). (B) Residues involved in
hydrogen bonds within the docking complex black fruit bat nAChR RV-G Egyptian strain (QEU57979.1). Docking complex (nAChR-RV-G Egyptian strain); nAChR
colored in magenta, interacting a.a residues colored in green, RV-G protein colored in salmon, interacting a.a residues colored in yellow.
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been proposed to be within 173–204 a.a region (Lafon, 2005), our
results predict different interacting a.a. residues, however within
the same domain. These findings highlight the importance of
future in vitro and in vivo studies to gain further molecular
mechanistic insights. The interaction site of NCAMwith the RV-
G protein has not been determined in previous studies. Our
results demonstrated that hydrogen bonds bonded mainly within
immunoglobulin-like domains and fibronectin III-like domain
which may define the interaction between the virus and cell
receptor. Our focus in hydrogen bond mapping within
interaction complexes was primarily due to their known roles
in improving the stability of the interacting protein complexes
(Nilofer et al., 2017). Differences of the binding a.a. residues
between the two docking complexes: (bat ITGB1-bat RV-G) and
(human ITGB1-bat RV-G) may suggest the involvement of the
residues near the conserved a.a. in bat-related RV-G mentioned
above (Figure 3) in binding to bat receptors. Since virus
attachment to cellular receptors is considered only the
preliminary step for viral infection, this might explain our
prediction that the RV-G protein can bind to chicken
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
receptors, even though chickens are not hosts of RV infection.
Therefore, we can hypothesize that penetration or other steps
involved in viral infection might be the barrier to infect chickens
and other non-host species. In the current study, predicted
protein-protein interactions were performed with Gramm-X
software which is based on rigid body docking utilizing the
Fast Fourier transform (FFT) algorithm (Tovchigrechko and
Vakser, 2006). The FFT algorithm allows the determination of
the best surface match between molecules based on shape
complementarity (Tovchigrechko and Vakser, 2006). This
method has clear limitations represented in reduced accuracy
due to large conformational changes formed upon binding of
protein complexes (Desta et al., 2020). In addition to the
possibility of large movements during binding which
ultimately may result in transient or weak binding (Pons et al.,
2010). Moreover, the reliability of docking on structural models
of proteins generated by computational analysis render them
more prone to errors (Szilagyi and Zhang, 2014). Besides the
mentioned limitations, Gramm-X software does not allow for the
selection of specific glycosylation sites in modulating the
A

B

C

FIGURE 6 | (A) Residues involved in hydrogen bonds within the docking complex human NCAM-RV-G Egyptian strain (QEU57979.1). (B) Residues involved in
hydrogen bonds within the docking complex dog NCAM-RV-G Egyptian strain (QEU57979.1). (C) Residues involved in hydrogen bonds within the docking complex
black fruit bat NCAM-RV-G Egyptian strain (QEU57979.1). Docking complex (NCAM-RV-G Egyptian strain); mGluR2 colored in light blue, interacting a.a residues
colored in green, RV-G protein colored in light pink, interacting a.a residues colored in yellow.
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interactions between RV-G and receptors. Thus, the stability of
the generated docking complex might have been affected. Since,
anticipating the glycosylated sites might have resulted in higher
free energy which is ultimately known to affect the stability of
docking complex (Shental-Bechor and Levy, 2008).

Taken together, our in silico analysis, unraveled some of the
most crucial receptors utilized by RV for entry purposes. These
analyses establish the foundations for future research to
understand the preference and mutual importance of each of
these receptors for the entry mechanisms of RV. Additionally,
these structure-guided insights will establish a foundation on the
host-specific differences that may help to understand the
spillover of the RV among different hosts.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
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Gaudin, Y., Moreira, S., Bénéjean, J., Blondel, D., Flamand, A., and Tuffereau, C.
(1999). Soluble Ectodomain of Rabies Virus Glycoprotein Expressed in
Eukaryotic Cells Folds in a Monomeric Conformation That Is Antigenically
Distinct From the Native State of the Complete, Membrane-Anchored
Glycoprotein. J. Gen. Virol. 80, 1647–1656. doi: 10.1099/0022-1317-80-7-1647

Hönigschmid, P., Bykova, N., Schneider, R., Ivankov, D., and Frishman, D. (2018).
Evolutionary Interplay Between Symbiotic Relationships and Patterns of Signal
Peptide Gain and Loss. Genome Biol. Evol. 10, 928–938. doi: 10.1093/gbe/
evy049

Hueffer, K., Khatri, S., and Rideout, S. (2017). Rabies Virus Modifies Host
Behaviour Through a Snake-Toxin Like Region of Its Glycoprotein That
Inhibits Neurotransmitter Receptors in the CNS. Sci. Rep. 7, 1–8.
doi: 10.1038/s41598-017-12726-4

Jackson, A. C. (2013). History of Rabies Research. USA: Elsevier Science.
doi: 10.1016/B978-0-12-396547-9.00001-8

Lafon, M. (2005). Rabies Virus Receptors. J. Neurovirol. 11, 82–87. doi: 10.1080/
13550280590900427
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