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Introduction: Antibiotics are commonly prescribed to young children for treating bacterial
infections such as invasive pneumococcal disease (IPD) caused by Streptococcus
pneumoniae. Despite the obvious benefits of antibiotics, little is known about their
possible side effects on children’s nasopharyngeal microbiota. In other ecological
niches, antibiotics have been described to perturb the balanced microbiota with short-
and long-term effects on children’s health. The present study aims to evaluate and
compare the nasopharyngeal microbiota of children with IPD and different degree of
antibiotic exposure.

Methods: We investigated differences in nasopharyngeal microbiota of two groups of
children <18 years with IPD: children not exposed to antibiotics before sample collection
(n=27) compared to children previously exposed (n=54). Epidemiological/clinical data
were collected from subjects, and microbiota was characterized by Illumina sequencing of
V3-V4 amplicons of the 16S rRNA gene.

Results: Main epidemiological/clinical factors were similar across groups. Antibiotic-
exposed patients were treated during a median of 4 days (IQR: 3–6) with at least one beta-
lactam (100.0%). Higher bacterial richness and diversity were found in the group exposed
to antibiotics. Different streptococcal amplicon sequence variants (ASVs) were differentially
abundant across groups: antibiotic use was associated to lower relative abundances of
Streptococcus ASV2 and Streptococcus ASV11 (phylogenetically close to S.
pneumoniae), and higher relative abundances of Streptococcus ASV3 and
Streptococcus ASV12 (phylogenetically close to viridans group streptococci). ASVs
assigned to typical bacteria from the oral cavity, including Veillonella, Alloprevotella,
Porphyromonas, Granulicatella, or Capnocytophaga, were associated to the antibiotic-
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exposed group. Common nosocomial genera such as Staphylococcus, Acinetobacter,
and Pseudomonas were also enriched in the group exposed to antibiotics.

Conclusion: Our results point toward a reduction of S. pneumoniae abundance on the
nasopharynx of children with IPD after antibiotic treatment and a short-term repopulation
of this altered niche by oral and nosocomial bacteria. Future research studies will have to
evaluate the clinical implications of these findings and if these populations would benefit
from the probiotic/prebiotic administration or even from the improvement on oral hygiene
practices frequently neglected among hospitalized children.
Keywords: children, nasopharyngeal microbiota, invasive pneumococcal disease (IPD), antibiotics, oral bacteria,
nosocomial bacteria
INTRODUCTION

Antibiotics prescribed for treating infectious diseases save
millions of lives every year, but limited information is available
about their impact on the human microbiome and consequences
on health. The side effects of antibiotics have been described on
the gut microbiota, including transient or profound loss of
specific bacterial species, reduction of microbial diversity, and
loss of colonization resistance (Kim et al., 2017). In hospitalized
patients, antibiotic use favors colonization by nosocomial and
appearance of multidrug-resistant pathogens thus increasing the
risk for healthcare-associated infections (Kim et al., 2017). Even
long-term effects on children’s health including obesity or
diabetes have been linked to aberrant microbiomes altered by
antibiotics (Boursi et al., 2015; Tai et al., 2015).

With respect to the respiratory tract, different authors have
reported changes in throat, oropharynx, and lung microbiota of
adult patients subjected to long-term antibiotic intake for
different infections or chronic respiratory conditions (Hong
et al., 2016; Wang et al., 2017; Choo et al., 2018). However,
there is scarce research on the effects that occurred on children’s
nasopharynx, the ecological niche of the main pathogens causing
disease in pediatric populations (Cleary and Clarke, 2017).
Moreover, young children are subjected to a high number of
short-term antibiotic prescriptions, especially for treating acute
respiratory infections (Fleming-Dutra et al., 2016; Orlando et al.,
2020) such as invasive pneumococcal disease (IPD).

IPD is a major cause of morbi-mortality worldwide with
high incidence among children under 5 years (GBD 2016
Lower Respiratory Infections Collaborators, 2018; Wahl et al.,
2018). IPD is caused by Streptococcus pneumoniae, a bacteria
that normally colonizes the nasopharynx of children
asymptomatically but can occasionally cause pneumonia, the
most frequent manifestation, or other serious clinical
syndromes including sepsis or meningitis (Wahl et al., 2018).
Differential susceptibility to IPD might be partly explained by
the nasopharyngeal microbiota, which could play a role in the
transition of S. pneumoniae from colonization to disease states
(Camelo-Castillo et al., 2019).

Management of IPD requires antibiotic treatment with
varying doses, duration, and administration routes according
to clinical and patient’s characteristics (NICE, 2019). Since
gy | www.frontiersin.org 2
antibiotics are crucial for appropriate treatment of IPD but
also may result in perturbations of the ecological niche of
Streptococcus pneumoniae, further insight is needed into how
this disturbance is produced and what bacteria are leading the
repopulation of the nasopharynx so we can counteract antibiotic-
derived unwanted effects in our microbiota. Antibiotics side
effects may indirectly impact children’s health by causing
microbiota imbalances that have been linked to pathogenesis
of several respiratory infections (Bosch et al., 2017; Lanaspa et al.,
2017) and chronic respiratory disorders (Hahn et al., 2018), or by
rising antibiotic-resistant bacteria that have been described to
persist for long time and cause infections associated to higher
rates of treatment failure and mortality (Sjölund et al., 2005;
Jernberg et al., 2007; Jernberg et al., 2010; Friedman et al., 2016).
The present study aims to analyze and compare the
nasopharyngeal microbiota of children hospitalized with IPD
and different degree of exposure to antibiotics.
METHODS

Study Design, Setting, and Participants
A cross-sectional study was conducted at Sant Joan de Deu
Barcelona Children ’s Hospital (HSJD) with children
prospectively recruited from January 2014 to December 2018.
The criteria for inclusion in the study were as follows: 1) <18
years of age; 2) admission to HSJD with clinical suspicion of IPD;
3) microbiological confirmation of IPD by isolation of
S. pneumoniae and/or DNA detection of S. pneumoniae in any
normally sterile body fluid (Camelo-Castillo et al., 2019);
and 4) nasopharyngeal sample collected at any time during
hospital stay for diagnostic or research purposes. Exclusion
criteria were not signing informed consent or belonging to a
previously defined clinical risk group for developing IPD
(Gov.UK, 2020).

Patients not treated or treated only during 24 h before sample
collection were considered as cases not exposed to antibiotics,
while patients treated for more than 24 h prior to sample
collection were considered as cases exposed to antibiotics.
Different subjects were included in each group. This criterion
was adopted on the basis of previous literature reporting that the
sensitivity of molecular-based techniques on respiratory samples
October 2021 | Volume 11 | Article 744727

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Henares et al. Nasopharyngeal Dysbiosis Linked to ATBs
is not affected by a relatively low time of exposition to antibiotics
(Johansson et al., 2008).

Sample and Data Collection
Nasopharyngeal aspirates (NPAs) were collected and immediately
frozen at -80°C until processed (Camelo-Castillo et al., 2019).
Antibiotic types, administration route, and exposure time before
and during hospital stay were registered for each case. Relevant
epidemiological and other clinical data were recorded from each
participant through the parent’s interview or electronic medical
record, such as delivery mode or pneumococcal vaccination status
(categorized into nonvaccinated children or children ≥1 dose of 7-,
10-, or 13-valent pneumococcal conjugate vaccines (PCVs).
Microbiological data were obtained through laboratory analyses.
Pneumococcal serotypes 1, 3, 4, 5, 7F, 8, 9A, 9V, 12F, 14, 18C, and
19A were considered as serotypes with high invasive disease
potential (Camelo-Castillo et al., 2019). A detailed list and
description of the variables collected is included in the
metadata file.

Laboratory Analyses
Bacterial DNA was extracted from NPAs by the automated
system NucliSENS easyMag (BioMérieux, Marcy-l’Étoile,
France). A duplex real-time PCR targeting lytA and Rnase P
genes was used for pneumococcal DNA detection/
quantification (Camelo-Castillo et al., 2019; CDC and Ncird).
All positive S. pneumoniae samples were further serotyped
(Selva et al., 2012). A multiplex Real-Time PCR Anyplex TM
II RV16 (Seegene, Seoul, Korea) was used to detect DNA/RNA
from 16 human respiratory viruses. Nasopharyngeal
microbiota was characterized by 16S rRNA gene sequencing.
The V3-V4 region was amplified and sequenced with Illumina
MiSeq (Illumina, San Diego, California, USA) as previously
described (Illumina 16S Metagenomic Sequencing Library
Preparation). To control for potential contaminants, 17
negative controls were extracted, amplified, and sequenced
with the samples.

Bioinformatic and Statistical Analyses
Reads were processed using the DADA2 pipeline (Callahan et al.,
2016) obtaining exact amplicon sequence variants (ASVs). ASVs
mapping to the human genome (GRCh38) using the Burrow–
Wheeler Aligner in Deconseq v0.4.3 were filtered out (Schmieder
and Edwards, 2011). Taxonomic annotation of ASVs from
kingdom to genus was performed by DADA2 using the
Ribosomal Database Project (RDP) training set 16. ASVs were
further classified to species by an exact matching approach using
function addSpecies from DADA2. Finally, Decontam R package
compared prevalence of ASVs in real samples and negative
controls (Davis et al., 2018), identifying contaminant ASVs
that were removed from downstream analyses.

All statistical analyses were performed with R version 3.6.3.
Continuous variables were described as mean and standard
deviation (SD) or median and interquartile range (IQR) for
parametric and nonparametric variables, respectively.
Significance of continuous and normally distributed data was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
assessed by t-test for group comparisons. In case of
nonparametric data, Wilcoxon tests were performed. For
categorical data, significance was established through chi-
square test or Fisher’s exact test if ≥25% of cells presented
expected frequencies ≤5.

Samples were rarefied to minimum sample depth (12,601
sequences) for alpha-diversity analyses. Microbiota richness and
diversity were estimated through the calculation of Chao1 and
Shannon indices for each rarefied sample using the phyloseq R
package (McMurdie andHolmes, 2013), and comparisonsbygroup
according to antibiotic exposure were made with linear regression
analysis and accounting for confounding factors as copredictors
(age, gender, seasonality, vaccination, and severity measured by
ICU admission and length of hospital stay). PERMANOVA test
from vegan R package (Oksanen et al., 2018) evaluated overall
differencesonmicrobiota structure according toantibiotic exposure
using a Bray–Curtis matrix of relative abundance data of ASVs. In
the PERMANOVAmodel, we also controlled for the confounding
factors described above by including themas covariates. A Random
Forest classification model was built in order to identify the most
discriminative ASVs between subjects not exposed and exposed to
antibiotics using the randomForest R package (Package
‘randomForest’) with default parameters and including all ASVs
as explanatory variables as well as confounding variables as
covariates. Random Forest is a classification algorithm evolving
from the combination of many decision trees. A cross-validation is
already built-in in Random Forest, since each tree in the forest has
its own training and testing data; each tree uses bootstrapped
samples from original data as training set and leaves one-third of
data for testing, called out-of-bag (OOB) data. OOB data are used
on each tree to predict the outcome, the votes for each predicted
outcome from all trees are averaged, and themost voted outcome is
selected as the final prediction. Therefore, the out-of-bag error
predictions of the classifier were used to calculate the ROC curve
and the corresponding area under the curve (AUC) as ameasure of
the performance of themodel. Each predictor variable of themodel
was given an importance score (mean decrease accuracy), which
measures the contribution of each feature to the performance of the
model, with higher values indicating higher importance.
Specifically, the MDA is the mean decrease in the accuracy over
all out-of-bag cross-validated predictions when the values of the
variable are randomly permuted after training compared to the
original observations. The direction of the association of each
quantitative future was estimated post hoc with Cliff’s delta test.
Finally, most frequent bacterial genera with species implicated in
healthcare-associated infections among infants and children were
specifically selected in the study (Zingg et al., 2017), and its relative
abundanceswere compared by group usingWilcoxon tests in order
to find a possible association with antibiotics.

A phylogenetic tree was constructed containing all
streptococcal-type strains from RDP database v11.5 and main
streptococcal ASVs detected in our dataset. Cutadapt v1.9
trimmed V3-V4 regions for all the selected RDP streptococcal
strains (Martin, 2011), and overall multiple sequence alignment
was performed with MAFFT v7.4 (Katoh and Standley,
2013). FastTRee inferred the phylogenetic tree according to
October 2021 | Volume 11 | Article 744727
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maximum-likelihood methods with script make_phylogeny.py
(Price et al., 2010).
RESULTS

Characteristics of Participants
A total number of 168 cases with IPD were screened for
participation in the study. Eighty-one of them met inclusion
criteria, with a median age of 32 months (IQR: 18–49) and 58%
were male. NPA was collected before receiving antibiotics or
within the first 24 h of antibiotic intake in 27 patients (median
time=0 days, IQR: 0–0.5), and were assigned to the group not
exposed to antibiotics. The 54 remaining inpatients were
assigned to the antibiotic-exposed group (median time between
the first antibiotic intake and sample collection=4 days, IQR: 3–
6). The two groups did not present significant differences either
in epidemiological variables or in DNA/RNA viral detections or
virulence of pneumococcus causing IPD. Clinical manifestations,
days of fever before sample collection, length of hospital stay, and
complications were similar among exposed and not-exposed
inpatients (Table 1).

All subjects exposed to antibiotics before sample collection
were treated with beta-lactam antibiotics (100.0%, n=54), and 13
received combined therapy with another antibiotic type (24.1%).
Most patients were intravenously administered with antibiotics
(n=50, 92.6%), except for four subjects who were exclusively
orally treated prior to NPA sample collection.

Increased Richness and Diversity in the
Nasopharynx of Children With IPD
Exposed to Antibiotics
A total number of 4,150,123 good quality sequences were
obtained from samples and negative controls. This represented
a median of 51,309 sequences per sample (IQR: 38,194–73,119)
and 468 sequences per negative control (IQR: 192–765)
(P<0.001). After contaminant removal, 47,323 sequences per
sample (IQR: 32,410–64,945) were kept, corresponding to
3,381 ASVs. A median number of 80 ASVs were detected per
sample (IQR: 42–129). Tables S1, S2 show the main ASVs with
mean relative abundances over 0.1% in each group.

For alpha diversity, higher bacterial Chao1 richness (94.8
[IQR: 57.5–137.5] vs. 44.0 [IQR: 17.7–68.0]) (P<0.001, R2 = 0.20)
and higher Shannon diversity (2.2 [IQR: 1.5–2.8] vs. 1.6 [IQR:
1.2–2.1]) (P=0.01, R2 = 0.18) values were associated to the group
exposed to antibiotics (Figures 1A, B). For the overall
microbiota structure, PERMANOVA analyses further
confirmed that both groups presented significant differences on
their bacterial composition (P<0.001, R2 = 0.03) Figure 1C).

Decreased Abundances of S. pneumoniae
and Enrichment of Other Streptococci in
the Nasopharynx of Children With IPD
Exposed to Antibiotics
A specific pneumococcal qPCR demonstrated lower colonization
rates (66.7% vs. 100%, P=0.002) and lower pneumococcal loads
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
(4.6 [IQR: 0–5.8] log10copies/ml vs. 6.3 [IQR: 5.3–6.7]
log10copies/ml, P<0.001) in the nasopharynx of patients
exposed to antibiotics vs. not exposed, without significant
differences in the invasive disease potential of nasopharyngeal
serotypes detected (invasive serotypes; 50.0% vs. 51.8%, P=1.0) or
in their coverage by PCV13 vaccine (50.0% vs. 51.8%, P=1.0)

Analyseswith 16S rRNAdata not only showed lower abundance
of S. pneumoniae associated to antibiotic use but also revealed the
increase in other streptococci. Overall, a total of 373 ASVs were
assigned to Streptococcus at the genus level representing the 31.2%
of total reads in this dataset. However, 5 ASVs were the most
abundant contributing to 25.6%of total reads and 82.2%of the total
abundance of reads assigned to Streptococcus (Figure 2A). When
the relative abundancesof thesefiveASVswere comparedbygroup,
four of them were differently distributed: the group not exposed to
antibiotics was enriched in Streptococcus ASV2 (P=0.006) and
Streptococcus ASV11 (P=0.009), while exposed patients were
enriched in Streptococcus ASV3 (P<0.001) and Streptococcus
ASV12 (P<0.001) (Figure 2B). Interestingly, a streptococcal
phylogenetic tree confirmed that S. pneumoniae type strain was
most closely related to ASV2 and ASV11, while ASV3 and ASV12
were more phylogenetically close to Streptococcus mitis/oralis/
infantis type strains (Figure S1).

Association of Antibiotic Exposure With
Increased Abundance of Oral Bacteria in
the Nasopharynx of Children With IPD
The results from the Random Forest model demonstrated that
nasopharyngeal microbiota composition was different between
both groups. The microbiota features exhibited a good
discriminatory power for distinguishing inpatients not exposed to
antibiotics from those exposed (AUC=0.80 (95% CI:0.69–0.92)
(Figure 3A). The top 50 features with higher importance in
classifying these patients, as measured by the MDA score, were
plotted in Figure 3B. Moraxella ASV1, Moraxella ASV7,
Streptococcus ASV11, and Streptococcus ASV2 were found among
the top most important features associated to the patients not
exposed to antibiotics as determined post hoc with Cliff’s
delta test. On the contrary, Streptococcus ASV3, Streptococcus
ASV12, Staphylococcus ASV18, as well as several ASVs
assigned to Veillonella, Alloprevotella, Porphyromonas, Delftia,
Capnocytophaga, Granulicatella, Neisseria, and other genera were
among the topmost important features associated to antibiotic use.
Most of these genera include gram-negative and anaerobic bacteria
frequently found in the oral cavity (Aas et al., 2005;Mira et al., 2017;
Dzidic et al., 2018). Further analyses at the genus level located
Prevotella, Capnocytophaga, and Veillonella as the most important
predictors associated to antibiotic exposure among children with
IPD (Figure S2). Moreover, differential ranking analysis with
Songbird also supported these findings (Figure S3).

Overrepresentation of Common
Nosocomial Bacteria Among Children With
IPD Exposed to Antibiotics
Staphylococcus, Acinetobacter, Pseudomonas, Escherichia/Shigella,
Stenotrophomonas, Serratia, Enterococcus, Enterobacter, and
October 2021 | Volume 11 | Article 744727
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TABLE 1 | Epidemiological, microbiological, and clinical characteristics of the study groups.

Not exposed (n=27) Exposed (n=54) P-valuea

Epidemiological characteristics

Age, months, median (IQR) 33 (19.0-49.5) 28.5 (18.5-48.5) 0.72
Gender, male (%) 12/27 (44.4) 35/54 (64.8) 0.13
Birth weight, grams, mean (sd)b 3260 (507) 3358 (444) 0.41
Gestational age, weeks, median (IQR)c 40 (38.2-40.4) 40.0 (39.0-40.0) 0.81
House surface per inhabitant, m2, median (IQR)d 20 (18.1-28.3) 22 (16.7-28.8) 0.87
Seasonality, samples collected during viral season (%)* 17/27 (63.0) 31/54 (57.4) 0.81
Ethnicity, Caucasian (%) 16/24 (66.7) 34/48 (70.8) 0.92
Delivery mode, C-section (%) 6/23 (26.1) 7/42 (16.7) 0.55
Breastfeeding (%) 23/26 (88.5) 41/52 (78.8) 0.36k

Breastfeeding duration, months, median (IQR)e 6.5 (1.6-12.0) 6.0 (1.0-9.0) 0.41
Schooled (%) 21/26 (80.8) 44/51 (86.3) 0.52k

Family members under 5 years (%) 9/25 (36.0) 12/46 (26.1) 0.55
Parental smoking (%) 8/26 (30.8) 18/49 (36.7) 0.79
Basic educational level (%) 3/19 (15.8) 9/43 (20.9) 0.74k

≥1 dose of Pneumococcal Conjugate Vaccine (%) 15/27 (55.5) 36/52 (69.2) 0.34

Microbiological characteristics

Viral study
DNA/RNA viral detection by multiplex PCR (%) 22/27 (81.5) 39/54 (72.2) 0.42k

DNA/RNA viral detection >2 viruses by multiplex PCR (%) 9/27 (33.3) 15/54 (27.8) 0.79
Human rhinovirus/enterovirus (%) 16/27 (59.2) 31/53 (58.5) 1.00
Human respiratory syncitial virus (A and B) (%) 4/26 (15.4) 4/53 (7.5) 0.42k

Human metapneumovirus (%) 1/27 (3.7) 2/53 (3.8) 1.00k

Human coronaviruses (OC43/229E/NL63) (%) 2/27 (7.4) 2/54 (3.7) 0.60k

Human parainfluenza viruses (1,2,3,4) (%) 1/27 (3.7) 6/53 (11.3) 0.41k

Human influenza viruses (A and B) (%) 3/26 (11.5) 4/53 (7.5) 0.67k

Human adenovirus (%) 3/27 (11.1) 8/53 (15.1) 0.74k

Human bocavirus (%) 4/25 (16.0) 6/53 (11.3) 0.71k

Pneumococcal study in invasive samples #

Pneumococcal serotype with high invasive disease potential (%) 14/27 (51.8) 18/36 (50.0) 1.00
Pneumococcal serotype covered by PCV13 vaccination (%) 14/27 (51.8) 18/36 (50.0) 1.00

Clinical characteristics

Time of fever before NPA collection, hours, median (IQR)f 120 (78-144) 128 (33-192) 0.82
Blood analytical parameters at admission

C -Reactive Protein, mg/L, median (IQR)g 300 (205-324) 268 (146-335) 0.83
Procalcitonin, ng/ml, median (IQR)h 11.3 (6.7-17.2) 4.3 (1.2 -15.1) 0.37
Hemoglobin, g/dl, median (IQR)i 10.7 (10.1-11.7) 10.8 (9.9-11.6) 0.97
Leukocytes, thousand/mm3, mean (SD)j 16.8 (8.3) 18.0 (8.9) 0.57
Clinical syndromes

Complicated pneumonia (%) 16/27 (59.2) 29/54 (53.7) 0.81
Non-complicated pneumonia (%) 7/27 (25.9) 8/54 (14.8) 0.36
Meningitis (%) 3/27 (11.1) 5/54 (9.2) 1.00k

Sepsis (%) 0/27 (0.0) 4/54 (7.4) 0.29k

Bacteremia (%) 1/27 (3.7) 4/54 (7.4) 0.66k

Arthritis (%) 0/27 (0.0) 4/54 (7.4) 0.29k

Hospital stay and complications
Length of Hospitalization stay, days, median (IQR) 11.0 (8.0-15.0) 10.0 (6.0-15.0) 0.69
ICU admission (%) 4/27 (14.8) 13/54 (24.1) 0.40k

Respiratory support (noninvasive ventilation and/or mechanical ventilation) (%) 2/27 (7.4) 11/54 (20.4) 0.20k

Thoracocentesis (%) 10/27 (37.0) 22/54 (40.7) 0.94
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
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aT-test and Wilcoxon test were used for parametric and nonparametric continuous variables, respectively. Chi-square test was used for categorical variables.
bComparisons performed on 25 not exposed cases and 53 exposed cases.
cComparisons performed on 26 not exposed cases and 53 exposed cases.
dComparisons performed on 23 not exposed and 47 exposed cases.
eComparisons performed on 26 not exposed cases and 50 exposed cases.
fComparisons performed on 26 not exposed cases and 52 exposed cases.
gComparisons performed on 26 not exposed cases and 53 exposed cases.
hComparisons performed on 12 not exposed cases and 25 exposed cases.
iComparisons performed on 25 not exposed cases and 51 exposed cases.
jComparisons performed on 25 not exposed cases and 52 exposed cases.
kFisher exact tests were performed for categorical variables instead of chi-square tests in case of ≥25% of cells presented expected frequencies <5.
*Viral season was defined as the period of time corresponding to Influenza A and VRS circulation over the basal levels according to the Surveillance Plan of ARIs in Catalonia (PIDIRAC)
(https://canalsalut.gencat.cat/ca/professionals/vigilancia-epidemiologica/pla-dinformacio-de-les-infeccions-respiratories-agudes-a-catalunya-pidirac/) and reports from the Hospital
Surveillance Network for VRS in Catalonia (Vall d’Hebrón Hospital) (https://hospital.vallhebron.com/ca/actualitat/publicacions/informe-xarxa-de-vigilancia-hospitalaria-de-vrs).
#A total of three pneumococci could not be serotyped due to low bacterial load.
SD, Standard Deviation; IQR, Interquartile Range; NPA, Nasopharyngeal aspirate.
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Klebsiella were found in the nasopharynx of our patients with total
relative abundances of 6.2%, 0.6%, 0.5%, 0.04%, 0.03%, 0.03%, 0.01%,
0.009%, and 0.003%, respectively. However, only Staphylococcus
(P=0.03), Acinetobacter (P=0.02), and Pseudomonas (P=0.02)
showed significant differences with higher relative abundances in
the antibiotic-exposed group (Figure 4). Of note, the antibiotic-
exposed children also presented longer hospital stays prior to
sample collection (median=3 days [IQR: 2–5) vs. median=0 days
[IQR=0–1], P<0.001).
DISCUSSION

In the present study, we have demonstrated clear differences in
nasopharyngeal microbiota composition of hospitalized children
with IPD exposed to antibiotics compared to those not exposed.

Patients exposed to antibiotics presented richer and more
diverse microbial nasopharyngeal communities in our study
compared to those not exposed. This finding is in contrast to
previous literature describing bacterial diversity reduction in gut
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
microbiota as a consequence of antibiotic intake (Kim et al.,
2017) and may reflect differential effects of antibiotics across
respiratory and intestinal microbiota ecosystems. Our results are
in agreement with those reported in a longitudinal study by
Smith et al. (2014) in adults with cystic fibrosis. This study
analyzed the effects of intravenous beta-lactam antibiotics for
treating exacerbations on sputum samples collected on the first
day, at 3–4 days, and 8–10 days since antibiotic initiation. A
transient increase in diversity at 3 days was described that
normalized at days 8–10, suggesting that timing of sampling
after the start of antibiotic could be key to understanding the
dysbiotic effect of antibiotic exposure in the respiratory
microbiota. Results from other investigations on the impact of
antibiotics on respiratory microbiota are scarce and
heterogeneous, mostly referring to effects observed after at least
7 days of antibiotic initiation: some studies reported decreases in
bacterial community complexity (Lazarevic et al., 2013; Pittman
et al., 2017; Kramná et al., 2018), while others showed no
significant changes on alpha-diversity measures at all (Zhou
et al., 2016; Salter et al., 2017). Other factors such as patient
A B

C

FIGURE 1 | Alpha- and beta-diversity comparisons between patients with IPD not exposed to antibiotics before sample collection (yellow) and IPD patients with previous
antibiotic exposure (blue). Boxplots showing the Chao1 richness (A) and Shannon diversity indexes (B) according to antibiotic-exposure groups at the ASV level.
Differences by group were assessed with simple linear regression analyses including confounding variables as copredictors (age, gender, seasonality, vaccination, ICU
admission, and length of hospital stay). Three observations from the exposed group were deleted due to missing values in vaccination variable. (C) Nonmetric
multidimensional scaling (NMDS) plot based on Bray–Curtis dissimilarities of nasopharyngeal microbiota composition of samples from all patients included in the study.
Samples of each group are connected with their corresponding centroids using the function “ordispider” (Vegan R package). P-value corresponds to Adonis
PERMANOVA test on the antibiotic- exposure group variable and including confounding variables as covariates. Significance codes: *** ≤0.001; ** ≤0.01; * ≤0.05. MDS,
nonmetric multidimensional scaling.
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age, the specific respiratory condition analyzed, and the
respiratory tract segment analyzed may explain the
heterogeneity of antibiotic impacts on respiratory microbiota
reported so far.

Antibiotic exposure was associated to higher relative
abundance of ASVs phylogenetically close to viridans group
streptococci (VGS), specifically Streptococcus mitis/oralis/
infantis species, and anaerobic bacteria such as Prevotella,
Aloprevotella, Veillonella, Porphyromonas, and Granulicatella.
These taxa mainly corresponded to commensal bacteria more
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
frequently found in the oropharynx (Aas et al., 2005; Dzidic et al.,
2010; Mira et al., 2017) than the nasopharynx of children (Ho
Man et al., 2017; SM et al., 2018). Smith et al. (2014) also
described a trend for increased relative abundances of anaerobes
in sputum samples, mainly Veillonella and Prevotella, after 72 h
of beta-lactam treatment. Similar effects have been observed with
pneumococcal vaccination, which resulted in temporary shifts in
nasopharyngeal microbiota composition with increased levels of
bacterial diversity and increased relative abundances of
Prevotella, Veillonella , unclassified Bacteroidetes , and
A

B

FIGURE 2 | Main ASVs assigned to Streptococcus in the nasopharynx of children with IPD and their relative abundance according to antibiotic-exposure groups.
(A) Bar plot showing the ASVs with a relative contribution >0.1% to the total number of streptococcal reads. (B) Boxplot showing the relative abundance of main
streptococcal ASVs differentially represented in antibiotic-exposure groups. Significance codes: *** ≤0.001; ** ≤0.01; * ≤0.05.
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Leptotrichia (Biesbroek et al., 2014). Other nonpneumococcal
streptococci also raised after vaccination, while pneumococcal-
vaccine serotypes decreased. Despite different action
mechanisms, both antibiotics and vaccination may lead to
eliminating pneumococcus from nasopharynx, with probable
displacement of the species detected. Our study suggests that
colonizing bacteria from oropharynx may be leading the short-
term repopulation of nasopharynx after antibiotic exposure.
Although mainly speculative, the poor oral hygiene frequently
associated to hospitalized children (Blevins, 2013) is linked to
high bacterial loads and increased bacterial colonization
(Fourrier et al., 1998; Bordasa et al., 2008; Barbosa et al., 2016;
Carrol et al., 2020; Chhaliyil et al., 2020), which may favor
the migration of bacteria from oral and dental plaque to the
empty nasopharyngeal space left by pneumococcus. Other
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
plausible mechanisms may include the possibility that oral
bacteria were already present in the nasopharynx of children
with IPD in very low abundance, and such populations expanded
to fully occupy the niche after antibiotic use or the new
acquisition of oral bacteria via breathing, which may have the
opportunity to colonize this niche due to the reduction of
pneumococcus abundance.

The importance of these findings must be unveiled. Despite the
fact that these bacteria are generally commensal microorganisms
from the oropharynx (Aas et al., 2005), it has been demonstrated to
be a causative role in local and disseminated infections. VGS are a
common cause of bacteremia and infective endocarditis (Desai et al.,
2017). Gram-negative bacteria such as Prevotella, Porphyromonas,
and Veillonella and gram-positive cocci such as Granulicatella are
isolated from a considerable proportion of mixed anaerobic
A

B

FIGURE 3 | Classification of children with IPD according to antibiotic-exposure using a Random Forest model based on nasopharyngeal microbiota composition. All
ASVs as well as confounding factors (age, gender, seasonality, vaccination, ICU admission, and length of hospital stay) were included in the model. (A) ROC curve
showing the performance of the RF model at the ASV level. (B) Bar plot showing top 50 most important features to class separation according to the Mean Decrease
Accuracy score (confounding factors were not found among the top important features). Color-coding shows directionality of the association for each of the 50 top
features to either the not exposed (yellow) or antibiotic-exposed (blue) group based on a post hoc analyses with Cliff’s delta estimation of the effect size. In addition, a
heatmap displaying relative abundance (%) of these top 50 features across samples is shown on the right. Each column represents a sample, while each row represents
a different feature. In the x-axis, samples are split by group and ordered according to hierarchical clustering using a Bray–Curtis dissimilarity measure.
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infections in children (Brook, 2002). In addition, some Prevotella
and Porphyromonas species have been described as important
pathogens in periodontitis and inextricably linked to systemic
chronic disorders as cardiovascular diseases, diabetes, and
rheumatoid arthritis, through cross-reactive antibodies and
increased levels of systemic inflammation (Bui et al., 2019).

A higher abundance of VGS and typical oral taxa in the
nasopharynx of antibiotic-exposed cases despite active
treatment could be explained by the considerable rates of
resistance to beta-lactam antibiotics described in these
bacteria (Nyfors et al., 2003; Desai et al., 2017; Arredondo
et al., 2020), or to the biofilm mode of life of some of these
species, which may restrict antibiotic penetration (Kouidhi
et al., 2015). In addition, VGS constitute a reservoir of
antimicrobial resistance genes that have been described to be
transferred to more pathogenic organisms like S. pneumoniae
(Jensen et al., 2015), while anaerobic gram-negative bacteria
may protect penicillin-susceptible bacteria through beta-
lactamase production, contributing to antibiotic failures
(Brook, 2009). Worrisome is also the fact that antibiotic
exposure in children with IPD and hospitalized for a median
of 3 days was associated to increased abundances of
Staphylococcus, Pseudomonas, and Acinetobacter. These
genera, specially Pseudomonas and Acinetobacter, are not
common respiratory commensals and are related to typical
multidrug-resistant species causing nosocomial infections
(Zingg et al., 2017).

Although it is probable that our findings could be transitory
and a recovery of the initial stability of the nasopharyngeal
microbiota is reached after antibiotic treatment ends, some
changes have been described to persist for long time and for
some species to become part of the commensal microbiota.
Given the implication of oral bacterial species in multiple
disorders and its overrepresentation in the nasopharynx of
inpatients with IPD after antibiotic treatment, our study
suggests that these patients could benefit from the concurrent
administration of probiotics/prebiotics alongside antibiotics that
may help to prevent dysbiosis and recover a balanced state of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
microbiota (Rosier et al., 2018; Lee et al., 2021). The role of the
oral hygiene in preventing and recovering from such
disturbances must be revealed. This practice has demonstrated
to reduce colonization and density of oral pathogenic bacteria in
the oropharynx as well as to reduce the risk of nosocomial
infections (Bordasa et al., 2008; Amaral et al., 2009; Carrol et al.,
2020; Chhaliyil et al., 2020; Vilela et al., 2015), and could be
useful if the repopulation of the nasopharynx of children with
IPD after antibiotic treatment is produced by the expansion of
oral bacteria from the oropharynx.

This study is subject to a number of limitations. First, the
small sample size may have reduced the statistical power.
Nevertheless, we would like to note the valuable cohort of
patients recruited in a low-prevalence area for IPD and the
lack of previous studies assessing the ecological impact of
antibiotics in the nasopharynx of these children. Second, its
cross-sectional design only allowed identification of associations
without establishing causality. Third, 16S rRNA gene sequencing
studies cannot differentiate between live and death bacteria.
Fourth, analyses at the species levels could not be performed
because of the poor taxonomic resolution at this rank, especially
for streptococcal species, possibly due to the use of short-length
amplicons and the absence of respiratory tract-dedicated,
thoroughly curated 16S rRNA gene databases as occurred in
gut microbiota. However, we performed analyses at the ASV
level that allowed the finest possible resolution by discriminating
unique sequences at the single-nucleotide level. Finally, although
a phylogenetic tree based on 16S rRNA gene sequences was
constructed in order to identify which streptococcal strains were
the most phylogenetically close to the streptococcal ASVs
detected in our study, other genes may be more suitable for
reliable classification of streptococcal species.

Despite these limitations, the associations described here are
strong enough to encourage future longitudinal studies that
confirm our findings and evaluate the relation of changes
observed in nasopharyngeal communities after antibiotic use
with short-term and long-term clinical outcomes. Our findings
may also encourage shotgun metagenomic studies that help to
FIGURE 4 | Bacterial genera associated to nosocomial infections in the nasopharynx of patients with IPD according to antibiotic-exposure and length of
hospitalization prior to sample collection. Heatmap displaying relative abundances (%) of bacterial genera with characteristic species implicated in healthcare-
associated infections. Each column represents a sample, while each row a bacterial genus. Samples are split by the antibiotic-exposure group and ordered by days
of antibiotic intake. Rows are sorted by total relative abundance in decreasing order. Bottom bars indicate the number of days of antibiotic exposure and days of
hospitalization prior to sample collection for each patient with distinct color scales. Differences in relative abundances of these bacteria by group were assessed with
Wilcoxon tests and FDR adjusted p-values are shown. Significance codes: *** ≤0.001; ** ≤0.01; * ≤0.05.
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describe functional profiles and resistance patterns of
nasopharyngeal communities associated to antibiotic use.

In conclusion, our results suggest a reduction of S. pneumoniae
abundance on thenasopharynxof childrenwith IPDafter antibiotic
treatment, and a short-term repopulation of this altered niche by
oral and nosocomial bacteria. This emphasizes the need for
understanding the clinical implications of these antibiotic-derived
perturbations as well as the utility of probiotic/prebiotic
administration or even oral hygiene improvement in preventing
or recovering from such disturbances.
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