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Slit lamps are routinely used to examine large numbers of patients every day due to high
throughput. Previous, cultivation-based results suggested slit lamps to be contaminated with
bacteria, mostly coagulase-negative staphylococci, followed by micrococci, bacilli, but also
Staphylococcus aureus. Our study aimed at obtaining a much more comprehensive,
cultivation-independent view of the slit lamp bacteriota and its hygienic relevance, as
regularly touched surfaces usually represent fomites, particularly if used by different persons.
Weperformed extensive 16S rRNAgene sequencing to analyse the bacteriota, of 46 slit lamps
from two tertiary care centers at two sampling sites, respectively. 82 samples yielded enough
sequences for downstream analyses and revealed contamination with bacteria of mostly
human skin, mucosa and probably eye origin, predominantly cutibacteria, staphylococci and
corynebacteria. The taxonomic assignment of 3369 ASVs (amplicon sequence variants)
revealed 19 bacterial phyla and 468 genera across all samples. As antibiotic resistances are
of major concern, we screened all samples for methicillin-resistant Staphylococcus aureus
(MRSA) using qPCR, however, no signals above the detection limit were detected. Our study
provides first comprehensive insight into the slit lamp microbiota. It underlines that slit lamps
carry a highly diverse, skin-like bacterial microbiota and that thorough cleaning and disinfection
after use is highly recommendable to prevent eye and skin infections.

Keywords: eye, hygiene, MRSA, Illumina MiSeq ®, microbiota (16S), 16S rRNA gene amplicon sequencing
INTRODUCTION

Surfaces with regular contact to the human body are usually contaminated with microorganisms.
Most of them belong to the resident commensal skin and mucosa microbiota, but can nevertheless
carry a pathogenic potential. Many studies deal with the bacterial load on daily used devices or
frequently touched surfaces, which may also carry antibiotic resistant bacteria (Brady et al., 2007;
Anderson and Palombo, 2009; Di Lodovico et al., 2018; Cave et al., 2019; Gohli et al., 2019).
Abbreviations: ASV, Amplicon Sequence Variant; HAI, hospital acquired infections; TC, Tertiary Center; SCCmec,
staphylococcal cassette chromosome; PCA, principal component analysis; ANCOM-BC, analysis of compositions of
microbes with bias correction; qPCR, quantitative PCR; MRSA, methicillin-resistant Staphylococcus aureus;
PERMANOVA, permutational multivariate analysis of variance; QIIME, Quantitative Insights Into Microbial Ecology.
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Such surfaces usually represent fomites. Fomites are of particular
concern in clinical environments, as bacteria on surfaces can be
transferred easily from one person to another (Weber et al., 2010;
Christoff et al., 2019), promoting the spread of infectious
diseases, which is particular problematic for ill or otherwise
immunocompromised persons. In 2017, 8.3% of all European
patients in an intensive care unit suffered from hospital acquired
infections (HAI) (EDC - European Centre for Disease
Prevention and Control, 2019). For surgical site infections, the
percentage varied between 0.5% and 10% (EDC - European
Centre for Disease Prevention and Control, 2019). It is estimated
that about 20% to 40% of the HAI in intensive care units are
caused by hand-to-hand transmissions (Weinstein, 1991) and
that 10% of acute care patients acquire multi-drug resistant
microorganisms during their stay (Cao et al., 2016).

During routine diagnostics in eye clinics, many patients are
examined in a short time and often suffer from highly contagious
eye infectious (Watson et al., 2018). Common HAI in
ophthalmology are acute (viral and bacterial) conjunctivitis,
keratitis and endophthalmitis (Wang et al., 2006), while
frequent and increasing infections by multi-resistant bacteria
are caused by Staphylococcus aureus and Pseudomonas
aeruginosa (Schulte et al., 2020). Therefore, special hygienic
attention is required for optical surfaces. Previous studies
revealed a significant and diverse bacterial load on optical
devices, such as microscopes (Fritz et al., 2020b), surgeons
loups or surgeons eyeglasses (Graham et al., 2019; Butt et al.,
2021) and reusable tonometer tips (Hillier and Kumar, 2008).
They all contained significant amounts of bacteria, including
many species known to cause skin and eye infections and with a
potential to carry antibiotic resistances.

Slit lamps count among the most important andmost often used
ophthalmological devices, demanding close contact between
examiner, many different patients and device surfaces. Previous
studies revealed their relevant surfaces to be contaminated with
bacteria, mostly coagulase-negative staphylococci, micrococci,
bacilli and also Staphylococcus aureus (Graham et al., 2008;
Sobolewska et al., 2018). However, these examinations were
performed with cultivation-dependent techniques, which provide
only a very limited overview on the present microbiota, as the
cultivation conditions for most microorganisms are still unknown.
Here, we used the cultivation-independent, molecular approach of
16S rRNA gene sequencing to analyse the bacteriota on different slit
lamp surfaces in detail. Our study represents the first
comprehensive analysis of the microbial contamination on slit
lamps and we assume it provides a solid basis for a deeper
understanding of the hygienic relevance of these widely used
optical devices.
MATERIAL AND METHODS

16S rRNA Gene Amplicon Sequencing-
Based Analyses
46 slit lamps (various manufacturers) stemming from the Center
of Ophthalmology, University Hospital Tuebingen (hereinafter
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called Tertiary Center 1 – TC1), Germany (n = 29) and the Eye
Center, Medical Center, University of Freiburg (hereinafter
called, Tertiary Center 2 – TC2), Germany (n = 17) were
swab-sampled in October 2020, during routine patients
examinations within an unannounced audit. TC1 and 2 were
chosen as they are among the largest tertiary care facilities for
specialized, consultative, ophthalmological health care in our
region and allowed for sufficient sample material.

Patient throughput ranged between 4 and 200 patients per day
within the respective rooms (median ± SD: 81 ± 47.1).
Predominately rooms with a high patient throughput were
chosen, as a high occupancy rate was suspected to lead to higher
bacterial load and diversity. Rooms with a low patient throughput
were sampled as reference. The examination rooms were shared
between 1 and 20 physicians per day (median ± SD: 6 ± 4.6). To
ensure comparability with previous studies (Sobolewska et al., 2018;
Fritz et al., 2020b), the following regions of slit lamps were sampled,
resulting in two samples per device: The ‘oculars’ (lens and plastic
eyecup) as regions in close proximity to the physicians eyes and the
surfaces with direct skin contact, such as the joystick, the handrail,
the headrest and the headband (pooled as ‘contact area’, Figure 1).
In both clinics, all slit lamp contact areas were claimed to be wipe
disinfected between different patients. More comprehensive
cleaning data were obtained from TC1. Here, slit lamps were in
addition cleaned carefully either three times a day, once a day or
weekly. All relevant metadata details are provided in the
Supplementary Table 1.

All surfaces were sampled in a meandering pattern using dry,
sterile Puritan Hydra Flock Swabs (Puritan Diagnostics LLC,Maine,
USA). After sampling, swab heads were broken off into RNA/DNA
shield tubes with beads (Zymo Research, Freiburg, Germany) and
stored at room temperature until further processing.

DNA Extraction
For cell disruption, collected swab heads were treated in a
FastPrep 24 instrument (MP Biomedicals LCC, Santa Ana, CA,
USA) by five rounds of bead beating for 1 min at 6.5 ms-1 and
then placed on ice for 1 min. DNA was then extracted and
purified with the ZymoBIOMICS DNA Miniprep Kit (Zymo
Research) following the manufacturer’s instructions with slight
modifications: After 2 min of incubation at room temperature,
the DNA was eluted with 50 µl of 60°C warm, DNA-free water.
The flow through was reloaded onto the same filter, incubated for
1 min and centrifuged again. The purified DNA was stored at -20°C
until further analyses.

Preparation of Controls
To better evaluate the community composition analysis process
and probable contaminations, positive (mocks) and negative
controls were carried out along the experiment. The Skin
Microbiome Whole Cell Mix (ATCC MSA-2005, LGC
Standards GmbH, Wesel, Germany) was used as a mock
community standard, covering a typical part of the human
skin bacterial community. The mock community consisted of 6
typical skin bacterial species in equal total cell abundances
(Acinetobacter johnstonii ATCC 17090, Corynebacterium
striatum ATCC 6940, Micrococcus luteus ATCC 4698,
November 2021 | Volume 11 | Article 745653
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Cutibacterium acnes ATCC 11828, Staphylococcus epidermidis
ATCC 12228 and Streptococcus mitis ATCC 49456, 16.7% each).
The standard was prepared according to the manufacturer´s
recommendations (American Type Culture Collection, 2018), so
that the final suspension contained about 1.2 x 108 cells/vial (± 1
log). As negative (blank) control, two sterile swabs were
processed independently as described above.

Library Preparation
For construction of amplicon libraries, primers Bact-0341f (5’-
CCTACGGGNGGCWGCAG-3 ’) and Bact-0785r (5 ’-
GACTACHVGGGTATCTAATCC-3’), covering the V3-V4
region of the bacterial 16S rRNA gene, were used. We chose
this primer pair as it is widely used in many microbiome studies
(Klindworth et al., 2013; Thijs et al., 2017; Illumina, 2019;
Mancabelli et al., 2020) also with regard to skin (Castelino
et al., 2017) and oral microbiota (Zheng et al., 2015), however
sometimes with slight modifications. All primers contained an
additional adapter sequence tail (Forward overhang: 5’ TCGT
CGGCAGCGTCAGATGTGTATAAGAGACAG; Reverse
overhang: 5 ’ GTCTCGTGGGCTCGGAGATGTGTAT
AAGAGACAG), yielding a final PCR product of ~ 529 bp.

Samples were processed in duplicates. Triplicates were
performed, if the gel electrophoresis showed only weak bands.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
All samples were amplified in a total reaction volume of 25 µl
using3µl of templateDNAas specified elsewhere (Fritz et al., 2020b).
The PCR conditions were as follows: 98°C (3 min) initial
denaturation, followed by 98°C (30 s), 55°C (30 s), 72°C (45 s), and
a final extension at 72°C for 2 min using 35 cycles. DNA amplicons
were checked by standard 0.8% agarose gel electrophoresis. With
each batch, no-template control reactions were included. Diluted
(1:100) DNA from overnight cultures of Escherichia coli K12,
extracted as described above, was used as template for the positive
controls. Clean-up of the PCR products using Agencourt AMPure
XP Beads (BeckmanCoulter Inc., Krefeld, Germany), followed by
annealing of the dual-index barcodes from theNextera XT Index Kit
v2 Set B (Illumina Inc., SanDiego,USA), was performed as described
previously (Fritz et al., 2020b). The cleaned libraries were quantified
using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Karlsruhe,
Germany), while the final quality check was performed with a
Bioanalyzer 2100 Instrument with the DNA High Sensitivity Kit
(bo th Ag i l en t Techno log i e s Deu t s ch l and GmbH,
Waldbronn, Germany).

Sequencing
The libraries were adjusted to 4 nM (with 10 mM Tris buffer, pH
8.5), combined with 30% PhiX control (Illumina Inc.) and finally
diluted to 4 pM. Sequencing was performed on an Illumina
FIGURE 1 | Sampled parts of the investigated slit lamps. Samples designated “contact area” were taken from headrest, headband, joystick and handholders
(marked blue), with probable microbial transmission between patient and physician via the handrails. Samples designated “oculars” were taken from the lenses and
plastic eyecups (marked yellow). Slit lamp graphic: Own illustration.
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MiSeq platform using the MiSeq Reagent Kit v3 (600 cycle)
(Illumina Inc.) with a quality score ≥ 30 and default settings.

Quantitative Real-Time PCR Detection
of MRSA
The obtained DNA extracts were used for a quantitative real-
time PCR (qPCR) approach targeting themecA gene of MRSA as
described by Huletsky and collegues (Huletsky et al., 2004). The
mecA gene causes methicillin resistance in S. aureus and is part of
the staphylococcal cassette chromosomemec element (SCCmec),
an important mobile genetic element of staphylococci.

The S. aureus-specific primer Xsau325f (5 ’- GG
ATCAAACGGCCTGCACA-3’) and the resistance specific pr-
imer SSCmec_mec i i574r (5 ’ - GTCAAAAATCATG
AACCTCATTACTTATG-3’) were used at 0.4 µM with 1x
Light Cycler 480 SYBR Green Master mix I (Roche Molecular
Systems Inc., Mannheim) and 1 U Uracil-DNA Glycosylase
(Thermo Fisher Scientific) in a final volume of 20 µl. The
mixture was amplified on an Roche LightCycler 480
instrument (Hoffmann-La Roche Ltd, Basel, Switzerland) using
the following thermal profile: 50°C (2 min), 95°C (5 min), 45
cycles of 95°C (10 sec), 60°C (20 sec), 72°C (30 sec).

Absolute quantification analysis using the 2nd derivative
maximum method was performed followed by a melting curve,
applying the ‘Tm-calling’method with default settings. The limit of
detection (LOD) was set to a cp = 33 using a standard logarithmic
serial dilution from Methicillin-resistant Staphylococcus aureus
EDCC 5246 (DSM 28766). As negative controls, water-template
controls were included, as well as the antibiotic sensitive strains S.
aureus 209 (DSM 799) and S. aureus Wichita (DSM 2569). The
latter shows only limited antibiotic resistance. Control DNA was
extracted from 48 h bacterial cultures as described above and diluted
1:10. To control, if the used staphylococci indeed show antibiotic
sensitivity, all strains were plated on Tryptic Soy Agar (TSA; Carl
Roth) and Oxoid Brilliance MRSA 2 Agar (Thermo Fisher
Scientific). The Brilliance MRSA 2 Agar contains an antibiotic
cocktail including Cephalosporin, whereby MRSA grows as blue
colonies (Veenemans et al., 2013).

Bioinformatics and Statistics
All sequences were processed with QIIME 2 – 2020.6
(Quantitative Insights Into Microbial Ecology) (Bolyen et al.,
2019). Raw sequence data were imported and demultiplexed
using the cassava 1.8 paired-end and demultiplexed FASTQ
format. The paired end sequences were joined, quality filtered,
denoised and chimera-checked using the q2-dada2 pipeline (–p-
trunc-len-f 300 –p-trunc-len-r 257 trim-left-f 0 –p-trim-left-r 0)
(McDonald et al., 2012; Callahan et al., 2016). Sequence variant
data, resulting from the q2-dada2 pipeline, were then referred to
as amplicon sequence variants (ASVs).

For taxonomic assignment, the machine-learning based q2-
feature-classifier was trained at a similarity threshold of 99% with
q2-scikit-learn (Pedregosa et al., 2011; Bokulich et al., 2018) by
the Bact-0341f/Bact-0785r region (V3-V4) of the SILVA 132
database (Quast et al., 2013), followed by taxonomy based-
filtering of ASVs classified as mitochondria or chloroplasts.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Due to the sparse compositional nature of microbiome data, beta
diversity metric was analysed using robust Aitchinson distances via
the q2-deicode plugin (Aitchison et al., 2000; Martino et al., 2019).
Calculations were performed on the raw count table. Samples with
less than 10 features and less than 1000 reads were removed.
Statistical differences between the factors ‘location’ (TC1/TC2)
and ‘type’ (oculars/contact areas) were performed using the ‘beta-
group-significance’ function employing (pairwise) permutational
multivariate analysis of variance (PERMANOVA, 999
permutations) with Benjamini-Hochberg p-value correction. For
visualisation, compositional principal component analysis (PCA)
biplots were created using the emperor biplot function.

Further statistical analyses and graphical visualizations for the
sequencing analyses were performed in R 4.0.5 using the
packages ‘phyloseq’ (McMurdie and Holmes, 2013), ‘vegan
(version 2.5-7)’ (Oksanen et al.), ‘coin’ (Hothorn et al., 2008),
‘tidyverse’ (Wickham, 2009) and ‘qiime2R’ (Bisanz, 2019).
Figures were created in R using ‘ggplot2’ (Wickham, 2009).

Correlation of microbial composition between the sample
sites at TC1 and TC2 were assessed by procrustes rotation
analysis comparing PCA scores, using the ‘procrustes’ function
from the ‘vegan’ package for R (Peres-Neto and Jackson, 2001;
Mardia et al., 2003). The significance of the correlation between
samples sites was analysed using the ‘protest’ function from
‘vegan’, using 10.000 permutations.

To identify differentially abundant taxa between the covariates
‘location’ and ‘type’, analysis of compositions of microbes with bias
correction (ANCOM-BC; R-package ‘ancombc’) (Lin and Peddada,
2020; Edslev et al., 2021) was performed on untransformed and
unrarefied counts, including only the 30 most abundant taxa. As
there is a bias within the sequence fractions of all samples, this
method estimates the unknown sampling fractions and corrects
their bias, while normalizing the observedmicrobial abundance data
(Lin and Peddada, 2020). Results are p-values for multiple testing
with Benjamini-Hochberg adjustment.

To determine any differences between the communities on the
respective surfaces and between the locations, alpha diversitymetrics
(observed, evenness, faith’sphylogeneticdiversity and shannon)were
calculated using theR-packages ‘phyloseq’, ‘microbiome’ (Lahti et al.,
2017) and ‘picante’ (Kembel et al., 2010). For comparative analysis of
the diversity indices among the different sample sites, a non-
parametric Kruskal-Wallis-Test (Hollander et al., 2014) was
performed. A Wilcoxon-rank-sum-test (Hollander et al., 2014) for
unpaired samples was calculated to evaluate statistical differences
between the two locations TC1 and TC2. Both tests were performed
with Benjamini-Hochberg multiple test correction. All metadata are
provided in the Supplementary Table 1. Further data, such as the
unrarefied ASV table and the taxonomic assignments, can be
obtained from the corresponding author upon reasonable request.
RESULTS

Sequencing Results
High throughput sequencing from 96 samples (91 slit lamp samples,
3mock samples, 2 negative controls) yielded 467842 chimera-filtered
November 2021 | Volume 11 | Article 745653
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sequencesafter thedada2pipeline,withameanof5377 sequencesper
sample. 9 samples (2 TC1 slit lamp samples, 6 TC2 slit lamp samples
and1blank control sample)didnot yield enough sequences andwere
removed after the q2-dada2 pipeline for downstream analyses. The
remaining samples were rarefied for the calculation of relative
abundances using R to a level of 1056 sequences for even sampling
depth (seed: 1121983). After removal of singleton taxa, we identified
3369 ASVs from all slit lamp samples. The taxonomic assignment of
these ASVs revealed 19 bacterial phyla, 42 classes, 105 orders, 210
families and 468 genera across all slit lamp samples.

Taxonomic Composition at Different
Locations
Figure 2A (and Supplementary Figure 5) provide relative
abundances to get an overview of the community composition.
However, for the comprehensive downstream analyses, we used
methods that are not based on relative abundances, due to the
compositional nature of sequencing data (Gloor et al., 2017).

According to the phylogenetic classification, most of the reads
were affiliated with only 10 genera accounting for about 80% of
all taxa, with Cutibacterium (TC1: 51%; TC2: 38%),
Corynebacterium (TC1: 15%; TC2: 19%) and Staphylococcus
(TC1: 8%; TC2: 7%) being the most frequent representatives.

Using the V3-V4 region specific Bact-0341f/Bact-0785r primers,
all genera from themock communitywere identified correctly, but in
slightly varying relative abundances (Figure 2B). Corynebacterium
and Cutibacterium were rather underrepresented, while
Acinetobacter and Staphylocoocus seem to be slightly overestimated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
in their relative abundance. In case of the negative controls, only one
out of two unused swabs yielded enough sequences for downstream
analysis, which suggests contamination predominantly with
Pseudomonas species.

Diversity Analyses
As the relative abundances of bacterial taxa differed between the
two sampling sites (contact area, oculars) and the two locations
(TC1, TC2), alpha diversity metrics were calculated. Diversity
tended to be higher in TC2 with regard to the observed, shannon
and faith-fd metrics, but no statistically significant differences
could be detected, neither between TC1 and TC2 nor between
contact areas and oculars (Supplementary Figure 1) or the
cleaning intervals, three times a day, once a day or weekly,
within TC1 (Supplementary Figure 2) or occupancy of
physicians (Supplementary Figure 4).

Compositional beta diversity analysis also revealed no
statistical significant differences between the locations
(PERMANOVA padjust-value > 0.05) and the contact areas
(PERMANOVA padjust-value > 0.05). However, some samples
from TC1 tended to cluster apart from TC2.

The biplot (Figure 3) highlights the taxa which drive the
placement of the samples in the plot and strongly influence the
PCA-axes. Some separation of samples from TC1 and TC2 are
presumably driven by differences within the taxonomic
composition, especially by corynebacteria.

No statistically significant influence of the patient throughput
and the occupancy of physicians for the different rooms was
A B

FIGURE 2 | Bar chart of relative abundances of ASVs classified on genus level. Taxa with relative abundance of less than 1% were collectively summarized as
‘Other’. (A) Taxonomic composition of the slit lamp bacteriota from TC1 (Tertiary Center) and TC2 respectively and the respective sample sites (contact area – TC1:
n = 28; ocular – TC1: n = 28; contact area - TC2: n = 14; ocular – TC2: n = 13). (B) Composition of mock taxa and controls (expected = expected mock
abundances; mock = mock standard using Bact-0341f/Bact-0785r primers; blank = blank negative control).
November 2021 | Volume 11 | Article 745653
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detected (Supplementary Figures 3, 4, 5B, C), although alpha
diversity measures suggest a slightly higher diversity on slit
lamps in rooms with low occupancy rates at TC1.

To determine the community congruency between the
ocular and contact area samples, we used procrustes analysis,
which compares the microbiome on the two sample sites of
each slit lamp. However, no statistically significant association
could be detected. Nevertheless, a correlation between
microbial compositions at the two sampling sites from the
same slit lamp instrument is suggested, since many sample
pairs stemming from the same instrument are located in
relatively close proximity within the PCA plot (Figure 4),
especially at TC1.

However, differential abundance analysis (Figure 5) revealed
the taxa with significant differences between the two locations:
Two taxa were more abundant in TC2 (Enhydrobacter,
Chryseobacterium; padj < 0.05), whereas five groups/genera
(unclassified bacteria, Cutibacterium, Turicella, Methylobacterium,
Staphylococcus, padj < 0.05) were enriched at the slit lamps at TC1.
At TC1, four genera showed significant differences between the two
sample sites (padj < 0.05): Unclassified Neisseriaceae, Lawsonella,
Corynebacterium and Acinetobacter. Except Lawsonella, all genera
were enriched at the contact areas. For the slit lamps at TC2, no
significant difference in community composition between oculars
and contact areas were detected.

Quantitative Real-Time PCR Results
for MRSA
MRSA strain S. aureus EDCC 5246 grew as blue colonies on
Brilliance Oxoid MRSA2 agar after 48 h at 37°C, whereas the
other S. aureus strains did not thrive on the respective plates.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Genomic DNA from S. aureus EDCC 5246 was used as
standard and positive control in the assay. DNA was prepared
and 1:10 diluted from 48 h old cultures that yielded a DNA
concentration of 1.94 ng/µl resulting in a mean cp-value of 17
and a melting temperature (Tm) of 79.8°C. The detection limit
(LOD) was determined at a cp -value of 33, corresponding to a
1:1000 dilution. Although higher dilutions also showed cp-
values, these curves were in too close proximity to signals from
the non-MRSA-strains.

The antibiotic sensitive S. aureus 209 showed cp -values > 36
and the antibiotic susceptible S. aureus Wichita cp -values > 35.
Water-template controls resulted in cp values > 40 or showed no
signals. Only one sample from TC2 (contact area) showed
relevant cp-values of 35 and a melt-peak at 80°C, which is
close, but still below the detection limit, respectively close to
the MRSA S. aureus Wichita. In conclusion, MRSA DNA was
below the detection limit for all investigated samples.
DISCUSSION

Many regularly touched surfaces represent fomites (Rusin et al.,
2002; Gerba et al., 2016; Di Lodovico et al., 2018). Their
microbial load is problematic especially in clinical
environments (Weber et al., 2010; Graham et al., 2019), where
it contributes to hospital acquired infections and particularly
threatens immunocompromised patients. This study focuses on
slit lamps, optometric devices widely used in medical eye
facilities, characterized by surfaces with close contact to the
examiner and many different patients. Although relations
between shared optical devices and eye infections have long
FIGURE 3 | PCA biplots of centred-log-ratio (clr)-transformed data for Location and Type, based on robust Aitchinson distances. Arrows indicate important log-
ratios between features that strongly influenced the principal component axis. Squares = TC1, cones = TC2, orange = ocular samples and green = contact area
samples; TC, Tertiary Center.
November 2021 | Volume 11 | Article 745653
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been suspected (Olcerst, 1987), knowledge about the bacterial
contamination of slit lamps is scarce. Previous cultivation-based
examinations, (Graham et al., 2008; Sobolewska et al., 2018) of
slit lamps proved the presence of human skin bacteria, however
with max. amounts of 3 CFU/24 cm2 at a relatively low
concentration, which is at least 2 to 3 log scales less, than the
bacterial load on similar devices, such as spectacles (Fritz et al.,
2018) and microscope oculars (Olcerst, 1987; Fritz et al., 2020b).
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Recent molecular studies (Fritz et al., 2020b; Fritz et al., 2020a) of
the microbiota on such surfaces, revealed a high bacterial
diversity stemming from human skin, mucosa and the
environment, and including potential pathogens. Our study
significantly increases knowledge about the bacterially diverse
communities on slit lamp surfaces and their hygienic relevance.
It completes the picture, when evaluating the microbial
contamination of slit lamps, as previous studies have been
A B

FIGURE 4 | PCA plots by procrustes analysis between the ocular and contact area data sets using Bray-Curtis distances and 10.000 iterations. At (A) TC1 (contact
area: n =28; ocular: n = 28) and (B) TC2 (contact area: n = 14; ocular: n = 13). Every data point represents a single slit lamp sample coloured by sample site (orange =
ocular samples, green = contact area samples). Lines connect the same slit lamp samples (Contact area – TC1: n = 28 ocular – TC1: n = 28; contact area - TC2: n =
14; ocular – TC2: n = 13). TC, Tertiary Center.
A B

FIGURE 5 | Differentially abundant genera between (A) the two locations (TC2 – TC1) and (B) the sample types at TC1 (contact area – ocular), calculated using
ANCOM-BC. Bars represent the estimated log-fold change (natural log) of genera between the selected conditions, error bars represent the 95% confidence
intervals. Asterisks mark a statistically significant difference between the conditions (*padj < 0.05; **padj < 0.01), based on two-sided Chi-square tests using W with
Benjamini-Hochberg correction; TC, Tertiary Center.
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limited to cultural-dependent analyses alone. Molecular methods
better account for anaerobic, slow-growing or yet uncultured
bacteria and therefore provide a more comprehensive insight.
Following recent suggestions (Gloor et al., 2017; Martino et al.,
2019), our bioinformatic analyses also considers the
compositional nature of sequencing data.

Clearly, also sequencing-based methods can be biased, e.g. by
discriminating certain groups of organisms due to primer
selectivity (Kong, 2016; Kong and Segre, 2017; Zeeuwen et al.,
2017; Escapa et al., 2018; Knight et al., 2018). Therefore, we
evaluated the used primer set on a standard skin-mock
community (Figure 2B). It became apparent, that all typical
skin bacteria were covered comprehensively, while the primers
also produced good quality PCR products (data not shown).
However, as all sequencing data presented here are DNA-based,
they do not reveal if the detected bacterial taxa were alive or dead.

As negative controls, unused swabs (blank) were processed to
identify potential contaminants. In one out of two swabs, DNA
from bacteria probably stemming from water, environmental
and human sources could be detected, dominated by
Pseudomonas. It is known that even small amounts of
contaminating DNA can become overrepresented using PCR-
based methods and influence the community composition of a
sample (Karstens et al., 2019). Generally, the identified genera in
the blank control were reported before as typical contaminants
from analysis kits, PCR reagents or water in NGS-experiments
(Salter et al., 2014), or as representing just sequencing errors.
Therefore, it is recommended to remove all sequences below a
defined relative abundance threshold from further analysis
(Karstens et al., 2019). In accordance with the results from the
mock samples, we set this threshold at 1% relative abundance.
Therefore, it is safe to assume that contaminants from exogenous
sources are negligible here.

Our results show bacterial contaminations on 83 out of 91
investigated slit lamp samples, as these yielded enough sequences
for downstream analyses. Based on the relative abundances of the
bacterial taxa and alpha diversity measures, the bacteriota
composition was largely similar between the two investigated
locations and the two different sample sites. A few taxa differed in
read abundance between TC1 and TC2, which may reflect the
individuality of the patient´s and/or doctor´s skin microbiota.

Predominantly, we identified cutibacteria, corynebacteria and
staphylococci on the slit lamps. This is in line with previous
findings for spectacles and microscope oculars, where we found
largely the same dominant taxa. We could also prove the
presence of staphylococci, which matches the cultivation-based
detection of coagulase-negative staphylococci by Sobolewska
et al. (Sobolewska et al., 2018). While they identified
staphylococci as the most frequent bacteria on slit lamps, we
found this genus in lower proportions, which may be due to the
use of different methods. Nevertheless, their presence is
important, as staphylococci, along with streptococci, are
among the most common bacteria to cause bacterial
conjunctivitis and keratitis (Watson et al., 2018).

In general, many of the identified bacterial taxa are common
colonizers of the eye surface and the lid margins, such as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Staphylococcus , Cutibacterium , Corynebacterium and
Pseudomonas (Grzybowski et al., 2017; Delbeke et al., 2021).
Under normal conditions, these commensals may also contribute
to eye surface health and immunity (Kugadas and Gadjeva, 2016;
Cavuoto et al., 2019), however, if in dysbiosis they may lead to
severe eye infections. In addition to the previously mentioned
taxa, the relatively most abundant identified genera also included
Streptococcus, Neisseria and Enhydrobacter. All these genera are
known to comprise several species with the potential to cause eye
infections (cf. Supplementary Table 2). Although our
sequencing data do not allow a reliable identification on
species or strain level, they nevertheless suggest a considerable
pathogenic potential of the investigated surfaces.

All frequently identified genera are also associated with
human skin, mucosa or the environment (Seifert et al., 1997;
Fernández-Natal et al., 2008; Humbert and Christodoulides,
2019; Delbeke et al., 2021) and have been reported in the
context of eye and nosocomial infections (Kuriyan et al., 2017;
Wong et al., 2017; Humbert and Christodoulides, 2019).

While the oculars of slit lamps are predominantly used by only a
few physicians, surfaces such as headrest, headband and
handholders are touched by many different patients, as well as by
the examiner. However, alpha diversity analysis did not detect any
statistical significant differences of the bacteriota composition on the
two sampled sites, nor between samples with different patient and
physician occupancies or cleaning intervals.

Procrustes analysis suggested a relatedness of microbial
community compositions at the two sampling sites from the
same slit lamp instrument. However, this association was not
found statistically significant, which may be a function of the
relatively low number of sampled instruments. Nevertheless, our
data allow careful speculations that bacteria between ocular and
contact areas are exchanged, putting emphasis on hygienic
cleaning of the ocular area after use.

Evaluation of the different cleaning intervals in TC1 did not
reveal statistically significant differences in bacterial community
composition. As the contact areas were wipe disinfected on a
regular basis, frequent contact by different persons obviously
could not contribute to an increased bacterially diverse
community for both locations and sampling sites. Notably, our
sampling took place during the COVID-19 pandemic, which was
accompanied by special hygienic measures, such as more
frequent cleaning and disinfection as well as rigorous wearing
of face-masks. This might have influenced bacterial load and
diversity on the investigated surfaces. Nevertheless, microbial
transfer between skin, eyes and slit lamp surfaces might take
place by touching, but also breathing or direct eye or eyelashes
contact. In view of the overall great bacterial diversity detected
here, strict hygiene measures are definitely required.

Multi-drug resistances are of particular hygiene concern.
Methicillin-resistant Staphylococcus aureus (MRSA) is known
to be highly prevalent in hospital environments (Boucher and
Corey, 2008), but also on daily used and shared devices (Gerba
et al., 2016), showing a high transmission efficiency (Del Campo
et al., 2019). Previous 16S rRNA gene sequencing studies
(Fritz et al., 2020b; Fritz et al., 2020a) identified many
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staphylococci on optical surfaces, while its known, that several
staphylococci comprise antibiotic resistant strains (Ventola,
2015), such as MRSA. Our qPCR analysis did not reveal the
presence of MRSA in any sample. We used a single primer pair
published by Huletsky et al. (Huletsky et al., 2004), which covers
a variety of MRSA strains. A multiplex assay would expand the
detection spectrum and could be considered for further studies.
However, since many of the identified taxa comprise species
known to carry (multiple) antibiotic resistances, this topic
remains challenging. Further studies might also include a
metagenomic approach, such as whole genome shotgun
sequencing (WGS) to allow a more comprehensive detection of
resistant genes and virulence factors. Furthermore, if enough
reads are generated, WGS can provide a broader and more
accurate resolution of microbial diversity, especially for less
abundant taxa (Ranjan et al., 2016). However, as WGS does
not rely on PCR amplification, it requires a larger amount of
input DNA compared to 16S rRNA amplicon sequencing, which
often turns out to be a limiting factor. Finally, polyphasic studies
(such as (Fritz et al., 2020b), involving cultivation-based as well
as molecular techniques might be useful to better discriminate
living from dead taxa, the latter of which are surely less
important from a hygienic point of view.

Beside bacteria, viruses, such as Adenovirus or Herpes
simplex, would be interesting study subjects, as many viruses
cause severe eye infections (Yoshikawa et al., 2001; Azher et al.,
2017; OYong et al., 2018). A significant viral load on slit lamps
may be possible, as studies showed that they can remain
infectious on environmental surfaces for considerable time
periods (Kramer et al., 2006; Ganime et al., 2014).
CONCLUSION

We were able to show that slit lamps carry a broad diversity of
bacteria and therefore might be associated with ophthalmic diseases.
Our study significantly extends previous findings about their
bacterial load by applying molecular, cultivation-independent
techniques. It provides a solid and comprehensive basis for a
deeper understanding of the hygienic relevance of these widely
used medical devices. We identified many bacterial genera of
human skin, eye or mucosa origin, known to comprise species to
cause skin and eye infections, such as staphylococci or streptococci.
Even if wipe cleaning is performed regularly between each patient,
also the disinfection of the oculars, mostly used by the physicians,
should be considered. Clearly, slit lamps represent fomites and
proper disinfection of all contact surfaces is important to secure the
health of patients and examiners.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: https://www.ebi.ac.uk/
ena, PRJEB45031.
AUTHOR CONTRIBUTIONS

BF designed the experiments, took the samples, performed qPCR
analyses, sequenced the samples and analyzed the data. EP
prepared sequencing. FZ and DB provided access to the
samples. SW, FZ, and ME performed project administration
and supervised the work. BF and ME wrote the manuscript. ME
supervised and conceptualized the work. WY assisted with the
ancom-bc and procrustes analysis. All authors edited and
approved the final manuscript. All authors contributed to
manuscript revision, read, and approved the submitted version.
FUNDING

This study received funding from a grant of the German Federal
Ministry of Education and Research (https://www.bmbf.de/en/
index.html; project CoHMed - Connected Health in Medical
Mountains; subproject ‘FunktioMed ’ , grant number
13FH5I02IA) and from Carl Zeiss Vision International GmbH
(https://www.zeiss.com/corporate/int/home.html). The funders
were not involved in the study design, collection, analysis, and
interpretation of data, the writing of this article or the decision to
submit it for publication.
ACKNOWLEDGMENTS

The authors wish to thank the Center of Ophthalmology,
University Hospital Tuebingen and the Eye Center, Medical
Center, Faculty of Medicine, University of Freiburg, who
provided their slit lamps for microbiological analyses.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fcimb.2021.745653/
full#supplementary-material
REFERENCES
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