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Objectives: To assess the efficacy of aztreonam-avibactam-auranofin (ATM-AVI-AUR)
against a collection of 88 carbapenemase-producing Enterobacterales (CPE) clinical
isolates and 6 in vitro selected ATM-AVI-resistant CPE with CMY-16 Tyr150Ser and
Asn346His mutants or transformants.

Methods: MICs of imipenem, ceftazidime-avibact8am (CAZ-AVI), ATM-AVI, CAZ-
AVI-AUR and ATM-AVI-AUR were determined via the broth microdilution method.
Genetic background and carbapenemase genes were determined by PCR and
Sanger sequencing.

Results: AUR alone showed little antibacterial activity with AUR MICs were greater than
64 mg/mL for all the 88 clinical CPE isolates. The addition of AUR (16 mg/mL) resulted in an
3-folding dilutions MIC reduction of ATM-AVI MIC50 (0.5 to 0.0625 mg/mL) and a 2-folding
dilutions MIC reduction of MIC90 (1 to 0.25 mg/mL) against all 88 clinical CPE isolates,
respectively. Notably, the reduced ATM-AVI MIC values were mainly found in MBL-
producers, and the MIC50 and MIC90 reduced by 2-folding dilutions (0.25 to 0.0625 mg/
mL) and 3-folding dilutions (2 to 0.25 mg/mL) respectively by AUR among the 51 MBL-
producers. By contrast, the addition of AUR did not showed significant effects on ATM-
AVI MIC50 (0.0625 mg/mL) and MIC90 (0.125 mg/mL) among single KPC-producers.
Interestingly, the addition of AUR restored the ATM-AVI susceptibility against the 6 in vitro
selected ATM-AVI-resistant CMY-16 Tyr150Ser and Asn346His mutants or
transfromants, with the MICs reduced from ≥32 mg/mL (32->256 mg/mL) to ≤8 mg/mL
(0.0625-8 mg/mL).
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Conclusions: Our results demonstrated that AUR potentiated the activities of CAZ-AVI
and ATM-AVI against MBL-producing isolates in vitro. Importantly, AUR restored the
ATM-AVI activity against ATM-AVI resistant mutant strains. As a clinically approved drug,
AUR might be repurposed in combination with ATM-AVI to treat infections caused by
highly resistant MBL-producing Enterobacterales.
Keywords: carbapenem-resistant Enterobacterales, carbapenemase-producing Enterobacterales, metallo-b-
lactamases, serine-b-lactamases, ceftazidime-avibactam, aztreonam-avibactam, auranofin, minimum inhibitory
concentrations 5
INTRODUCTION

Carbapenem resistance in carbapenem-resistant Enterobacterales
(CRE) is driven primarily by the acquisition of various
carbapenemases that are able to degrade carbapenem
antibiotics. Clinically relevant carbapenemases include both
serine b-lactamases (e.g., KPC and OXA-48) and metallo-b-
lactamases (MBLs, e.g., NDM, VIM, and IMP) (Rodrıǵuez-Baño
et al., 2018). The rapid worldwide emergence of MBLs in
Enterobacterales is especially worrisome due to their broad,
constant and efficient carbapenemase activity against almost all
the b-lactam antibiotics (except for monobactam, e.g.,
aztreonam, ATM), potential for horizontal gene transfer, and
the absence of clinically available inhibitors (Bush and Bradford,
2020). Although novel agents such as the newer b-lactam-b-
lactamase inhibitor combinations i.e., ceftazidime-avibactam
(CAZ-AVI), meropenem-vaborbactam, and imipenem-
relebactam, offer safe and effective therapies for serious
infections caused by some of the extended-spectrum b-
lactamases, KPC, AmpC, and/or OXA-48 producers, none of
them present in vitro activity against MBL-producing
Enterobacterales (Yahav et al., 2021). Even though the
combination of ATM-AVI showed potency against MBL-
producing pathogens, resistance to ATM-AVI has also been
documented (Alm et al., 2015; Niu et al., 2020; Ma et al., 2020;
Sadek et al., 2020).

Recent study showed that certain metallodrugs can
irreversibly abrogate MBL’s carbapenemase activity via the
displacement of Zn(II) cofactors from their active sites,
suggesting a metallodrug-antibiotic combination might serve as
an effective strategy to combat Zn-dependent resistant
determinants, such as MBLs. The study by Wang et al. showed
that an anti-peptic ulcer bismuth drug, colloidal bismuth
subcitrate, could re-sensitize MBL-producers to b-lactam
antibiotics through abrogating the Zn(II) cofactors by Bi(III)
from the MBL active sites, thus disrupting their abilities to
hydrolyze b-lactam ring in carbapenems (Wang et al., 2018).
Similarly, a recent study by Sun et al. identified an antirheumatic
drug, auranofin (AUR), as a potent MBL inhibitor by irreversibly
abolishing MBL’s carbapenemase activity via the displacement of
Zn(II) cofactors from their active sites. AUR demonstrated
synergistic effect with imipenem (IPM) on killing a broad
spectrum of CRE strains, potently restored the susceptibility of
MCR-1- and NDM-5-co-producing pathogens to colistin in a
murine peritonitis model, and significantly slowed down the
gy | www.frontiersin.org 2
development of carbapenem resistance (Roder and Thomson,
2015; Sun et al., 2020). In addition, a more recent study showed
that AUR in combination with colistin was effective against
colistin-resistent Gram-negtive bacteria both in vitro and in
vivo (Feng et al., 2021).

Here we reported the activities of ATM-AVI-AUR and other
antibiotics against a selection of 88 carbapenemase-producing
Enterobacterales (CPE) clinical isolates (37 single KPC-
producers , 33 s ing le MBL-carr iers , 18 dual/ t r ip le
carbapenemase-producers). In addition, we investigated the
impact of AUR addition on ATM-AVI activity among the in
vitro-selected ATM-AVI highly resistant CMY-16 Tyr150Ser
and Asn346His K. pneumoniae mutants or transformants.
MATERIALS AND METHODS

Bacterial Strains
A total of 88 unique CPE isolates producing MBLs (blaNDM-1, 4, 5,

7, 9, blaIMP-4, 8, 26), class A carbapenemases (blaKPC-2, 3), dual
carbapenemases (blaKPC/VIM, blaKPC/IMP, blaNDM/KPC, blaNDM/

OXA-48-like) or triple carbapenemases (blaOXA48-like/NDM/VIM)
were selected from the archived bacterial collection from two
tertiary care hospitals in Southwest (Chongqing) and Eastern
China (Suzhou). We also included two in vitro selected ATM-
AVI resistant K. pneumoniae CMY-16 mutants (Tyr150Ser and
Asn346His) and four ATM-AVI resistant K. pneumoniae CMY-
16 transformants harboring the Tyr150Ser and Asn346His
CMY-16 pET28a plasmid constructs (Niu et al., 2020). Species
were identified using a VITEK® MS system (bioMérieux,
France). The carbapenemase genotypes and multilocus
sequence typing (MLST) were characterized by PCR and
Sanger sequencing as before (Diancourt et al., 2005; Niu
et al., 2020).

Antimicrobial Susceptibility Testing
MICs for all the CPE strains were determined using standard
broth microdilution method. For CAZ-AVI and ATM-AVI
MICs evaluation, AVI was tested at a fixed concentration of 4
mg/mL, while CAZ and ATM were added at different
concentrations ranged from 0.0625 to 256 mg/mL, respectively.
For CAZ-AVI-AUR and ATM-AVI-AUR evaluation, AVI and
AUR were added at the fixed concentrations of 4 mg/mL and 16
mg/mL, respectively (Wang et al., 2018), while CAZ and ATM
were added at different concentrations from 0.0625 to 256 mg/mL
October 2021 | Volume 11 | Article 755763
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(CLSI, 2020). Susceptibility testing was performed in triplicate on
three different days. Escherichia coli ATCC25922 strain was used
as quality control for all testing.

In Vitro Selection
Multi-step selection was performed by inoculation of ~108 cfu in
2-mL LB broth containing ATM-AVI at the 0.5× MICs and
incubated for 24 h (Niu et al., 2020). This procedure was repeated
daily, each time doubling the ATM concentration up to a
maximum of 128 mg/mL, with AVI concentrations fixed at 4
mg/mL. Resistant variants were selected by plating a bacterial
suspension on agar plates of corresponding ATM-AVI levels.
The same multi-step selections were used to select ATM-AVI-
AUR resistance, with AUR and AVI concentrations fixed at 16
and 4 mg/mL, respectively.
RESULTS

Genetic Background of the CPE Isolates
Among the 88 non-duplicate clinical CPE isolates, K.
pneumoniae was the most abundant species (n = 62), followed
by E. coli (n = 18), Enterobacter cloacae (n = 4), Citrobacter
freundii (n = 2) and K. aerogenes (n = 2). They were obtained
from various clinical sources (e.g. blood cultures, n = 25; urine,
n = 18; and sputum, n = 15), and harbored different
carbapenemase genes and from different sequences types (STs).
All strains had been characterized for their carbapenemase genes
by PCR and DNA sequencing. The 88 clinical isolates included
37 KPC single-carbapenemase producers [KPC-2 (n = 36), KPC-
3 (n = 1)], 30 NDM single-carbapenemase producers [NDM-5
(n = 18), NDM-1 (n = 8), NDM-7 (n = 2), NDM-4 (n = 1),
NDM-9 (n = 1)]; 3 IMP single-carbapenemase producers [IMP-4
(n = 1), IMP-8 (n = 1), and IMP-26 (n = 1)]; 17 double-
carbapenemase producers [IMP-4 and KPC-2 co-producers
(n = 2); VIM-1 and KPC-2 co-producers (n = 4); NDM-1 and
KPC-2 co-producers (n = 2); NDM-1 and OXA-181 co-
producers (n = 2); NDM-1 and OXA-48 co-producers (n = 4);
NDM-5 and KPC-2 co-producer (n = 1); NDM-5 and OXA-181
co-producers (n = 2); and 1 triple-carbapenemase producer with
NDM-1, VIM-1 and OXA-244] (Table 1). MLST data showed
that the 62 K. pneumoniae isolates belonged to 18 different ST
types, with ST11 being the most common (30/62, 48.4%).

Two CMY-16 mutants (Kp202_128A and Kp202_128B with
Asn346His and Tyr150Ser, respectively) that were in vitro
selected to be ATM-AVI-resistant and 4 CMY-16 Asn346His
and Tyr150Ser K. pneumoniae transformant isolates (Kp214-
R150, Kp231-R150, Kp214-R346 and Kp231-R346) from
previous study were also included, and for ATM-AVI, MICs
were interpreted according to ATM of CLSI (Niu et al., 2020;
CLSI, 2020). Among them, Kp202_128B and Kp202_128A
harbored CMY-16 Asn346His and Tyr150Ser substitution,
respectively, showing resistance to ATM-AVI MICs (128 mg/
mL). Strains Kp214-R150, Kp231-R150, Kp214-R346 and
Kp231-R346 were clinical stains with the introduction of
CMY-16 Asn346His and Tyr150Ser pET28a plasmid
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
constructs, which showed increased MICs of ATM-AVI (≥ 32
mg/mL) and CAZ-ATM-AVI (≥ 16 mg/mL) (Table 2).

In Vitro Activities of CAZ-AVI-AUR
and ATM-AVI-AUR Against
Clinical CPE Isolates
AUR alone showed little antibacterial activity with AUR MICs
were greater than 64 mg/mL for all the 88 clinical CPE isolates.
Susceptibility testing data showed that AUR concentrations of
≥16 mg/mL were required to reduce the ATM-AVI MICs from 8
mg/mL to <=0.5 mg/mL for all the 51 clinical MBL-positive
isolates tested. And further increasing AUR concentration
provided little benefit and, so, AUR was fixed at 16 mg/mL in
the following in vitro susceptibility studies. Other agents showed
various activities against these CPE isolates (Table 1). The
majority of the isolates (84/88, 95.5%) were resistant to IPM
(MIC50 = 32 mg/mL), and 54.5% (n = 48) were resistant to CAZ-
AVI (MIC50>64 mg/mL), none of the 88 isolates were resistant to
ATM-AVI (MIC50 = 0.5 mg/mL). The addition of AUR (16 mg/
mL) significantly reduced the CAZ-AVI MIC50 from >64 to 1 mg/
mL but had no significant effect on the MIC90 (from >128 to 128
mg/mL) in the 88 clinical CPE isolates. Compared with the result
of ATM-AVI alone, the addition of AUR (16 mg/mL) resulted in
an 3-folding dilutions MIC reduction of ATM-AVI MIC50 (from
0.5 to 0.0625 mg/mL) and a 2-folding dilutions MIC reduction of
MIC90 (from 1 to 0.25 mg/mL), respectively.

Among the single KPC-producers (n = 37), AUR addition (16
mg/mL) did not reduce the MIC50 (0.0625 mg/mL) and MIC90

(0.125 mg/mL) of ATM-AVI, while AUR addition (16 mg/mL)
reduced the MIC50 and MIC90 of CAZ-AVI from 2 mg/mL to
0.25 mg/mL (3-folding dilutions), and 4 mg/mL to 2 mg/mL (1-
folding dilution), respectively.

As for the MBL-producing isolates, 88.2% (45/51) isolates
were highly resistant to CAZ-AVI, with MICs of CAZ-AVI >64
mg/mL. Among the 45 CAZ-AVI-resistant MBL-producing
strains, the AUR addition (16 mg/mL) restore susceptibility to
CAZ-AVI in 10 strains (including 7 NDM-producers, 1 IMP-
producer and 2 NDM/KPC co-producers) with MICs reduced
from ≥64 mg/mL to ≤4 mg/mL, however, AUR failed to sensitize
CAZ-AVI resistance in remaining 35 MBL-producers (MICs≥8
mg/mL). However, the addition of AUR (16 mg/mL) significantly
reduced the ATM-AVI MIC50 and MIC90 values by 2-folding
dilutions (from 0.25 mg/mL to 0.0625 mg/mL) and 3-folding
dilutions (from 2 to 0.25 mg/mL) respectively against the 51
clinical MBL-producers (Figure 1). In this collection, 4 NDM-
and OXA-48/181-co-harboring clinical K. pneumoniae strains
had the highest ATM-AVI MICs of 8 mg/mL, and the addition of
AUR (16 mg/mL) reduced the MICs >4-folding dilutions (to
0.25-0.5 mg/mL).

Activities of ATM-AVI-AUR Against
ATM-AVI Resistant K. pneumoniae
Mutants and Transformants
The six ATM-AVI resistant mutant and transformant strains all
showed resistance to ATM-AVI (MIC ≥32 mg/mL), due to the
presence of CMY-16 Asn346His and Tyr150Ser substitutions
October 2021 | Volume 11 | Article 755763
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TABLE 1 | MICs of CAZ-AVI-AUR and ATM-AVI-AUR against CPE isolates (mg/mL).

IPM AUR CAZ/AVI/AUR ATM/AVI ATM/AVI/AUR

e)
MIC50 MIC90 MIC

(range)
MIC MIC

(range)
MIC50 MIC90 MIC

(range)
MIC50 MIC90 MIC

(range)
MIC50 MIC90

56 32 128 32->64 >64 ≤0.0625->128 1 128 ≤0.0625->256 0.5 8 ≤0.004-8 0.0625 0.25
56 32 128 32->64 >64 ≤0.0625->128 1 128 ≤0.0625-8 0.5 1 ≤0.004-0.5 0.0625 0.25
28 32 128 32->64 >64 ≤0.0625->128 0.25 2 ≤0.0625-4 0.0625 0.125 ≤0.004-0.25 0.0625 0.125
56 16 64 >64 >64 ≤0.0625->128 8 128 ≤0.0625-2 ≤0.125 1 ≤0.004-0.5 0.008 0.125
6 ≥32 ≥32 >64 >64 0.25->128 64 >128 0.0625-8 0.5 8 0.0625-0.5 0.0625 0.25
6 16 16 >64 >64 ≤0.0625-128 16 128 32->256 128 >256 0.0625-8 1 8

idime; AVI, avibactam; ATM, aztreonam.

ainst ATM-AVI resistant K. pneumon g/mL).

b-Lact IPM AUR CAZ-AVI CAZ-AVI-AUR ATM-AVI ATM-AVI-AUR

-1, OXA-48, CTX-M-15, CMY-16 (Ty 1 16 >64 >256 >256 8 0.5
-48, CTX-M-15, CMY-16 (Tyr150Ser 4 >64 >256 0.25 >256 8
-48, CTX-M-15, CMY-16 (Asn346His 4 >64 >256 <=0.0625 128 0.0625
-5, OXA-181, CTX-M-15, SHV-11, T 16 >64 >256 128 128 1
-1, OXA-48, CTX-M-15, SHV-11, OX 16 >64 >256 16 128 1
-5, OXA-181, CTX-M-15, SHV-11, T 16 >64 >256 128 64 8
-1, OXA-48, CTX-M-15, SHV-11, OX 16 >64 >256 32 32 4

idime; AVI, avibactam; ATM, aztreonam.
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(Niu et al., 2020). The addition of AUR (16 mg/mL) reduced the
MICs of ATM-AVI from ≥32 mg/mL (32->256 mg/mL) to ≤8 mg/
mL (0.0625-8 mg/mL) in these six ATM-AVI resistant mutants
or constructs (Table 2).

Although AUR (16 mg/mL) addition reduced the CAZ-AVI
MIC by >11-folding dilutions (from >256 to 0.0625-0.25 mg/mL)
in the two OXA-48-positive CMY-16 mutants (without MBLs),
AUR supplementation (16 mg/mL) only led to minor MIC
reductions (from >256 to 16-128 mg/mL) in the four NDM-1/
NDM-5 and OXA-181-positive CMY-16 strains (Table 2).

In addition, our previous study showed that the CMY-16-
positive, dual-carbapenemase-producing (NDM-1 and OXA-
48), ST101 K. pneumoniae Kp202 can be in vitro selected to be
ATM-AVI resistant (Niu et al., 2020). In this study, we examined
the in vitro selection ATM-AVI resistance capability of Kp202
under the presence of AUR (16 mg/mL). The results showed 16
mg/mL AUR could completely inhibit the in vitro selected ATM-
AVI resistance and no ATM-AVI-AUR resistant isolates were
obtained despite multiple attempts.
DISCUSSION

The wide spread of multi-drug resistant Gram negative
pathogens raised significant clinical and public concerns.
Along with carbapenem-resistant Acinetobacter baumannii and
carbapenem-resistant Pseudomonas aeruginosa, CRE top the
WHO’s priority list of resistant pathogens (WHO, 2019a).
CREs are also regarded as the ‘Urgent Resistance Threats’ by
CDC and are prioritized in the UK’s 5-Year antimicrobial
resistance national action plan (Anon, 2013; Anon, 2019). In
particular, the global dissemination of MBL-producing
Enterobacterales should be considered as the most urgent
threat due to potent horizontal transfer and the lack of
therapeutic inhibitors, and hence the 2019 WHO review of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
both the preclinical and clinical antibacterial pipeline stressed
MBL-producing Enterobacterales as a neglected target in
antibacterial drug development (WHO, 2019a; WHO, 2019b).

Therapy of invasive infections due to MBL-producers is
extremely challenging, as most blaMBL-carrying plasmids co-
harbor multiple additional resistance determinants, resulting in
limited and sub-optimal treatment options. Although ATM is
the only b-lactam antibiotic that remains stable for hydrolysis by
MBLs, it can be hydrolyzed by most serine b-lactamases (SBLs),
which are frequently co-produced by MBL-producers (Wu et al.,
2019). AVI is a non-b-lactam-b-lactamase inhibitor which can
inhibit most SBLs, but is ineffective to MBLs (Abboud et al.,
2016). ATM-AVI combination has demonstrated potent in vitro
activity against not only SBLs producers, but also MBL-
producing Enterobacterales. One study from Sader et al.
reported ATM-AVI to be highly active against 60 MBL-
positive isolates (Sader et al., 2017), and another large study
demonstrated potent activity of ATM-AVI against meropenem-
nonsusceptible MBL-positive isolates (Karlowsky et al., 2017). A
more recent study reported that ATM-AVI had potent activity
against a large collection of contemporary Enterobacterales
isolates (n = 8787; MIC50/90, 0.03/0.12 mg/mL), including
MBL-producers (n = 110; MIC50/90, 0.12/0.5 mg/mL),
supporting the clinical development of ATM-AVI for the
treatment of infections caused by MBL-producing strains
(Sader et al., 2021).

Our previous study showed that although ATM-AVI had
good in vitro activity against MBL-producing K. pneumoniae
isolates, clinical CMY-16-positive, dual-carbapenemase-
producing (NDM-1 and OXA-48), ST101 K. pneumoniae
strain can be successfully selected to be ATM-AVI-resistant in
vitro (Niu et al., 2020). Worryingly, decreased susceptibilities and
resistance to ATM-AVI have also been recently witnessed in
clinical E. coli strains from India and China (Alm et al., 2015; Ma
et al., 2020), due to amino-acid insertion in PBP3. Furthermore, a
FIGURE 1 | The MIC distribution of the 51 MBL-producing clinical isolates to ATM/AVI with or without AUR. The MIC50/MIC90 values of the 51 MBL-producing
clinical isolates to ATM/AVI with or without AUR are shown. Isolates to the left of the green line are susceptible (for ATM-AVI, MICs are interpreted according to ATM
of CLSI (2020), as there are no clinical breakpoints for ATM-AVI). With addition of AUR, the MIC50/MIC90 values of the 51 MBL-producing clinical isolates to ATM/AVI
move deeper into the “susceptible zone”.
October 2021 | Volume 11 | Article 755763
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recent study of 118 clinical MBL-producing E. coli isolates from
various geographical origins (Europe, Africa, Asia, and
Australia) alarmingly showed 16.1% of the isolates were ATM-
AVI resistant, due to a combination of PBP3 modification and
the CMY-42 production (Sadek et al., 2020). These reports
suggested that the clinical efficacy of ATM-AVI against MBL-
producer infections could be compromised once the resistance
emerges. Therefore, new drugs that specifically target MBLs and
restore efficacy of last-line drugs against MBL-producing
pathogens are urgently needed.

AUR directly inhibited the thioredoxin reductase (TrxR) in
Gram-positive bacteria, leading to disruption of thiol-redox
homeostasis and cell death. However, AUR alone does not
have intrinsic antimicrobial activity against Gram-negative
bacteria (Harbut et al., 2015). A recent study showed that
imipenem in combination with AUR is effective against a
broad spectrum of CRE strains (Sun et al., 2020). In addition,
a more recent study showed that AUR in combination with
colistin was effective against colistin-resistent Gram-negtive
bacteria both in vitro and in vivo (Feng et al., 2021).

Here we demonstrated that AUR can potentiate the activity of
both ATM-AVI and CAZ-AVI against a broad range of MBL-
producing strains, and restored the activity of ATM-AVI against
all the CPE clinical isolates. ATM-AVI-AUR combination was
highly efficient against isolates carrying either NDM-, IMP- or
VIM-type MBLs, resulting in MICs as low as 0.004-0.5 mg/mL.
Our results showed that although the ATM-AVI combination is
highly effective against the majority (92.16%, 47/51) of the
clinical MBL-producing isolates of diverse MBLs (Table 1),
7.84% (4/51) of the clinical MBL-producing isolates analyzed
in this study had the MICs of ATM-AVI at 8 mg/mL
(intermediate for ATM based on the CLSI guideline) (CLSI,
2020). However, the addition of AUR successfully reduced the
MICs of ATM-AVI by ≥4-folding dilutions, from 8 mg/mL
to <=0.5 mg/mL (0.25-0.5 mg/mL). In addition, the
combination of ATM-AVI-AUR showed superior effect against
than that of CAZ-AVI-AUR against MBL-producers,
presumably because AUR together with ATM-AVI may work
synergistically to abrogate MBL enzymatic activities.

More importantly, the MICs of ATM-AVI were reduced from
≥32 mg/mL (32->256 mg/mL) to ≤8 mg/mL (0.0625-8 mg/mL) in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
all the 6 in vitro selected ATM-AVI-highly-resistant mutants and
constructs with the AUR combination. Interestingly, our results
also indicated that the usage of the triple combination of AUR-
ATM-AVI could lower the possibility of in vitro selected ATM-
AVI resistance. One limitation of our study is that we didn’t have
any PBP3 modification caused ATM-AVI resistant strains
available for testing, and it is important to examine whether
ATM-AVI-AUR remain potent against these ATM-AVI
resistant strain in the future.

Taken together, our study showed that AUR in combination
with ATM-AVI showed potent activity against clinical CPE
isolates, especially MBL-producers. ATM-AVI-AUR might
provide as a therapeutic option to treat life-threatening
infections caused by MBL-producing Enterobacterales,
including strains co-producing more than one carbapenemase.
Future studies are need to evaluate its in vivo efficacy and
feasibility of clinical applications.
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