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Diabetes mellitus is a metabolic disease closely related to a disordered gut microbiome.
Diabetic patients usually suffer from various metabolic disorders, such as increased serum
uric acid levels. Although serum uric acid levels depend partially on intestine excretion, the
relationship between uric acid and gut microbiome in diabetic patients remains unknown.
We collected a total of 126 fecal samples from diabetic patients for 16S ribosomal RNA
gene amplicon sequencing and recorded clinical data. We analyzed the correlation
between clinical indicators and gut microbiota of diabetic patients using Spearman
analysis. Since uric acid was the most prominent one, we classified diabetic patients
based on their uric acid levels to find the microbiome associated with uric acid
disturbance. We constructed Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway profiles using Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt) to identify variations between the different groups. Among
all the clinical indicators, uric acid had the strongest correlation with gut microbiota. First,
we divided the patients into three groups according to their uric acid levels. The two low
uric acid groups were similar, while the elevated uric acid group had significant differences
in gut microbiota and metabolic pathways. The elevated uric acid group had a significantly
lower gut microbiota diversity. At the genus level, this group had remarkably higher
Escherichia–Shigella amounts and notably lower Faecalibacterium, Oscillospiraceae_
UCG−002, and Oscillospiraceae_UCG−005 amounts. The gut microbiota of the high
uric acid group was predicted to be enriched in metabolism, human diseases, and
lipopolysaccharide biosynthesis. Since the two low uric acid groups were similar, we
regrouped and matched the abnormal uric acid patients with normal uric acid patients.
The differences in gut microbiota and metabolic pathways related to nucleotide
metabolism became more significant. The serum uric acid levels were associated with
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gut microbiome changes. This might be related to uric acid metabolism by gut microbes.
Our study indicates that targeting the gut microbiome could help manage elevated uric
acid levels.
Keywords: uric acid, 16S rRNA, diabetes mellitus, metabolism, gut microbiota
INTRODUCTION

The high prevalence of high uric acid-related complications
among diabetic patients has attracted more and more attention
worldwide for its serious health consequences and huge
economic burden (Chen et al., 2017). Uric acid metabolism is
typical in diabetic patients (Sharaf El Din et al., 2017); high uric
acid levels can increase their risk of cardiovascular and renal
complications (Soltani et al., 2013; Xu et al., 2013) and aggravate
insulin resistance (Hu et al., 2021). The gut microbiota is not
only significantly related to diabetes but also its cause
(Vangipurapu et al., 2020; Zhang et al., 2021). The gut
microbiota participates in purine and uric acid metabolism
(Henson, 2021). The kidneys excrete two-thirds of the human
body’s uric acid, and the rest is mainly removed through the
intestine (Richette and Bardin, 2010). Since hyperuricemia and
diabetes are both metabolic diseases, we explored whether
hyperuricemia in diabetic patients is also associated with gut
microbiota changes. We aimed to deepen the understanding of
diabetes-related metabolic disorders and provide new treatment
targets for diabetes combined with elevated uric acid.
MATERIALS AND METHODS

Ethics Statement
All patients included in this project provided written informed
consent. The First Affiliated Hospital of Zhengzhou University
Ethics Review Committee granted ethical approval for the study
(2019-KY-361).
Patient Selection
In this cross-sectional study, we collected clinical information
and fecal samples of 126 diabetic patients admitted to the First
Affiliated Hospital of Zhengzhou University between October
2018 and October 2019. Table 1 displays basic information about
the patients, including body mass index (BMI), clinical
indicators, and whether they take metformin. The inclusion
criteria were as follows: 1) typical diabetic symptoms (polyuria,
polydipsia, and unexplained weight loss) and random blood
glucose ≥11.1 mmol/L, 2) fasting blood glucose ≥7.0 mmol/L,
3) twice oral glucose tolerance test (OGTT ≥11.1 mmol/L). One
of the above three items can be included. Individuals suffering
from digestive system diseases or abnormal kidney function who
had taken antibiotics in the 3 previous months or a recent
infection history were excluded. We classified the included
patients into three groups according to their diet (low-,
medium-, and high-purine diet). High-purine diet: drinking
gy | www.frontiersin.org 2
alcohol or eating seafood/intestines at least once a week or the
usual diet is mainly meat. Medium purine diet: balanced meat
and vegetable diet. Low-purine diet: the daily diet is based on
food with low purine content, such as rice noodles, vegetables,
fruits, eggs, and milk.

Sample Collection
Fecal samples from the 126 included patients were collected with
a disposable fecal collection device. All samples were stored at
−80°C within 2 h until further analysis.

DNA Extraction and Gene Sequencing
Microbial genomic DNA was extracted from stool samples as
described previously (Godon et al., 1997). After DNA quality
inspection, the DNA fragments of each sample encoding the V3-
V4 region of 16S ribosomal RNA (rRNA) were amplified by
polymerase chain reaction (PCR). Samples were chemically lysed
using buffer [4 M guanidine thiocyanate, 10% N-lauroyl
sarcosine, 5% N-lauroyl sarcosine, 0.1 M phosphate buffer (pH
8.0)] followed by physical lysis through incubation at 70°C for 1
h and mechanical lysis by bead beating. DNA was extracted using
an EZNA Stool DNA Kit (Omega Bio-tek, Inc., GA, USA) and
stored at −20°C until further analysis. PCRs were run in an
EasyCycler 96 PCR system (Analytik Jena Corp., AG) using the
following program: 3 min at 95°C followed by 21 cycles of 0.5
min at 94°C (denaturation), 0.5 min at 58°C for annealing, and
0.5 min at 72°C (elongation), with a final extension at 72°C for 5
min. The Shanghai Mubai Company used the MiSeq platform
(Illumina Inc., CA, USA) to perform 16S rRNA gene sequencing.
We synchronized our standard operating procedures and
performed nucleotide sequencing of all samples in one
sequencing center to decrease the confounding effects of the
technical means.

Operational Taxonomic Unit Clustering
and Taxonomy Annotation
We clustered quality-filtered sequences into unique sequences
and quantified representative sequences in a descending order
using UPARSE analysis (version 11 http://drive5.com/uparse/).
Operational taxonomic unit (OTU) classification was performed
according to the obtained sequences, and bioinformatic
statistical analysis was usually conducted on OTUs with a
similarity level of 97%. The relationships and differences
between bacterial species were analyzed based on the
classification results. We compared RDP Classifier (version 2.2
http://sourceforge.net/projects/rdp-classifier/) to obtain the
taxonomic information corresponding to each OTU and
perform taxonomic analysis on the OTU sequences.
January 2022 | Volume 11 | Article 761757
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Bioinformatic Analysis
To minimize the difference in sequencing depth between
different samples, we sampled the original abundance matrix
100 times at a sequencing depth of 10,000. The Ace/Chao index
and Shannon/Simpson index were used to estimate OTU
richness and bacterial diversity. A rarefaction curve was used
to confirm whether the amount of sequencing data of a sample
was reasonable. Shannon–Wiener curves reflected the microbial
diversity of each sample with different sequencing quantities.
Rank-abundance curves were used to explain species abundance
and species uniformity. Multivariate statistical methods,
principal component analysis (PCA), and principal coordinates
analysis (PCoA) were used to assign samples to different groups.
We used R software to make statistical analyses and graphs,
including heat maps and Venn diagrams to show the differences
in species composition. Linear discriminant analysis (LDA) effect
size (Segata et al., 2011) (LEfSe, version 1.0.8) was used to detect
the abundance of differences at the taxon level. Taxa were shown
if LDA values >2.0 with a p-value <0.05. The Phylogenetic
Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt, version 1.1.4) was applied to
predict the microbial functional profiles from the respective
16S taxonomic profiles (Langille et al., 2013). Next, R software
was used to analyze the taxonomic and functional profiles.

Statistical Analysis
We assessed the potential linear relationship between the gut
microbiota and clinical indicators of diabetic patients using
Spearman’s correlation analysis. We calculated the p-value to
confirm the relationship between gut microbiota and uric acid.
We used the propensity scoring method to match diabetic patients
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
1:2 according to their uric acid level using R software and adjust a
series of demographic and clinical indicators with potential
confounding effects such as age, gender, and blood lipids
(Figure 1 and Table 2). The data in the table were presented as
mean (standard deviation). Unpaired Student’s t-test or Mann–
WhitneyU testwere used to compare pairs of groups.The statistical
significance of multigroup was assessed using one-way analysis of
variance (ANOVA) with the Bonferroni post-hoc test. Random
forest analysis was used to find the differences in key flora. p < 0.05
was considered statistically significant.
RESULTS

Correlation Between Gut Microbiota and
Clinical Indicators
The association between gut microbiota and clinical indicators
such as uric acid, blood lipids, and creatinine was assessed by
Spearman correlation analysis (Figure 2). Uric acid was
significantly negatively correlated with multiple bacteria. To
analyze their relationship and find key microbes in uric acid-
disordered patients, we first divided patients into three groups
according to their uric acid levels [Reduced uric acid group
(R_UA), Moderate uric acid group (M_UA), and Elevated uric
acid group (E_UA)] (Figure 1).
Baseline Characteristics of the Three Uric
Acid Level Groups
Table 1 displays the BMI, clinical characteristics, and the status
of taking metformin of the participants according to serum uric
TABLE 1 | Characteristics of the subjects according to sUA tertile.

E_UA M_UA R_UA p-value
(n = 42) (n = 42) (n = 42)

Gender 0.012
Female 14 (33.3%) 17 (40.5%) 27 (64.3%)
Male 28 (66.7%) 25 (59.5%) 15 (35.7%)
BMI (kg/m2) 26.1 [24.7; 29.0] 24.4 [22.6; 26.1] 22.9 [20.7; 25.4] <0.001
Age (years) 50.5 [41.2; 62.5] 56.0 [44.5; 64.5] 61.0 [50.2; 67.8] 0.091
UA [mmol/L] 384 (47.8) 281 (25.2) 184 (40.7) <0.001
SBP [mmHg] 125 [120; 138] 135 [124; 147] 126 [116; 137] 0.136
DBP [mmHg] 79.5 [74.0; 92.2] 82.0 [75.0; 90.0] 77.5 [71.2; 82.0] 0.124
Neut [109/L] 3.74 [2.88; 4.49] 3.39 [2.69; 4.51] 3.30 [2.57; 4.66] 0.716
Lymph [109/L] 1.91 [1.52; 2.22] 1.73 [1.37; 2.21] 1.54 [1.34; 1.92] 0.067
Glu [mmol/L] 8.06 (3.85) 7.89 (5.59) 6.68 (6.53) 0.482
Urea [mmol/L] 5.00 [4.53; 6.49] 5.02 [4.15; 5.70] 5.08 [4.50; 6.29] 0.552
Scr [mmol/L] 66.0 [60.0; 80.5] 62.0 [53.1; 69.8] 57.0 [50.5; 63.8] 0.008
ALB [g/L] 41.8 (8.07) 42.6 (4.27) 39.7 (5.36) 0.075
TCHO [mmol/L] 4.70 [3.46; 5.61] 3.96 [3.56; 4.58] 3.72 [3.00; 4.72] 0.023
TG [mmol/L] 1.84 [1.40; 2.83] 1.86 [1.07; 2.50] 1.04 [0.76; 1.55] <0.001
HDL [mmol/L] 0.96 [0.83; 1.14] 1.02 [0.91; 1.19] 1.08 [0.88; 1.45] 0.276
LDL [mmol/L] 2.94 [2.12; 3.58] 2.54 [2.09; 2.97] 2.14 [1.67; 2.69] 0.021
HbA1C (%) 7.72 [7.20; 9.54] 8.98 [7.20; 10.8] 8.24 [7.20; 10.5] 0.775
Metformin 0.909
Yes 21 (50.0%) 19 (45.2%) 20 (47.6%)
No 21 (50.0%) 23 (54.8%) 22 (52.4%)
January 2022 | Volume 11 | Article
E_UA, elevated uric acid; M_UA, moderate uric acid; R_UA, reduced uric acid; BMI, body mass index; UA, uric acid; SBP, systolic blood pressure; DBP, diastolic blood pressure; Neut,
neutrophil; Lymph, lymphocyte; Glu, glucose; Scr, serum creatinine; ALB, serum albumin; TCHO, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density
lipoprotein.
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acid tertile. We can find that there is no statistical difference
in the status of taking metformin among the three groups. We
stratified the patients into three serum uric acid level groups
with cutoff values of <240 mmol/L, 240–325 mmol/L, and
>325 mmol/L.

Richness and Diversity of Gut Microbiome
Changed in High Uric Acid Patients
We analyzed the gut microbial diversity of the R_UA, M_UA,
and E_UA groups. The species accumulation curves (Figure 3A)
indicated that the amount of sequencing data was reasonable and
sufficient. The Venn diagram shows the similarities and
differences between the bacterial communities of the three
groups (Figure 3D). The Ace index indicated gut microbiota
richness at the OTU level (Figure 3B). The R_UA, M_UA, and
E_UA groups had Ace indices of 234.10, 255.34, and 221.62,
respectively (p = 0.028). Meanwhile, the Shannon index reflected
community diversity (Figure 3C). The Shannon indices of
R_UA, M_UA, and E_UA groups were 2.57, 2.90, and 2.34,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
respectively (p = 0.003). The M_UA group had the highest
abundance and diversity. The PCoA based on OTU levels
showed that the R_UA and M_UA groups had similar
community compositions, while that of the E_UA group
differed (Figure 3E).

Patients With Elevated Uric Acid
Levels Had a Different Gut
Microbiome Composition
The R_UA andM_UA groups had similar average abundances at
the phylum level, but the E_UA had lower Firmicutes and
Bacteroidetes richness than that in the other two groups
(Figure 4A). At the class level, the E_UA group had
remarkably less Clostridia than the other groups, but more
Negativicutes and Coriobacteriia (Figure 4B). At the order
level, the E_UA group had much fewer Clostridia_UCG−014
and Christensenellales but more Coriobacteriales (Figure 4C). At
the family level, the E_UA group displayed less Oscillospiraceae,
Clostridia_UCG−014, and Christensenellaceae (which belong to
FIGURE 1 | Study design and flow diagram. DM, diabetes mellitus; UA, uric acid; E_UA, elevated uric acid; M_UA, moderate uric acid; R_UA, reduced uric acid;
A_UA, abnormal uric acid; N_UA, normal uric acid. Matching indicators include uric acid, systolic blood pressure, diastolic blood pressure, neutrophils, lymphocytes,
glucose, serum creatinine, serum albumin, total cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein.
January 2022 | Volume 11 | Article 761757
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the Clostridia order) (Figure 4D). Finally, at the genus level, the
E_UA group had high Escherichia–Shigella levels and low
Faecalibacterium levels (Figure 4E).

Functional Alteration of Gut Microbiota in
High Uric Acid Patients
PICRUSt was used to identify differences in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
three groups (Figure 5A). Among the six major metabolic
pathways, metabolism was predicted to be more active in the
R_UA group, and genetic information processing was more
active in the M_UA group. Human disease was significantly
increased in the E_UA group (Figure 5B). Functional categories
including carbohydrate metabolism (glyoxylate and
dicarboxylate, branched dibasic acid metabolism, and citrate
cycle), amino acid metabolism (lysine, phenylalanine, arginine,
TABLE 2 | Population characteristics of 1:2 matching between normal uric acid and abnormal uric acid group.

A_UA (n = 28) N_UA (n = 56) p-value

Gender 0.469
Female 8 (28.6%) 22 (39.3%)
Male 20 (71.4%) 34 (60.7%)

Diet 0.541
L-purine 2 3
M-purine 14 26
H-purine 5 5

Age (years) 50.3 (16.7) 53.0 (16.2) 0.481
SBP [mmHg] 127 [123; 140] 134 [120; 141] 0.977
DBP [mmHg] 84.2 (12.4) 81.1 (10.7) 0.254
Glu [mmol/L] 8.68 [6.69; 9.54] 8.00 [5.60; 10.3] 0.931
Neut [109/L] 2.78 [0.00; 3.76] 2.84 [0.00; 4.27] 0.4
Lymph [109/L] 1.89 (0.64) 1.91 (0.62) 0.889
Urea [mmol/L] 5.29 (1.75) 5.33 (1.62) 0.914
UA [mmol/L] 407 (41.4) 268 (55.3) <0.001
Scr [mmol/L] 69.8 (15.7) 65.9 (16.6) 0.301
ALB [g/L] 43.3 [40.5; 44.6] 41.4 [39.1; 44.2] 0.329
TCHO [mmol/L] 4.92 (1.82) 4.36 (1.08) 0.143
TG [mmol/L] 2.85 (2.51) 2.03 (1.22) 0.112
HDL [mmol/L] 0.95 [0.80; 1.16] 1.03 [0.89; 1.31] 0.222
LDL [mmol/L] 3.05 [2.17; 3.56] 2.59 [2.06; 2.96] 0.068
Hb [g/L] 137 [129; 145] 134 [126; 144] 0.544
January 2022 | Volume 11 | Article
A_UA, abnormal uric acid; N_UA, normal uric acid; UA, uric acid; SBP, systolic blood pressure; DBP, diastolic blood pressure; Neut, neutrophil; Lymph, lymphocyte; Glu, glucose; Scr,
serum creatinine; ALB, serum albumin; TCHO, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; Hb, hemoglobin.
A B

FIGURE 2 | Correlation analysis of gut microbiota and clinical indicators. (A) Heatmap of Spearman rank correlation analysis between gut microbiota and clinical
indicators such as UA, Scr, Lymph, and so on. *p < 0.05; **p < 0.01; ***p < 0.001. (B) The quadrants of the arrows indicate the positive and negative correlations
between the corresponding clinical indicators and the gut microbiota. The longer the connection, the greater the correlation, and vice versa. The smaller the angle,
the higher the correlation. Lymph, lymphocyte; UA, uric acid; DBP, diastolic blood pressure; Scr, serum creatinine; MH, metformin history; Neut, neutrophils.
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and proline metabolism), cofactors and vitamins (vitamin B6
and biotin metabolism), and lipopolysaccharide biosynthesis
showed higher levels in the E_UA group.

Validation of Gut Dysbiosis Using New
Grouping Cohort
Since the E_UA group had a significantly different gut microbiota
from the other two groups, we chose to rearrange the groups. A
reasonable explanation is that more significant changes in gut
microbiota may occur when uric acid levels rise and harm the
body. Therefore, we selected patients with uric acid levels above the
normal range andmatched themwith patientswhose uric acid level
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
was within the normal range. After removing five participants with
low uric acid levels, wematched abnormal uric acid (A_UA, n = 28)
and normal uric acid (N_UA, n = 56) patients according to gender,
age, blood lipids, and other clinical indicators. Table 2 shows the
grouping data. We divided the patients into low-, medium-, and
high-purine diet groups. Sinceweconducted apost-event follow-up
to know the patients’ diet, some did not reply. Among the 84 people
in the two matched groups, 55 communicated their diet
information. The specific values are shown in Table 2.

We found a total of 556 OTUs in the A_UA group and 711 in
the N_UA group (Figure 6A). By calculating the alpha diversity
index, we observed that the A_UA group had a lower OTU richness
A B

D

E

C

FIGURE 3 | Decreased bacterial diversity in E_UA. (A) Rank-abundance curves indicated that the amount of sequencing data is reasonable. Bacterial richness and
diversity (including richness and evenness) were assessed by Ace index (p = 0.028; B) and Shannon index (p = 0.003; C). (D) Venn diagram showed that there were 13
unique operational taxonomic units (OTUs) in E_UA group and 604 shared OTUs among the three groups. (E) Beta diversity visualized the dissimilarity of microbial
community among samples using principal coordinates analysis (PCoA) based on unweighted UniFrac algorithum. E_UA, elevated uric acid.
January 2022 | Volume 11 | Article 761757
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than that in theN_UA group (Ace indices: A_UA= 216.39, N_UA=
244.89, p = 0.048; Chao indices: A_UA = 205.58, N_UA = 242.29,
p = 0.017) and diversity (Shannon indices: A_UA = 2.13, N_UA =
2.79, p = 0.001) (Figures 6B, S1A, B). The Shannon–Wiener
curve (Figure 6C) indicated that the number of samples was
sufficient, and the rank-abundance curve (Figure S1C) showed
that the OTU spectrum had high abundance and was evenly
distributed in the N_UA group. The PCoA revealed a marked
difference between the A_UA and N_UA groups’ microbial
communities (Figure 6D). The non-metric multidimensional
scaling (NMDS) analysis (Figure S1D) based on Bray–Curtis
distance or unweighted UniFrac dissimilarity yielded similar
results. The heatmap showed 18 key OTUs with significantly
different relative abundances between the two groups
(Figure 6E). The LEfSe analysis showed that the gut microbes
were significantly different at the genus level (Figure 7A).

Subgrouping revealed similar differences in intestinal bacteria.
Consistent with the results of the three classification groups, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
A_UA had a lower Firmicutes amount at the phylum level (Figure
S2A). At the class level, the A_UA group had considerably fewer
Clostridia (Figure S2B). At the order level, the A_UA group had
relatively fewer Oscillospirales, Clostridia_UCG−014, and
Christensenellales (Figure S2C). At the family level,
Ruminococcaceae , Oscillospiraceae, Prevotellaceae, and
[Eubacterium]_coprostanoligenes_group amounts were lower in the
A_UA group (Figure S2D). At the genus level, the A_UA group had
significantly more Escherichia–Shigella and fewer Faecalibacterium,
Oscillospiraceae_UCG−002, andOscillospiraceae_UCG−005 (Figure
S2E). Generally, the reduced bacteria were almost the same in the
A_UA and E_UA groups, confirming their role in uric acid
metabolism. At the genus level, Escherichia–Shigella was
significantly enriched in both the A_UA and E_UA groups.

Besides, even though both groupings revealed differences in
the same microbiota, the second grouping yielded more
significant differences. In particular, at the genus level, the
statistical differences in Escherichia–Shigella (p-values for the
A B

D E

C

FIGURE 4 | Composition of the microbial communities in the R_UA, M_UA, and E_UA groups. (A) R_UA and M_UA had similar average abundance at the phylum
level, but Firmicutes and Bacteroides of E_UA were lower than those of the above two groups. (B–E) Relative abundance were significantly different between E_UA
and the other two groups. R_UA, reduced uric acid; M_UA, moderate uric acid; E_UA, elevated uric acid. *p < 0.05, **p < 0.01, ***p < 0.001.
January 2022 | Volume 11 | Article 761757
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first and second grouping: 0.014 vs. 6.97 × 10−5) ,
Faecalibacterium (p-values for first and second grouping: 0.050
vs. 0.003), and [Eubacterium]_coprostanoligenes_group (p-
values for the first and second grouping: 0.003 vs. 4.73 × 10−4)
were more significant. After regrouping, the obviously enriched
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
metabolic pathways in A_UA were basically the same as those in
E_UA, such as carbohydrate metabolism, cofactors and vitamins,
and lipopolysaccharide biosynthesis. However, nucleotide
metabolisms, including purine metabolism and pyrimidine
metabolism, were active in the N_UA group (Figure 7B).
A B

D EC

FIGURE 6 | The taxonomic and functional differences between the two groups in the subgroup analysis. (A) Shannon–Wiener curves showing estimated operational
taxonomic unit (OTU) richness basically approached saturation in all samples, and the microbial diversity was lower in the A_UA group. (B) Venn diagrams showing
OTU distribution in different groups. Ace index (p = 0.023; C) showed that the richness of bacteria was lower in the A_UA group. (D) The b-diversity was visualized
among the two groups in way of principal coordinates analysis (PCoA). (E) Heatmap showed 20 significantly different key OTUs between N_UA and A_UA.
A B

FIGURE 5 | Microbiota-associated functional changes in the three groups. Distribution (A) and comparison (B) of Kyoto Encyclopedia of Genes and Genomes
(KEGG) metabolic pathways among the three groups were shown at the taxonomic level using LEfSe analysis. LEfSe, linear discriminant analysis (LDA) effect size.
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To confirm whether the differences observed in the E_UA
group were associated with uric acid and diabetes or uric acid
alone, we compared the gut microbiota of healthy controls and
diabetic patients with high uric acid levels. We found that the
la t t e r had higher Escher i ch ia–Sh ige l la and lower
Faecalibacterium amounts at the genus level (Figure S3).
DISCUSSION

After analyzing the correlation between the gut microbiota of
diabetic patients and a series of clinical indicators such as uric
acid and blood lipids, we found that the correlation between uric
acid and gut microbiota was the most significant. Previous
reports showed that uric acid is an independent risk factor for
the complications of type 1 diabetes (Pilemann-Lyberg et al.,
2019). To further explore whether gut microbiota may affect the
diabetes progression by regulating uric acid, we divided diabetic
patients into different groups according to their uric acid levels.
Our research revealed a significant difference between the group
with the highest uric acid levels and the other two groups.
Rearranging the groups revealed an even more significant gut
microbia diversity and abundance difference between the
patients with normal and abnormal uric acid levels.

We first grouped the diabetic patients according to their
median uric acid levels but found no significant difference in
gut microbiota. We then grouped the patients by tertiles of uric
acid levels and found that the two low uric acid groups had
similar microbiota diversity and abundance, while the high uric
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
acid group stood out. We speculated that the uric acid levels of
the two low-level groups were within the normal range. This
hypothesis implies that normal uric acid levels do not affect the
gut microbiota of diabetic patients. To confirm this hypothesis,
we grouped again and matched the diabetic patients with
abnormal uric acid levels and those with normal uric acid
levels. The new gut microbiota analysis revealed marked
differences. We also grouped according to the international
hyperuricemia standard (male uric acid ≥420 mmol/L, female
uric acid ≥360 mmol/L), and the differential bacteria and
metabolic pathways obtained were consistent with the
grouping mentioned above (Figure S4). Through multiple
groupings, our research revealed that elevated uric acid levels
and gut microbiota changes are synergistic. It may be because
when uric acid is within the normal range, gut microbiota
compensates for its regulation. However, disturbed microbiota
cannot regulate uric acid levels, which increase. Besides, high uric
acid levels could affect the gut microbiota. The causal
relationship needs to be verified by further experiments.
However, the fluctuation of uric acid within the normal range
is not relevant to the change in gut microbiota. In contrast,
abnormal uric acid is associated with gut microbiota disturbance,
which is enough to explain the regulation and compensation
effect of gut microbiota on uric acid metabolism.

Previous studies identified specific gut microbial community
changes associated with the presence of type 2 diabetes
(Vangipurapu et al., 2020). Nevertheless, many studies
regarded diabetes as a single predictor, neglecting the influence
of various variables and complications in patients that may affect
A B

FIGURE 7 | Linear discriminant analysis (LDA) effect size (LEfSe) analysis of microbial profiles and metabolic pathways. (A) LEfSe analysis of microbial profiles between N_UA
and A_UA at the genus levels. (B) LEfSe analysis showing different metabolic pathways between N_UA and A_UA. N_UA, normal uric acid; A_UA, abnormal uric acid.
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the gut microbiota. Previous studies have shown that diabetic
patients and healthy people have different gut microbiota, but we
do not know which clinical indicators associated with gut
microbiota promote diabetes progression. This study explored
the relationship between serum uric acid and gut microbiota of
diabetic patients while controlling confounding factors including
age, gender, blood lipids, and kidney function. Our results
indicate that studies linking gut microbiota differences with
type 2 diabetes need to consider uric acid levels as a potential
confounding factor.

Escherichia–Shigella were overrepresented in the high uric
acid group. Xi et al. (2000) demonstrated that these bacteria
could secrete xanthine deaminase, which can convert
hypoxanthine and xanthine into uric acid. In line with our
findings, Mendez-Salazar et al. (2021) also revealed
Escherichia–Shigella enrichment in gout patients. Moreover,
Escherichia–Shigella enrichment has been found in other
diseases. Therefore, many scholars believed that the
Proteobacteria enrichment, including Escherichia–Shigella, was
a characteristic of intestinal homeostasis imbalance (Guo et al.,
2016). Thus, artificially adjusting the number and proportion of
the bacteria may be the key to improving our intestinal health.

Intestinal dysbiosis and decreased short-chain fatty acid
(SCFA)-producing bacteria are common in metabolic
disorders, including diabetes and obesity (Candela et al., 2016;
Ma et al., 2020; Yang et al., 2020). Hartwich et al. (2012)
confirmed that Clostridium cylindrosporum, belonging to
Clostridiaceae, is an anaerobic homologous SCFA-producing
bacterium that can use purines such as uric acid as its only
carbon, nitrogen, and energy source. The high-uric acid groups
had significantly lower amounts of various bacteria belonging to
the Clostridia at the genus level. The abnormal uric acid group
had significantly lower amounts of the butyrate-producing
Faecalibacterium, belonging to Clostridia, at the genus level.
Therefore, we speculate that C. cylindrosporum and
Faecalibacterium play a pivotal role in uric acid metabolism.

Previous studies showed that intestinal butyric acid amounts
were related to uric acid metabolism in humans. Thus, butyric
acid was expected to become another important treatment for
elevated uric acid (Hamer et al., 2009). However, butyric acid has
an unpleasant smell and is easily decomposed by oral
supplementation (Shashni et al., 2021), while Clostridium, as
an intestinal microbial preparation, is not affected by gastric acid
and bile acid. It can therefore produce butyric acid by fermenting
dietary fiber in the intestine (Dwidar et al., 2012). There is no
doubt that this bacterium has a wide range of clinical
application prospects.

In the normal uric acid group, besides Faecalibacterium,
[Eubacterium]_coprostanoligenes_group was most enriched. This
bacterium not only produces butyric acid but is also a key hub of
fecal microbes for high-fat dieters, mainly through sphingosine to
affect blood lipid metabolism (Wei et al., 2021). In animal
experiments, regulating butyrate-producing bacteria reduced
gouty arthritis caused by increased uric acid (Wen et al., 2020).
Furthermore, chlorogenic acid supplementation can increase the
relative abundance of intestinal SCFA-producing bacteria and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
reverse the purine metabolism of the intestinal microbiota
(Zhou et al., 2021). The above studies all show that regulating
butyrate-producing bacteria can improve purine metabolism.

However, the mean ages of the two groups in Table 2 are
50.3 (16.7) and 53.0 (16.2). Although there is no statistical
difference, this age span is relatively large. To explore the
influence of age on the gut microbiota of these two groups, we
divided the study population into three subgroups by age
(<40, 40–55, and ≥55) and compared these subgroups (Figure
S5). We found that in the two younger groups (ages <55), the
significantly different bacteria are consistent with the above
results. Namely, diabetic patients with high uric acid levels
had h i gh Es ch e r i ch i a–Sh i g e l l a amoun t s and low
Faecalibacterium amounts. However, in the older group (age
≥55), Faecalibacterium is not statistically different. We think
that this may be due to the small sample size after multilevel
g r oup i n g . Meanwh i l e , s t u d i e s h a v e s hown th a t
Faecalibacterium is reduced in healthy older adults (De
Filippis et al., 2020), which may explain why the difference
between the two groups is not statistically significant.

Vich Vila et al. (2020) studied the effects of some
commonly used drugs on gut microbiota and showed that
proton pump inhibitors, metformin, antibiotics, and laxatives
strongly correlate with gut microbiota changes. The patients
included in our study had no gastrointestinal diseases, no
proton pump inhibitors, and no antibiotics and laxatives in
the past 3 months. Therefore, we collected their metformin
consumption status. Among the 126 patients, 60 took
metformin and 66 did not. When we first performed the
correlation analysis, we found a clear correlation between
metformin history and Bacteroides-related OTUs. However,
since some of these correlations were positive and others were
negative, we did not conduct in-depth research on this.
Previous studies on metformin and Bacteroides also yielded
mixed results. For example, after metformin use, some studies
indicated a Bacteroides reduction (Cherney and Lam, 2018;
Sun et al., 2018), while Lee et al. (2018) reported a Bacteroides
increase. This discrepancy may be because bacteria of the
same family have opposite OTUs. Therefore, our research on
gut microbiota should be accurate at the genus or species level,
which is more conducive to our targeted therapy.

Hyperuric acid has an independent effect on insulin secretion
in diabetic patients and plays a key role in the evolution of
diabetes mellitus (DM) (Hu et al., 2018). Studies have found that
elevated blood uric acid can aggravate diabetes; increase the risk
of coronary heart disease, eye disease, and kidney disease; and is
related to diabetes-related microvascular and macrovascular
complications (De Cosmo et al., 2015; Yan et al., 2016).

Since fructose raises glucose slowly, diabetic patients usually
use fructose instead of sucrose. However, studies have shown
that a high fructose intake can increase uric acid and pro-
inflammatory cytokine levels, intestinal permeability, and lipid
accumulation in the liver and induce inflammation in the
pancreas and colon (Wang et al., 2020). Our research results
were consistent with these conclusions. The KEGG metabolic
pathway analysis showed that the abnormal uric acid group had
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significantly higher fructose metabolic pathway than the normal
uric acid group. Interestingly, we found that when DM patients
were grouped according to their uric acid level, the BMI of the
group with high uric acid was higher. Consistent with previous
studies of Chen et al. (2017), this study shows that uric acid levels
in diabetic patients are independently related to obesity. The
research by Johnson et al. (2013) also shows that fructose-
mediated uric acid production may play a causal role in
diabetes and obesity.

Increased serum uric acid levels can lead to intestinal immune
disorders, intestinal barrier damage, and systemic inflammation.
Our results showed that the lipopolysaccharide biosynthesis
function of the high uric acid group’s gut microbiota was
significantly enhanced. Therefore, we speculate that gut
microbiota may affect uric acid levels by regulating
lipopolysaccharide synthesis. The two groups had significant
differences in nucleotide metabolism, including purine
metabolism and pyrimidine metabolism. This further showed
that the changes in the gut microbiota of diabetic patients were
associated with their serum uric acid levels.

In conclusion, our research indicated that in diabetic patients,
uric acid is associated with gut microbiota, especially
Escherichia–Shigella and Faecalibacterium. However, the
relationship between uric acid and gut microbiota needs
further exploration in non-diabetic people, including those
with high uric acid levels or other diseases with high uric acid.
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