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The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including
pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine
proteases are enzymes that have been emerged during evolution as one of the most
abundant and functionally diverse group of proteins in eukaryotic and prokaryotic
organisms. S. pneumoniae expresses up to four extracellular serine proteases
belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP,
PrtA, and CbpG. These serine proteases have recently received increasing attention
because of their immunogenicity and pivotal role in the interaction with host proteins. This
review is summarizing and focusing on the molecular and functional analysis of
pneumococcal serine proteases, thereby discussing their contribution to pathogenesis.

Keywords: Streptococcus pneumoniae, pneumococcal serine protease, respiratory infection, colonization,
virulence factor, pathogenesis, structure

INTRODUCTION

Pneumococci (S. pneumoniae, the pneumococcus) are Gram-positive, facultative anaerobic bacteria,
colonizing asymptomatically the upper human respiratory tract (URT). Adherence to a mucosal
surface of host tissues, predominantly indirectly via components of the extracellular matrix (ECM),
is a prerequisite for establishing stable colonization (Bogaert et al., 2004). However, under certain
circumstances, pneumococci disseminate from the nasopharynx to deeper tissues and the blood,
leading to pneumonia and invasive diseases such as septicemia or meningitis (Song et al., 2013;
Weiser et al., 2018; Bradshaw et al., 2020). Pneumococcal infections are a major cause of invasive
diseases (invasive pneumococcal diseases, IPD) and death globally, especially in the most susceptible
populations such as children, the elderly, and immunocompromised persons (O 'Brien et al., 2009).
The highest mortality is reported for children. Therefore, pneumococci are also called “The
Forgotten Killer of Children,” as mentioned by UNICEF and WHO (UNICEF, 2006).
Pneumococci are endowed with a plethora of virulence factors contributing to adhesion,
colonization, immune evasion, and host cell damage (Ljungh et al., 1996; Kadioglu et al., 2008; Voss
etal.,2012; Weiser etal., 2018; Jahn etal., 2020). The initial steps of pneumococcal pathogenesis require
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an intimate, specific adherence to host structures and modulation
of innate immune clearance mechanisms (Weiser et al., 2018).
Pneumococcal adhesins recruit and bind to different human ECM
and serum glycoproteins, including fibronectin, fibrinogen,
vitronectin, thrombospondin-1, collagen, and plasmin(ogen)
(Holmes et al., 2001; Bergmann et al., 2009; Voss et al., 2012;
Fulde et al., 2013; Binsker et al., 2015). Striking examples are the
multifunctional adhesins PspC (also referred to as CbpA), PavB,
PsrP, and pilus type-1 (Rosenow et al., 1997; Pracht et al., 2005;
Anderton et al., 2007; Kanwal et al., 2017). The close interaction of
pneumococci with nasopharyngeal host cells is initially prevented
by mucus and ciliary beating of the microvilli on the apical pole of
mucosal epithelial cells (Clarke et al., 2011). However, pneumolysin
inhibits ciliary beat frequency (Peter et al., 2017; Nishimoto et al.,
2020), and enzymes like the pneumococcal neuraminidase NanA
and hyaluronidase Hyl contribute to receptor exposure on the
surface ofhost cells (Weiser et al., 2018). Importantly, pneumococci
exhibit the ability to hijack host-derived serine protease proteolytic
activities by binding plasmin(ogen), enabling ECM degradation,
which facilitates colonization and dissemination of bacteria
(Bergmann et al.,, 2005; Bergmann et al., 2013; Weiser et al.,
2018). Proteases, especially serine proteases, are found in all
living organisms. The intracellular and extracellular proteases are
considered to be the most abundant and functional proteolytic
enzymes (Page and Di Cera, 2008). These enzymes either hydrolyze
peptide bonds within proteins or cleave them at their amino- or
carboxyl-terminal ends (Patel, 2017). Bacterial proteases are
involved in cell homeostasis, protein transport, and the structural
integrity of the cell wall (Burchacka and Witkowska, 2016;
Marquart, 2021). Many bacterial species express serine proteases
that play a significant role in pathogenesis, such as Bacteroides spp.,
Clostridium spp., Pseudomonas aeruginosa, and Streptococcus spp.
(Macfarlaneetal., 1988; Thibodeaux et al., 2007; de Stoppelaar etal.,
2013; Martinez-Garcia et al., 2018).

PNEUMOCOCCAL PROTEASES
AND PEPTIDASES

S. pneumoniae expresses a wide range of proteases and
peptidases, including cysteine proteases, zinc-metalloproteases,
and serine proteases (Wani et al,, 1996; Ishii et al., 2006;
Marquart, 2021). More than 34 proteases in S. pneumoniae
TIGR4 were recently reported and discussed (Kwon et al,
2011; Marquart, 2021). These proteases have different
functions like involvement in the acquisition of nutrients,
protein quality control, signal peptide cleavage for pre-protein
secretion, and cleavage of host ECM proteins (Proctor and
Manning, 1990; Marquart, 2021). It is reported that some
proteases play a significant role in virulence (Collin and Olsen,
2003; Weiser et al., 2018; Kriaa et al., 2020). For instance, the
zinc-metalloprotease ZmpA (also known as IgAl protease)
interacts with the host immune system by cleaving IgA into
inactive components, and the zinc-metalloprotease ZmpB is
important for the modification of pneumococcal surface
proteins (Kilian et al., 1980; Novak et al., 2000).

PNEUMOCOCCAL SURFACE PROTEINS
AND EXTRACELLULAR SERINE
PROTEASES

Besides in S. pneumoniae, serine proteases (or serine
endopeptidases) have been found in many bacterial species
such as Haemophilus influenzae, Pseudomonas aeruginosa, and
other streptococcal species like Streptococcus agalactiae (group B
streptococcus, GBS) (Male, 1979; Lyon and Caparon, 2004).
Generally, the pneumococcus expresses different surface
protein classes (Bergmann and Hammerschmidt, 2006; Pribyl
et al., 2014; Kohler et al., 2016). Sortase-anchored proteins are
covalently anchored to the peptidoglycan (PGN) via the sortase
A, which cleaves a C-terminally located LPXTG motif
(Bergmann and Hammerschmidt, 2006; Hammerschmidt,
2006; Nobbs et al., 2009; Lofling et al.,, 2011). In addition, the
pneumococcal cell wall is decorated with up to 16 choline-
binding proteins (CBPs), which are non-covalently bound to
the phosphorylcholine of teichoic acids (Gosink et al., 2000).
CBPs have been reviewed elsewhere (Maestro and Sanz, 2016). In
this context, all pneumococcal serine proteases can be secreted
and exposed on the pneumococcal cell surface, as shown in
Figure 1. This extracellular localization enables a direct or
indirect cleavage and inactivation of bound peptides, thereby
leading to the degradation of specific substrates (Mann et al.,
2006; Frolet et al., 2010). In fact, pneumococcal serine proteases
are reported to play a crucial role in bacterial pathogenesis, such
as adhesion, colonization, promotion of pneumococcal diseases,
biofilm dispersal, and immune subversion of host cells (Figure 4)
(Bergmann and Hammerschmidt, 2006; Moscoso et al., 2006;
Mitchell and Mitchell, 2010; Voss et al., 2012; Pribyl et al., 2014;
Chao et al., 2020; Ali et al., 2021).

The information on how pneumococcal serine proteases
interfere with pathogenesis is crucial with respect to our
understanding of pneumococci-host interactions. This review
will focus on the four different pneumococcal serine proteases:
HtrA, SFP, PrtA, and CbpG. These enzymes, encoded by genes
of the core genome, are highly conserved and present among
different pneumococcal serotypes (Bethe et al., 2001; Desa et al.,
2008). The proteolytic activity is characterized by three amino
acid (aa) residues, Ser-His-Asp, which form a so-called catalytic
triad. The serine proteinase A (PrtA) and subtilase family
protein (SFP) are cell wall-associated serine proteases of the
S8 family of peptidases (Blum et al., 2021; Marquart, 2021).
They are secreted and anchored covalently to the cell wall via
the sortase A (Bethe et al., 2001; de Stoppelaar et al., 2013). PrtA
contributes to host lung damage in a murine systemic infection
model (de Stoppelaar et al.,, 2013; Mahdi et al., 2015), and in
accordance, the gene encoding for PrtA is upregulated in the
blood during acute pneumonia in mice (Bethe et al.,, 2001). In
contrast, SFP may facilitate pneumococcal growth even after a
lower infection dose in the lower respiratory tract (de
Stoppelaar et al., 2013). The high-temperature requirement A
(HtrA) serine protease is membrane-associated via an unknown
mechanism and lacking a specific anchoring motif (Seol et al.,
1991; Gasc et al, 1998; Fan et al., 2011), whereas CbpG is
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FIGURE 1 | Localization of pneumococcal serine proteases on the bacterial surface. The pneumococcal cell wall of S. pneumoniae contains four different classes of
surface-exposed proteins: choline-binding proteins (CBPs), sortase-anchored proteins containing a C-terminal LPXTG motif, lipoproteins, and non-classical surface
proteins (Gamez and Hammerschmidt, 2012; Pribyl et al., 2014; Kohler et al., 2016). These proteins are associated with different structures of the cell wall, consisting
of peptidoglycan (light blue), wall teichoic acids (WTA) and lipoteichoic acids (LTA) (carbohydrates repeating units in white circles for WTA and LTA). Wall teichoic acids
are directly linked to the peptidoglycan (PGN), lipoteichoic acids are anchored to the phospholipid bilayer (membrane) via a lipid anchor (Tomasz, 1967). Pneumococcal
teichoic acids are decorated with phosphorylcholine (PCho) residues (McCullers and Tuomanen, 2001). The pneumococcus displays four serine proteases on the bacterial
surface (Mann et al., 2006; de Stoppelaar et al., 2013). Choline-binding protein G (CbpG, pink); bound non-covalently via the conserved choline-binding repeats
(CBRs; green) to the phosphorylcholine residues of WTA or LTA. Subtilase family protein (SFP, blue) and cell wall-associated serine proteinase (PrtA, yellow) belong
to the subtilisin-like proteases. Both proteins contain an N-terminal signal peptide and a C-terminal LPXTG motif. The latter is necessary to bind SFP and PrtA to the
PGN, catalyzed by the transpeptidase Sortase A. High-temperature requirement A (HtrA, green) belongs to the family of trypsin-like proteases and contains no specific
cell wall anchoring motif. All of these proteins contain the catalytic active domain with the Asp-His-Ser triad, which has proteolytic activity.

non-covalently associated with the wall teichoic (WTA) and
lipoteichoic acids (LTA) (Mann et al., 2006). Previous studies
suggested that CbpG could be a multifunctional protease
playing an important role in mucosal colonization and sepsis
(Mann et al., 2006). HtrA is a heat shock protein and chaperone
involved in protein quality control, cell division, colonization,
and virulence (Sebert et al., 2002; Ibrahim et al., 2004a; Cassone
et al.,, 2012).

HtrA and PrtA are upregulated in the heat-dispersed
population among the genetic variants (Pettigrew et al., 2014).
We recently reported that the deficiency in three out of four
serine proteases of TIGR4 with only one functional gene/protein
or the deficiency of all serine proteases dramatically reduces
adherence and nasopharyngeal colonization (Ali et al, 2021).
Interestingly, the pneumococcal serine proteases are highly
conserved among all pneumococcal serotypes and immunogenic
(Bethe et al., 2001; Li et al., 2016; Hsu et al., 2018; Kazemian et al.,
2018). Hence, serine proteases-driven pathogenesis is opening
the avenue for new targets to develop specific antimicrobials. In
this regard, our review presents a comprehensive summary of
our current knowledge of pneumococcal serine proteases in
order to gain insight into their potential roles in pneumococcal
virulence and pathogenesis at a molecular level.

BIOINFORMATICS ANALYSIS OF
PNEUMOCOCCAL SERINE PROTEASES

To characterize and compare pneumococcal serine proteases
on the molecular level, different database tools including PSORT
db 3.0 (Yu et al, 2011), multiple sequence alignment Clustal
Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) and
pairwise sequence alignment (https://www.ebi.ac.uk/Tools/psa/
emboss_water/) were used. All analyzed serine protease gene
sequences (prtA (sp_0641), htrA (sp_2239), and cbpG (sp_0390))
of S. pneumoniae strain TIGR4 or D39 for SFP (spd_1753) were
retrieved from the KEGG database (Kanehisa et al., 2006). Signal
sequences were predicted using the software tool SignalP 4.0
(Emanuelsson et al., 2007; Petersen et al., 2011). Choline-binding
proteins are characterized by their typical choline-binding modules
(CBM) consisting of characteristic choline-binding repeats
(CBRs) (Maestro and Sanz, 2016). Moreover, for the prediction
of transmembrane helices, the TMHMM Server 2.0 algorithm
(Hidden Markov Model for transmembrane protein topology
prediction) was applied (Krogh et al., 2001). Functional domains
were predicted using Pfam (Punta et al.,, 2012).

The genomes of 10 clinically relevant S. pneumoniae strains
were analyzed on DNA and protein levels with BlastN and BlastP,
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respectively, for the homology analysis of pneumococcal serine
proteases. The results revealed a maximum of four different serine
proteases (NCBI, 2016). Comparisons on the protein level
revealed high identities and similarities, indicating highly
conserved sequences among the different pneumococcal
strains (Table 1).

MOLECULAR CHARACTERIZATION AND
STRUCTURE OF SERINE PROTEASE-
LIKE/CHAPERONE HtrA

HtrA belongs to the peptidase SA clan in the S1C family and is also
identical to DO subfamily protease (Pallen and Wren, 1997). More
than 180 members of these proteases, including HtrA, display
trypsin-like protease characteristics (Pallen and Wren, 1997;
NCBI, 2016). The family of these proteases combines a catalytic
domain with at least one or more C-terminal PDZ domains
(Lipinska et al., 1990), which is highly conserved in both
pathogenic and nonpathogenic bacteria (Seol et al., 1991; Spiess
etal., 1999; Backert et al., 2018). However, the first described HtrA
proteasein E. coli is known as DegP or DO protease and localized in
the periplasmic space (Lipinska et al., 1990).

Bacterial HtrA is a heat-shock-induced serine protease that
displays a multifunctional role like protein quality control and
bacterial survival under different stress conditions such as oxidative
and heat stress (Sebert et al., 2002; Singh et al., 2018). For instance,
HtrA protease in Lactococcus is considered as a housekeeping
protease (Poquet et al., 2000), while in other bacteria, HtrA
prevents the cell from the cytotoxicity of misfolded proteins by
refolding or degrading them (Clausen et al., 2002; Zarzecka et al.,
2019). In E. coli, unlike other quality control proteins such as

ClpXP, CIpAP, and HslUV, which need ATP for their chaperone
function, HtrA is functional without ATP as an additional energy
source (Clausen et al., 2011; Malet et al., 2012). More importantly,
the function of HtrA proteins can be switched from chaperone to
protease and the activity depends on the temperature (Spiess et al.,
1999). The protease effect is in particular apparent at high
temperatures ranging from 38-42°C, whereas the chaperon
function is more pronounced at lower temperatures ranging
from 30-37°C (Spiess et al., 1999).

In S. pneumoniae, HtrA is one of the best-studied and
characterized serine proteases. High protein sequence identity
(up to 100%) of the HtrA protein was detected in six different
pneumococcal strains (Table 1) such as D39, Hungary 19A,
serotype 19F_EF3030 and R6, indicating that HtrA is highly
conserved. Therefore, it could be a desirable drug target to
prevent pneumococcal diseases (Wessler et al., 2017; Xue et al.,
2021). In pneumococci, HtrA is a surface-exposed serine protease,
easily accessible for potential inhibitory substances or anti-
infectives. HtrA is immunogenic and antibodies against HtrA are
protective against invasive pneumococcal diseases (Li et al., 2016).

The molecular analysis of different HtrA serine proteases of
other pathogenic bacteria via multiple sequence alignment (MSA)
revealed a sequence similarity, especially in the functional protease
and PDZ domains, as reviewed more extensively elsewhere
(Backert et al., 2018; Boehm et al., 2018; Singh et al., 2018). They
are widely distributed in many bacterial species such as Escherichia
coli, Legionella fallonii, Thermotoga maritima, and Mycobacterium
tuberculosis (Kim et al., 2003; Bai et al., 2011; Malet et al., 2012;
Cortes et al., 2013; Chang, 2016; Singh et al., 2018).

Furthermore, we also analyzed the amino acid sequence of
pneumococcal HtrA orthologs in other streptococci (Table 2).
High sequence homologies of HtrA are present in S. pyogenes
(group A streptococci), S. agalactiae (group B streptococci),

TABLE 1 | Protein sequence homology [%)] of serine proteases among different selected pneumococcal strains based on protein sequences from S. pneumoniae

TIGR4 (Tettelin et al., 2001), and D39 for SFP.

S. p. Strain (serotype) gene no. CbpG Gene no. HtrA Gene no. PrtA gene no. SFP

TIGR4 (4) %ID sp_0390 100.0 sp_2239 100.0 sp_0641 100.0 sp_1954 100.0
%SIM 100.0 100.0 100.0 100.0

D39 (2) %ID spd_0356 99.0 spd_2068 100.0 spd_0558 95.8 spd_1753 100.0
%SIM 99.5 100.0 97.8 100.0

EF3030 (19F) %ID EF3030_01920 99.6 EF3030_11105 99.7 EF3030_03025 97.5 — -
%SIM 99.6 100 98.7

ST556 (19F) %ID snd:MYY_0470 87.0 snd:-MyY_2162 100.0 snd:MYY_0688 95.9 — -
%SIM 95.7 100.0 97.9

ST81 (23F) %ID spn23F03640 97.8 spn23F22720 99.7 spn23F05790 97.4 spn23F9760 100.0
%SIM 98.5 100.0 98.8 100.0

JJA (14) %ID spj_0378 99.3 spj2269 99.7 spj_0592 97.4 spj_1948 100.0
%SIM 100.0 100.0 98.6 100.0

R6 (2) %ID spro349 99.0 spr2045 100.00 spro561 95.8 spr1771 100.0
%SIM 99.5 100.00 97.8 100.0

G54 (19F) %ID spg_0356 100.0 spg_2188 98.4 Spg_0584 96.1 — -
%SIM 100.0 99.0 97.8

Hungary 19A-6 (19A) %ID sph_0499 96.8 sph_2438 99.5 sph_0733 96.2 — -
%SIM 96.8 100.0 98.1

R6_CIB17 (2) %ID — - E5Q10_10910 100.0 —_ - E5Q10_09305 100.0
%SIM - 100.0 100.0

Analysis of the proteins were performed with tool databases BlastP (NCBI, 2016), and EMBOSS (Rice et al., 2000). Protein sequences derived from TIGR4 strain were used as reference
ID, Identity; SIM, Similarity. The meaning of the bold values are % ID, Identity percentage; % SIM, Similarity percentage.
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TABLE 2 | Comparison and distribution of pneumococcal serine proteases in other related bacterial species with amino acid sequence similarity and role in
pathogenicity, updated from (Ali et al., 2021).

Protein Proteinaccession Bacterial Similarity Associated Pathogenic Host-Targets References
(locus tag) no. species [%] disease function
PrtA, cell AAK74791.1 Streptococcus 100% CAP1, sepsis, killing by cleaves human (Bethe et al., 2001; Mirza et al.,
wall- pneumoniae meningitis apolactoferrin apolactoferrin, 2011; Weiser et al., 2018; Ali
associated colonization interact with et al., 2021)
serine adherence, collagen IV and
protease pneumonia plasminogen,
cleavage of
leader peptides
from lantibiotics,
possible adhesin
PrtP (LP151), M83946 Lactobacillus 35.8% dental caries, degrades secreted,  degrade (von Schillde et al., 2012;
proteinase paracasei rheumatic vascular cell-associated, and  proinflammatory  Hoérmannsperger et al., 2013)
disease, septicemia, tissue-distributed chemokines
and infective and other
endocarditis proinflammatory
chemokines
PrtP (SK11), J04962, M26310 Lactococcus 35.4% Lactic acid bacteria  involved to adhesion adhesive (Nikoli¢ et al., 2009; Inoue
Proteinase, PlII- lactis subsp. (LAB), endocarditis and invasion, transit  properties, et al., 2014; Radziwill-
type cremoris chronic gastritis, in the intestinal degrade alpha Bienkowska et al., 2017)
central nervous mucosa (S1)- and beta-
infection caseins
PrtB, 148487 Lactobacillus 37.2% LAB antibacterial activity, cleaves beta- (Abedi et al., 2013)
proteinase delbrueckii Non-pathogenic probiotic function, casein
precursor bulgaricus,
PrtH, cell AF133727 Lactobacillus 36.5% LAB antibacterial activity, degrades alpha (Kuniji et al., 1996)
envelope helveticus Nonpathogenic and beta-caseins
associated
proteinase
PrtS, cell AAGO09771 Streptococcus 35.3% LAB - essential for (Courtin et al., 2002)
envelope thermophilus intestinal diseases growth
proteinase
ScpA, Cba P15926 Streptococcus 38.1%  necrotizing fasciitis,  facilitates the local cleaves the (Chmouryguina et al., 1996)
peptidase pyogenes pharyngitis infection human serum
chemotaxis Cba
ScpB, Cha Us6908 Streptococcus 37.5% bacteremia, virulence factor, inactivates Cba (Bohnsack et al., 2000)
peptidase agalactiae pneumonia promote Fn-
independent GAS
invasion of human
epithelial cells
CbpG, AAK74556.1 Streptococcus 100% CAP, sepsis, adherence, cell-attached (Gosink et al., 2000; Mann
choline- pneumoniae meningitis colonization form promotes et al., 2006; Weiser et al., 2018;
binding virulence factor, adherence, Ali et al., 2021)
protein G extracellular
form degrades
fibronectin,
important
formucosal and
invasive disease
GEJ60330 GEJ60330.1 Enterococcus 56% colonizing the endophthalmitis, - (Thurlow et al., 2010)
serine faecalis gastrointestinal tract  peritonitis,
proteinase and oral cavity of endocarditis, and
animals and humans  orthopaedic
serine protease WP_010922847.1  Staphylococcus 40.4%  CAP, bacteremia, involved in the cleaves the (Pietrocola et al., 2017)
aureus endocarditis, evasion of host ECM
osteomyelitis immunity components
serine protease  NP_460444.1 Salmonella 39.2%  foodborne diseases  epithelial cell cleavage of (Jajere, 2019)
enterica subsp. (Salmonellosis) invasion E-cadherin
Glu, 1P3C Bacillus 42.2% - - cleaves the (Meijers et al., 2004)
endopeptidases intermedius peptide bond on
the carboxyl end
of glutamic acid
(Continued)
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TABLE 2 | Continued

Protein Proteinaccession Bacterial Similarity Associated Pathogenic Host-Targets References
(locus tag) no. species [%] disease function
SFP, ABC75782.1 Streptococcus 100% CAP, sepsis, facilitates bacterial cleavage of (de Stoppelaar et al., 2013; Ali
subtilisin-like pneumoniae meningitis growth, adherence,  leader peptides et al., 2021; Marquart, 2021)
serine colonization from lantibiotics
protease
NisP, leader AMZD_A Lactococcus 56.6% endocarditis antibacterial cleave leader (Xu et al., 2014; Montalban-
peptide- Lactis infection lantibiotic peptides from Lopez et al., 2018)
processing lantibiotics
serine protease
CspA, cell CNG97209.1 Streptococcus 38.5%  CAP, sepsis, virulence factor, cleaves human (Harris et al., 2003; Bryan and
surface serine agalactiae meningitis resistance to fibronectin Shelver, 2009)
endopeptidase opsonophagocytosis  inactivates
chemokines
HtrA (DegP) AAK76286.1 Streptococcus 100% CAP, sepsis, chaperone, heat- quality control of ~ (Sebert et al., 2002; Ibrahim
serine pneumoniae meningitis shock protein, secreted et al., 2004a; Ibrahim et al.,
protease/ protease, virulence proteins 2004b; Cassone et al., 2012; de
chaperone factor, competence Stoppelaar et al., 2013; Kochan
pathways, and Dawid, 2013; Sender et al.,
growth advantage in 2020; Ali et al., 2021)
influenza A virus co-
infection, adherence,
colonization
BAQ53883.1 Streptococcus 71.7% purulent diseases of  processing of cleavage of (Wexler et al., 1985; Lyon and
pyogenes the pharynx and skin extracellular complement Caparon, 2004)
virulence factors and factor Cba
hemolytic activity
Q8DWPA S. agalactiae 73.6%  bacteremia, - -
pneumonia
VEI61035.1 Streptococcus 72.8%  dental carries colonization biofilm formation  (Biswas and Biswas, 2005)
mutans
WP_061099826.1  Campylobacter 52.6%  Campylobacteriosis, bacterial adhesion, cleavage of (Zarzecka et al., 2020)
Jjejuni Guillain Barré transmigration, and  E-cadherin,
syndrome invasion apoptosis, and
immune
responses
AHC56659.1 Helicobacter 54.5%  gastritis, ulcers bacterial cleavage of (Hoy et al., 2010; Schmidt
pylori symptoms transmigration, occludin, et al., 2016; Tegtmeyer et al.,
activation of type IV claudin-8, 2017)
secretion E-cadherin, and
fibronectin
5ZVJ_A Mycobacterium 52.7%  tuberculosis cell wall hydrolases ~ degrades a (Wu et al., 2019)
tuberculosis putative cell wall
muramidase
(Ami3)

Bold values means "Percentage identity".

S. mitis, and S. mutans. HtrA of S. pyogenes plays a significant
role in cysteine protease streptococcal pyrogenic exotoxin B
(SpeB) maturation and complement factor C5a cleavage (Lyon
and Caparon, 2004; Cole et al., 2007). The deletion of HtrA in S.
mutans enhanced the surface expression of several extracellular
proteins such as glucan-binding protein GbpB and altered the
biofilm formation (Biswas and Biswas, 2005).

Besides the impact of HtrA on pneumococcal virulence, HtrA
was shown to be a multifunctional protein involved in
pneumococcal growth at higher temperatures, tolerance to
oxidative stress, genetic transformation, regulation of bacteriocin
production, and cell division (Dawid et al., 2009; Fan et al., 2010;
Tsui et al,, 2011). The pneumococcal HtrA protein (Figure 2A)
contains an amino-terminal signal peptide (31 aa), cleaved by
signal peptidase I for secretion. The terminal signal peptide is

followed by a single transmembrane helix domain (aa 12-34).
Thus, HtrA is found on the surface and/or secreted from S.
pneumoniae as predicted by the presence of a putative amino-
terminal signal peptide (de Stoppelaar et al., 2013; Ali et al., 2021).
Additionally, HtrA contains two highly conserved unique
domains, a serine protease domain and a PSD-95/Dlg/ZO-1
(PDZ) domain (de Stoppelaar et al., 2013). The trypsin-like
serine protease domain has the typical triad His''*-Asp'**-Ser***
(HDS) in the catalytic center, which was identified previously (de
Stoppelaar et al.,, 2013) using Interproscan IPR009003 and
IPR001940 (Zdobnov and Apweiler, 2001). Finally, the PDZ
domain (abbreviation combining letters of the first three proteins
discovered to share this domain, postsynaptic density protein,
Drosophila discs large tumor suppressor, and zonula occludens-1)
is located at the C-terminal end. HtrA in other bacterial species
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Modular organization of pneumococcal serine proteases

Serine N-terminal Catalytic Other domain ™ Length
proteases SP domain architecture helix |(@mino acids)
chymotrypsin-like serine protease
A 1-32 Y P ey P 289-375
12-34 42 kDa
HtrA_sp_2239 ""% HDS c 393aa
182 aa
B trypsin-like serine protease
14-197
CbpG_sp_0390 0 32 kDa
285a.a
c peptidase_S8 protease like 795-934
223-764 2 -214
099 0 240 kDa
PrtA_sp_0641 HDS 2112-2134| 2140aa
- 542 aa
140 aa 42 aa
D 122 peptidase serine protease 543-550 64.9 kDa
- — 552.574 [ S579aa
LPNTS - .
SFP_spd_1753 N-.— HDS ¢
37 aa

SP, signal peptide sequences.

FIGURE 2 | Schematic presentation of the modular organization in pneumococcal serine proteases. (A) HtrA (AAK76286.1), the signal peptide sequences (aa 1-32)
are illustrated in red. The serine protease catalytic domain is shown in light green, PDZ domain is labeled in yellow. (B) CopG (AAK74556.1), most likely has no signal
peptide. The trypsin-like serine protease catalytic domain is shown in pink, the repeats of the choline-binding domains (CBDs) are marked in green, connected by
short linker region aa 198-206. The C-terminal region aa 267-285 is probably also involved in binding to choline residues of teichoic acids. (C) PrtA (AAK74791.1),
the signal peptide sequence aa 1-27 is depicted in red, the serine protease catalytic domain is illustrated in yellow, the DUF 1034 domain is shown in red. The C-
terminal anchoring motif is labeled in yellow. (D) SFP (ABJ54257.1), the signal peptide sequence (1-22 aa) is shown in red, the serine protease catalytic domain is
marked in blue. The length of each serine protease is given as the number of amino acids (aa). HDS, histidine, aspartate and serine; TM, transmembrane domain;

contains one or more PDZ domain(s) (Fan et al., 2011; Backert
etal,, 2018; Singh et al., 2018). In some situations, such as protein-
protein interactions, the HtrA-PDZ domain acts as a protein
folding stress sensor and controls the pyrolytic activity
(Murwantoko et al., 2004; Wilken et al., 2004; Hasselblatt et al.,
2007). Thus, the PDZ domains are responsible for recognizing and/
or binding substrate proteins (Marquart, 2021). Fan et al. solved the
pneumococcal HtrA-PDZ structure (Fan et al., 2011), which
contains three o-helices and five B-strands (amino acid residues
262-386). Moreover, a comparison of the amino acid sequences of
HtrA-PDZ domains in different bacterial species showed that the
pneumococcal PDZ domain, which is most likely involved in the
ligand recognition, has only a moderate sequence similarity and
conserved secondary structure (Bohnsack et al., 2000).

The importance of HtrA in S. pneumoniae has been addressed
in many studies. For instance, HtrA was shown to play an
important role in pneumococcal competence, which is still
challenging to understand due to the conflicting results. One
study has shown that the HtrA protease is important for
competence because the pneumococcal transformation efficiency
was highly reduced in the AtrA-mutant (Ibrahim et al., 2004b). In
another study, the proteolytic activity analysis, which was
performed with purified recombinant pneumococcal HtrA,
revealed that HtrA cleaves the pneumococcal competence-
stimulating peptide (CSP) in vitro (Cassone et al., 2012). Since

CSP has a significant effect on pneumococcal transformation
(Pestova et al., 1996), this fact suggests that HtrA has a
considerable role in pneumococcal transformation efficiency and
is needed for competence. In this study it has also been shown that
the deletion of htrA or catalytic residues did not affect natural DNA
competence (Cassone et al., 2012). However, the mutation
strategies and transformation settings used in these two studies
were different. It can be assumed that HtrA is necessary for the
transformation process after the competence machinery is turned
on by CSP. If the competence genes are expressed, CSP is not
needed anymore and can be degraded by HtrA. Functional CSP
seems to inhibit the transformation efficiency.

The specificity of HtrA toward CSP peptide degradation is
based on a phenylalanine (nonpolar) residue. The addition of
denatured bovine serum albumin (BSA) inhibits the CSP peptide
from being cleaved by HtrA (Cassone et al., 2012). S. pneumoniae
expresses several proteins contributing to competence, which are
highly decreased during competence followed by stabilization with
the exception of ComEA and ComEC. These membrane proteins
are essential for pneumococcal transformation and responsible for
DNA uptake (Liu et al., 2019). While htrA-mutants in the previous
study have shown a lower transformation efficiency (Ibrahim et al.,
2004b), ComEA or ComEC degradation was not evident. This
suggests that HtrA plausibly degrades these proteins at later stages
of competence (Liu et al.,, 2019). Last but not least, the regulation of
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HtrA seems to be dependent on bacterial culture conditions. It was
shown that HtrA inhibits competence in a complex medium but
not in a chemically defined medium (Petit et al., 2001). Overall,
these findings show that HtrA acts as a competence regulator at the
protein level and that environmental factors influence its
regulation. Aside from the involvement of HtrA in competence,
HtrA has been shown to be upregulated and controlled by the two-
component regulatory system CiaRH (Sebert et al., 2002). A recent
study showed that HtrA regulated by CiaRH is responsible for
penicillin-binding protein 2x (PBP2x) degradation (Peters et al.,
2021). In addition, HtrA is important for nasopharyngeal
colonization and pneumococcal virulence (Sebert et al., 2002; de
Stoppelaar et al., 2013; Ali et al., 2021).

MOLECULAR ANALYSIS OF THE SERINE
PROTEASE CbpG

The human pathogen S. pneumoniae expresses a special class of
surface-proteins known as choline-binding proteins (CBPs). A
common feature of this family of proteins is that they have a
modular organization and are composed of at least two domains: a
functional module (FM) and a choline-binding module (CBM).
CBPs are found in pneumococci or closely related species (Garcia
et al.,, 1988; Sanz et al., 1992; Albrich et al., 2004; Blasi et al., 2012).
The repetitive sequences of the CBM associate CBPs in a non-
covalent manner to the cell wall by their interaction with
phosphorylcholine residues of PGN-anchored WTA and
membrane-anchored LTA (Peérez-Dorado et al.,, 2010; Maestro
and Sanz, 2016). The CBM consists of three to eighteen repetitive
sequences (CBRs) of about 20 amino acids (Pérez-Dorado et al.,
2012; Galan-Bartual et al., 2015; Hilleringmann et al., 2015). Apart
from LytB and LytC, the CBM is located in the C-terminal part of
the protein, whereas the FM is located in the N-terminal region
(Peérez-Dorado et al., 2010). The number of CBPs in S. pneumoniae
ranges from 13 to 16 proteins and is strain-dependent (Gosink
et al, 2000; Maestro and Sanz, 2016). Notably, CBPs play an
essential role in the integrity of the cell wall, colonization processes,
and interaction with host cells (Maestro and Sanz, 2016).
Pneumococcal CbpG is a member of the CBP family, which also
plays a significant role in pneumococcal mucosal colonization and
during sepsis (Garcia-Bustos and Tomasz, 1987; Gosink et al,
2000). CbpG belongs to the peptidase S1, PA clan superfamily of
peptidases, and is a trypsin-like serine protease (Kanz et al., 2005).
The protein sequence indicates that this protein possesses a
chymotrypsin-like fold and double B-barrel structure with a
carboxyl-terminal choline-binding domain (NCBI, 2016; Yang
et al,, 2020). CbpG is considered to be a multifunctional surface-
exposed serine protease with both proteolytic and adhesive
functions (Gosink et al., 2000; Mann et al., 2006; Kazemian et al.,
2018). These various functions of CbpG are necessary for the full
virulence potential of S. pneumoniae. Such multifunctional
proteinases can be found in many pathogenic bacterial species,
and the C5a peptidase of group B streptococci (Beckmann et al.,
2002; Cheng et al., 2002) and the well-characterized Pla surface
protease from Yersinia pestis (Kukkonen and Korhonen, 2004) are
striking examples.

Depending on the pneumococcal strain and serotype, there are
at least two variants of CbpG produced by pneumococci. The
truncated variant without CBM is shortened due to a premature
stop codon after the N-terminal catalytic functional module and
found in D39 (serotype 2), Hungary19A-6 (19A), R6 (2) and ST556
(19F) (Figure S1). This variant is secreted and then released into the
environment. In contrast, the full-length CbpG containing a CBM
is cell wall-associated (Mann et al., 2006). The modular
organization of CbpG (Figure 2B) shows that the catalytic
residues are present independent of expressing a full-length
protein, including a CBM or a truncated version without a
functional CBM. In both configurations, the proteins exhibit
proteolytic activity as confirmed earlier (Mann et al., 2006). Our
genome re-analysis showed a high sequence identity and similarity
of CbpG among various pneumococcal serotypes indicating CbpG
is highly conserved and abundant among the different
pneumococcal strains (Table 1). The molecular analysis of full-
length CbpG (sp_0390) in TIGR4 (Tettelin et al., 2001) comprises
285 aa with a molecular weight of 32 kDa, as shown in Figure 2B.
According to our SignalP 4.0 analysis, a leader peptide (secretion
signal peptide) is not present in all analyzed serotypes except for
serotype 19F strain ST556 (Figure S1). Therefore, it is still unknown
whether and how CbpG is translocated from the cytoplasm to the
bacterial cell surface. The functional domain is the trypsin-like
domain with 184 aa spanning from aa 14-197, containing the
catalytic triad His**-Asp®’-Ser'>” as predicted by the 3D structure
analysis (Figure 3). Previous sequence analysis demonstrated 47%
similarity of this domain to the S1 family of multifunctional surface-
associated serine proteases (Mann et al., 2006). Furthermore, this
domain is linked to the CBM by a short linker region (**Lys-Pro-
Phe-Ile*) that provides flexibility to the protein and may provide
stability to the catalytic domain. This catalytic functional module
exhibits sequence similarities to trypsin-like serine proteases
present in all CbpG variants (Gosink et al., 2000; Mann et al., 2006).

Moreover, it has been mentioned that the CBM, whichis e.g., in
strain TIGR4, exhibits only three choline-binding repeats (CBRs),
which are located at position aa 207-265. This represents the
shortest identified CBM among all choline-binding proteins. It
has been proposed that at least four repeats are needed to attach the
protein non-covalently to the teichoic acids of the cell wall (Yother
and White, 1994) Therefore, it is still unknown if CbpG can bind
to the bacterial cell surface when only three choline-binding
repeats are present. In deletion studies of the CBM from the
pneumococcal LytA amidase (Mellroth et al., 2014), it has been
hypothesized that a higher number of CBRs leads to a higher affinity
for teichoic acids of S. pneumoniae (Maestro and Sanz, 2016).

The CbpG amino acid sequence model was analyzed (Ali et al.,
2021) and suggests that a fourth CBR at position aa 267-285 might
attach CbpG to teichoic acids and allows the protein to be surface-
associated. This repeat includes the aromatic residues YW and
fulfills the number of aromatic residues involved in choline-
binding (Waterhouse et al., 2009). The protein sequence
homology of the CbpG to orthologues of other bacterial species
was analyzed as well. Significant homologies of CbpG (40-56%)
were found to serine proteinases of different bacterial species such
as Enterococcus faecalis, Staphylococcus aureus, and Salmonella
enterica (Table 2).
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(Schrodinger, 2020-4).

FIGURE 3 | Predicted homology models of the pneumococcal serine proteases. Catalytic residues aspartate (D), histidine (H), and serine (S) are shown as sticks in
detail for (A) SFP, (B) PrtA, (C) HtrA, and (D) CbpG. The calculations were performed within the Multiple Sequence Viewer/Editor application in Maestro

CELL WALL-ASSOCIATED SERINE
PROTEASE PrtA

The protease PrtA belongs to the family of subtilisin-like proteases
(also known as subtilases), which are part of S8 family peptidases
(Bethe et al., 2001; Marquart, 2021). Pneumococcal PrtA is related
to serine proteases present in lactococci, cleaving the amino-
terminal leader sequences from lantibiotics (Blum et al., 2021).
Lantibiotics are bacteriocin peptides that are bactericidal to
outcompete other bacteria (Marquart, 2021). Interestingly, both,
streptococci and lactococci exhibit a wide range of endopeptidase
activity (Siezen, 1999).

In pneumococci, PrtA is a major surface serine protease
involved in pneumococcal virulence (Zysk et al.,, 2000; Bethe
et al., 2001). The role of PrtA in colonization and subsequent
host invasion seems to be strain-specific (Mahdi et al., 2015).
The first report on pneumococcal PrtA protease highlighted
the immunogenicity because of its identification using
convalescent-phase serum (Zysk et al.,, 2000). Interestingly, a
previous study showed that PrtA is a highly conserved
virulence factor in pneumococci and is found in almost all
strains (Bethe et al, 2001). Both in silico analysis and flow
cytometry confirmed that PrtA is surface localized (Wizemann
et al., 2001).
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The first molecular characterization of PrtA was done in 2001
(Bethe et al.,, 2001). Bethe and co-workers (Bethe et al., 2001)
showed that pneumococci produce PrtA with different molecular
weights. One variant produced by pneumococci has a molecular
weight of 240 kDa, whereas a truncated form has only a
molecular weight of 215 kDa, which cannot be explained by
signal peptide cleavage only. The same observation was also
found in the related proteases PrtP proteins of Lactobacillus
paracasei and Lactococcus lactis (Vos et al., 1989; Holck and
Naes, 1992). The full-length PrtA (strain TIGR4 sp_0641) form
has a molecular weight of 240 kDa (2140 aa). The calculated mature
form of PrtA has a molecular weight of 234 kDa after cleavage of the
leader peptide and integration into peptidoglycan by sortase A.
Furthermore, PrtA contains a typical sortase A recognition LPKTG
motif spanning aa 2099-2140 followed by a hydrophobic region at
the carboxy-terminus. The sortase A catalyzes covalent anchoring
to the bacterial PGN (de Stoppelaar et al., 2013; Ali et al., 2021).
PrtA consists of two domains, the active peptidase-S8 domain,
which contains the typical catalytic triad (Asp>**-His**- Ser®),
spanning the region between aa 223-764 (Bethe et al., 2001; Ali
et al., 2021). The second domain is a DUF-1034 (domain of
unknown function), which consists of 140 amino acids and is
localized between aa residues 795-934. The modular organization
of PrtA is illustrated in (Figure 2C).

Of interest, the multisequence alignment of PrtA catalytic triad
residues (Asp***-His***-Ser®) were highly homologous to other
related bacterial species of subtilisin-like serine proteases. These
catalytic triads showed a high degree of similarity and identity to
the cell wall-associated proteases of Streptococci, Lactococci, and
lactobacilli (Bethe et al., 2001; Bonifait et al., 2010).

Finally, the complete protein sequence homology to
orthologues of other bacterial species was analyzed. As
indicated in Table 2, PrtA shares significant similarities with
other streptococcal subtilisin-like proteases. Interestingly, PrtA
seems to be highly immunogenic in humans and mice; two
segments of PrtA, the amino-terminal and carboxy-terminal
thirds were found to be protective (Wizemann et al., 2001).

SUBTILASE FAMILY PROTEIN SFP

The SFP serine protease (known as serine peptidase) is another
enzyme able to cleave leader peptides from lantibiotics (Marquart,
2021). Similar to the PrtA protease, SFP belongs to subtilisin-like/
or S8-family serine proteases. In S. pneumoniae D39 strain, SFP
was identified as epidermin leader peptide processing serine
protease EpiP (de Stoppelaar et al., 2013; Marquart, 2021).

The comparative analyses of sfp genes in S. pneumoniae strain
D39 spd_1753 (1740 nt, 579 aa), and TIGR4 sp_1954 (1404 nt,
467 aa) was performed using the SYBIL database (Riley et al.,
2011). The MSA analyses showed a shorter version of the sfp gene
in TIGR4 compared to sfp of D39 and other strains (Figure S2).
The truncation of sfp in strain TIGR4 is based on the deletion
of one base (A) at position 1381. Instead of 8 A bases in a row,
only seven are present in strain TIGR4, which was confirmed by
DNA sequencing of the TIGR4 sfp gene. The generated frameshift
leads to the premature stop at position 1404. Hence, this

truncated SFP of TIGR4 cannot be covalently anchored to the
peptidoglycan. Instead, TIGR4 SFP is secreted into the
extracellular environment. However, these data have to be
experimentally verified.

Based on the molecular characterization of SFP (de Stoppelaar
etal, 2013; Ali et al., 2021), its secretion and protease activity has
been predicted. The full-length SFP has a molecular weight of 64.9
kDa and exhibits an N-terminal signal peptide (aa 1-22) and a C-
terminal LPNTG anchoring motif which is thought to be
functional as a target site for the sortase A and anchoring the
protein to PGN (Marraffini et al.,, 2006). In addition, the peptidase
domain spanning the aa residues 167-461 contains the catalytic
triad (Asp176—H15223—Ser429) (Figure 2D and Figure 3A).

Furthermore, the genomic organization of the SFP locus in S.
pneumoniae 19F and TIGR4/D39 strain is different. The sfp gene
and six upstream and three downstream genes present in strain
TIGR4 are not present in S. pneumoniae strain 19F EF3030 (Ali
et al,, 2021). Even more, the subtilisin-like protein SFP was not
present in all the analyzed strains as observed by our in silico
analysis (Table 1). Therefore, pneumococci have at least three
serine proteases in the 19F_EF3030 strain (Ali et al., 2021), but
probably four in most strains, such as D39 (serotype 2), TIGR4
(serotype 4), ST81 (serotype 23F), JJA (serotype 14), and R6
(serotype 2). However, the role of SFP in pneumococcal
virulence is still unknown.

COMPUTER-ASSISTED 3D STRUCTURAL
MODELS OF THE CATALYTIC DOMAIN OF
SERINE PROTEASES

The HtrA of E. coli is well characterized and studied in detail for its
functional role as chaperone and protease. The crystal structures of
HtrA from E. coli, Campylobacter jejuni or Termotoga maritima
showed that the active protease at elevated temperature is
composed at least as a trimer by hydrophobic interaction of the
subunits (Kim et al., 2003; Zarzecka et al., 2020). By using
computer-assisted analysis, we compared the catalytic center of
all four serine proteases from pneumococci. The calculations were
performed within the Multiple Sequence Viewer/Editor
application in Maestro (Schrodinger, 2020-4) using an energy-
based approach. Templates were obtained by BLAST search in the
PDB database (SFP: 4MZD; PrtA: 5FAX; HtrA: 5ZV]; CbpG:
1P3C) (Figures S3-6). As mentioned, all serine proteases have in
common the typical Ser-His-Asp triad, where the histidine is
polarized through hydrogen bonding by aspartate, resulting in a
polarization of serine and increased nucleophilicity of the hydroxyl
oxygen atom. The highly conserved arrangement and distance
between these three amino acids are crucial to form the catalytic
center for the cleavage of peptide bonds.

On the one hand, the comparison revealed a quite similar
catalytic domain structure between HtrA and CbpG with the
common double I*-barrel core motif adjacent to the catalytic
triad. The Asp and Ser residues are localized on flexible loop
structures, whereas the His residue is localized on a small helical
fold (Figure 3). On the other hand, a similar subtilisin-like catalytic
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domain of SFP and PrtA was observed by this modeling. Here, the
overall fold consists of a dominant 7-stranded parallel B-sheet, with
the catalytic Asp on the first strand (S1) and five o-helices
containing Ser and His. While the core catalytic motif seems
quite similar, a protease-associated domain is found within the
amino acid sequence of the PrtA catalytic domain, which may
mediate protein-protein interactions or substrate specificity. Due
tolow sequence identity, it was omitted for the homology modeling
and should be further explored. Because this is only a simplified
view of the active proteolytic centers of these serine proteases, there
are ongoing efforts to purify the recombinant serine proteases for
X-ray crystallography.

THE IMPACT OF PNEUMOCOCCAL
SERINE PROTEASES ON
PNEUMOCOCCAL PATHOGENESIS

S. pneumoniae are versatile pathogens that modulate the immune
response and circumvent host immune defense mechanisms. The
enzymatic protease activity during pneumococcal infections can
contribute to the destruction of the epithelial barrier or degradation
of ECM components (Ljungh et al., 1996). Next, pneumococci try
to establish a more severe infection by either transmigrating or/and
disseminating to lungs, blood, middle ear, or the central
nervous system.

Pneumococcal express various proteases and peptidases,
which are involved in colonization, pneumonia, and septicemia
(Marquart, 2021). In particular, pneumococcal serine proteases
seem to play a role in invasive processes. In terms of specificity,
substrates for serine protease are mainly the ECM component
proteins, fibrin clots, cell membranes, and host immunomodulatory
factors such as chemokines and cytokines (Frolet et al., 2010;
Kim et al., 2010; Ruiz-Perez and Nataro, 2014).

Pneumococcal serine proteases might be involved in cleavage
of adherence junctions or gap junction proteins to facilitate
the pneumococcal paracellular route, which results in crossing
of the epithelial barrier dissemination in the bloodstream.
Recently, the impact of serine proteases on adherence,
colonization, and subsequent virulence has been shown in
various studies (Table 2).

The first description of various pneumococcal serine
proteases along with their susceptibilities to different inhibitors
was in 1991 (Courtney, 1991). Already at that time, their
important role in pneumococcal pathogenesis had been
reported and indicated by the degradation of host tissue
components such as fibronectin, fibrinogen, elastin, laminin,
and blood proteins. As has been mentioned before,
pneumococcal serine proteases are virulence factors either
secreted and/or bound to the bacterial cell surface. The benefit
of expressing serine proteases is likely a higher efficiency in
colonizing the nasopharyngeal cavity (Ali et al., 2021). To date,
studies on pneumococcal serine proteases have been only
marginally concentrated on their role in virulence-associated
processes such as adhesion, colonization, or host defense evasion.
Nevertheless, this section discusses the individual or combined

impact of pneumococcal serine proteases HtrA, CbpG, PrtA, and
SFP on pneumococcal colonization and how they contribute to
host-pathogen interactions.

The Extracellular HtrA Serine Protease

Is Involved in Colonization and Invasive
Disease

HtrA has been considered as one of the most important virulence
factors associated with infectious diseases of various Gram-
positive and Gram-negative bacteria. In general, HtrA protease
significantly influences various functions such as bacterial fitness,
adaptation to environmental stress, or enhance pneumococcal
virulence (Murwantoko et al., 2004; Kochan and Dawid, 2013;
Backert et al., 2018). Moreover, surface-exposed HtrA promotes
nasopharyngeal colonization, whereas secreted HtrA facilitates
the subsequent invasion of host tissue by degrading ECM
components (Backert et al., 2018).

As mentioned above, HtrA is the best studied pneumococcal
serine protease and was described for the first time 20 years ago.
Subsequently, the influence of HtrA on pneumococcal
pathogenesis has been addressed in several studies. For
example, it has been shown that HtrA is upregulated and
controlled by the two-component system (TCS) CiaRH (Sebert
et al., 2002). Likewise, HtrA is considered one of the most critical
serine proteases in pneumococcal virulence because HtrA
degrades the competence stimulating peptides (CSPs), which
impacts pneumococcal competence and late competence genes
affect virulence (Ibrahim et al., 2004a; Ibrahim et al., 2004b;
Cassone et al., 2012). Importantly, mice infection studies with S.
pneumoniae D39 demonstrated that the deficiency of HtrA
decreases bacterial load and inflammation in the lung after
intranasal infection (de Stoppelaar et al., 2013).

Pneumococcal biofilms represent well-known pathophysiologically
relevant conditions with a vital role in bacterial colonization,
persistence and chronic infections (Domenech et al., 2012). In
certain host compartments, pneumococci are protected against the
attack of the immune system by forming sessile colonies embedded
in an extracellular matrix of polysaccharides representing the
biofilm. Recently, HtrA has been shown to modulate bacterial
release (biofilm dispersal) from heat-induced biofilms, which were
mimicking fever conditions (Chao et al., 2020).

During influenza-pneumococcal co-infections, HtrA induced
the inflammation when highly expressed, thereby enhancing the
bacterial load in a mouse pneumonia model (Sender et al., 2020).
However, the underlying molecular mechanisms of how HtrA is
implicated in colonization and invasion are not clearly understood.
This raises the question of whether the HtrA protease degrades
host proteins directly or do they have more complicated post-
translational activities. The contribution of HtrA as chaperone or
serine protease in pneumococcal attachment to epithelial cells and
to deeper tissue is summarized in Figure 4A.

It is hypothesized that pneumococci can use the paracellular
route to avoid intracellular killing and invade human host tissues
(Iovino et al., 2016). To achieve this goal, pneumococci have to
cleave proteins of adherences junction (AJ) and tight junctions
(TJ) such as epithelial cadherin (E-cadherin), occludins, and
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claudins (Devaux et al., 2019). Interestingly, stimulation of Toll-
like receptors (TLRs) during pneumococcal infections down-
regulate claudins, facilitating pneumococci movement across the
epithelium (Clarke et al., 2011). Furthermore, in human lungs
that are infected with pneumococci, a reduction of alveolar
occludin, ZO-1, claudin-5, and E-cadherin, was observed
(Peter et al.,, 2017). Besides S. pneumoniae, many bacterial
species possess a serine protease HtrA ortholog and the impact
of HtrAs on bacterial pathogenesis was reviewed recently
(Backert et al., 2018). Most of the HtrAs can cleave adherence
junctions, tight junctions, and ECM proteins such as fibronectin
and proteoglycans, leading to a disruption of the epithelial
barrier and, this mode of action is, therefore, critical for the
host cell damage (Table 2).

The serine protease HtrA of Helicobacter pylori represents a
crucial secreted virulence factor (Schmidt et al., 2016). The
disruption of the gastric epithelium leads to the transmigration
of H. pylori across the epithelium and facilitates the oncogenic
CagA protein injection into host cells. Consequently, HtrA can get
into the extracellular space where it cleaves cell-to-cell junction
factors, such as E-cadherin, leading to a disruption of the epithelial
barrier, which then enables paracellular transmigration of the
bacteria (Zawilak-Pawlik et al., 2019). E-cadherin belongs to
the cell adhesion molecule superfamily (CAM) and represents
the target of several pathogenic bacteria, which invade the host
(Hulpiau and van Roy, 2009; Devaux et al.,, 2019). Interestingly,
E-cadherin was described as an adherence receptor for the
pneumococcal surface adhesin A (PsaA), which is also acting as a
substrate-binding protein for manganese (Anderton et al., 2007).

Collectively, it seems that the involvement of HtrA in bacterial
pathogenesis and the enzymatic activity of HtrAs have a common
origin among (pathogenic) bacteria. Considering that bacterial
HtrAs show high similarities, particularly their catalytic domain,
two strategies are possible and may explain the functionality of
HtrA. First, the surface localization of HtrA can significantly
influence adherence and colonization as has been indicated
earlier (Sebert et al., 2002; Ali et al., 2021). Second, HtrA
undergoes the auto-cleavage process (Jomaa et al., 2009), and
due to the secretion of HtrA into the environment, HtrA can
degrade host components to facilitate invasion. These activities
may explain data showing that a deficiency of HtrA in S.
pneumoniae leads to a reduced bacterial load in the blood, liver,
and spleen (Ibrahim et al., 2004b; de Stoppelaar et al., 2013). So far,
itis not known if the pneumococcal HtrA can degrade occludins or
E-cadherin. Therefore, further analysis is needed to prove that
HtrA from pneumococci also cleaves E-cadherin and to determine
other substrates of HtrA.

The CbpG Serine Protease Cleaves ECM
Proteins and Contributes to Adherence
Pneumococci must degrade the extracellular matrix to be able to
disseminate in the host and cause invasive disease successfully. This
requires the proteolytic activity of host acquired or self- proteases
on the bacterial cell surface of the pneumococci. It is well known to
date that several of the CBPs produced by pneumococci have
multiple functions. The functions among CBPs are quite diverse,
including proteolytic activity of the CbpG protein (Gosink et al,

2000). The importance of CbpG in pneumococcal pathogenesis is
demonstrated by the fact that the gene encoding CbpG is
upregulated in all in vivo niches (Mahdi et al., 2008). As
mentioned above, in silico analysis of clinical isolates showed
that S. pneumoniae express either a variant with a functional
CBM attaching CbpG to the cell surface or a variant without a
functional CBM leading to secretion of CbpG in the host
environment (Mann et al., 2006). The truncated CbpG variant is
nevertheless able to degrade ECM deposited fibronectin and casein
via its trypsin-like serine protease similarly to the other variant
(Mann et al., 2006). However, a functional CBM in the C-terminal
part of CbpG is needed to contribute to pneumococcal adherence
and colonization.

CbpG deficient pneumococci of strain 19F_EF3030 and
TIGR4 showed a significant attenuation in in vivo rat or mice
colonization models and reduced adherence to human epithelial
cells (Mann et al., 2006; Ali et al., 2021). In addition, the
mortality was reduced in a septicemia infection model with
infant rats (Gosink et al., 2000). These studies indicated the
importance of the serine protease CbpG as a factor modulating
nasopharyngeal colonization and dissemination in the blood
(Gosink et al., 2000; Ali et al., 2021). Therefore, CbpG could
play a role in pneumococcal transition to the blood, which may
be due to its fibronectin-cleaving potential (Mann et al., 2006).

The dual functions of CbpG, cleavage of host substrates and
contributing to adherence to epithelial cells correlate with a
substantial defect in the colonization of the nasopharynx by a
cbpG-mutant (Figure 4B). On the one hand, one can also
speculate that the proteolytic activity of CbpG on the bacterial
cell surface can modify other pneumococcal surface proteins and
enable them to interact with host cell receptors or soluble host
proteins. On the other hand, CbpG probably modifies the ECM
and eukaryotic cell surface, thereby facilitating adhesin-receptor
interactions. These are still speculations and may also account
for the other proteases. However, so far, no data are yet available
supporting these ideas.

Dual Role of Pneumococcal PrtA in
Pneumococcal Pathogenesis

The cell wall-associated serine protease PrtA plays atleast dual roles
in pneumococcal infections. First, PrtA contributes to the cleavage
of the human apolactoferrin to lactoferricin-like peptide, which
serves as a cationic antimicrobial peptide and facilitates the killing
of pneumococci (Figure 4C). This function is in a way surprising
because it counteracts the virulence potential of pneumococci
(Mirza et al., 2011). Second, PrtA is one of the largest
pneumococcal surface proteins with a molecular weight of 240
kDa and is suggested to have adhesive functions similar to other
sortase-anchored pneumococcal proteins (Frolet et al., 2010; Ali
etal., 2021). A triple serine protease mutant of TIGR4 expressing
only PrtA was significantly attenuated in the acute pneumonia
model (Alietal.,2021). This mutant is deficient in HtrA, and CbpG,
which were shown be major virulence factors in pneumococcal
pathogenesis (Mann et al., 2006; de Stoppelaar et al., 2013). In a
systemic mouse infection model, mice infected with the prtA-
mutant of strain D39 have extended survival times compared to
wild-type infected mice (Bethe et al., 2001). The prtA-negative
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strain is significantly attenuated in an intranasal mouse infection
model. Thus, expression of the gene encoding PrtA is confirmed to
be upregulated in the blood (Mahdi et al., 2015). In addition, by
applying the experimental nasopharyngeal mouse colonization
model and using strain S. pneumoniae 19F it was shown that
PrtA is necessary for an optimal colonization (Alietal.,2021). More
important, the use of a triple knockout in 19F lacking, therefore, all
serine proteases, clearly indicated that serine proteases are
indispensable for pneumococcal colonization (Ali et al., 2021).

Similar to other serine proteases PrtA degrades ECM
components such as collagen IV and plasminogen, which
suggests that this activity fosters pneumococcal transcytosis of
the mucosal barrier and spread to the bloodstream (Frolet et al.,
2010; Mahdi et al., 2015). PrtA was also shown to stimulate the
IL-17A response, which is a significant mediator of tissue
inflammation (Hsu et al., 2018). Although the impact of PrtA
on pneumococcal colonization and invasive disease as well as its
substrate specificities has to be explored in greater detail, the
reported data are a strong hint for the importance of PrtA during
colonization, inflammation, and invasive disease. Because PrtA is
highly conserved and immunogenic, it might represent a
promising candidate for a proteinaceous serotype-independent
multi-component vaccine.

The Unknown Functional Role of
Pneumococcal Serine Protease SFP

The involvement of SFP in the pathogenesis of pneumococcal
infections is still not apparent because of the minor effect of the
sfp-mutant on virulence in experimental mouse infection models
(de Stoppelaar et al., 2013).

SEP is not present in all pneumococcal strains and serotypes,
as indicated in Table 1. However, the SFP protein shows high
homology to the cell surface serine endopeptidase CspA (Bryan
and Shelver, 2009), which is one of the important virulence
factors for the human pathogen Streptococcus agalactiae (de
Stoppelaar et al,, 2013). Opsonophagocytosis of bacteria by
host immune cells is one of the critical outcomes of classical
complement activation (Harris et al., 2003). The complement
component C3b deposited on the S. agalactiae cell surface can be
cleaved by CspA, indicating the importance of CspA for immune
evasion (Bryan and Shelver, 2009). So far, the impact of
complement inactivation by its pneumococcal orthologue SFP
is not known. In conclusion, the role of SFP for pneumococcal
fitness, virulence, or immunomodulation needs further
investigation and it will be interesting to identify SFP substrates.

CONCLUSION AND FUTURE
PERSPECTIVES

Serine proteases in pathogenic bacteria are, in general, key
virulence determinants. In pneumococci, serine proteases have a
function during colonization and pneumonia. This review article
covers the molecular biology of pneumococcal serine proteases and
their pivotal role in pathogenesis, starting from adherence,
colonization, and immune evasion. Our in silico analysis in

combination with hypothetical structural models revealed that
the functional domains of pneumococcal serine proteases CbpG,
HtrA, and PrtA, are highly conserved. The exception is SFP, which
is produced only by a subset of strains. All serine proteases are
secreted to the cell surface and depending on the variant, even
released in the host environment. The 3D models show that the
HtrA catalytic domain displays homologies to the CbpG catalytic
domain, while SFP is quite similar to the catalytic domain of PrtA
(Figure 3). Although all serine proteases have a typical catalytic
triad, they might have different but also overlapping substrate
specificities. The redundancy of serine proteases and probably their
compensatory effect in the absence of one or more serine proteases
makes it difficult to assess their individual contribution to
pneumococcal fitness and virulence. Thus, all studies are in parts
limited in their conclusions because of the redundancy of these
serine proteases. This, in turn, leaves gaps of knowledge such ase.g.,
substrate specificities and host compartment specificities that have
to be deciphered in experimental in vivo and advanced in vitro
models. The immunogenicity of functional domains of
pneumococcal serine proteases in combination with their highly
conserved protein sequences fulfills one of the requirements for a
protein-based serotype-independent (multi-) component vaccine.
The individual potential as a vaccine candidate has, however, to be
validated experimentally.
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