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Periodontal disease depends on the presence of different microorganisms in the oral
cavity that during the colonization of periodontal tissues form a multispecies biofilm
community, thus allowing them to survive under adverse conditions or facilitate further
colonization of host tissues. Not only numerous bacterial species participate in the
development of biofilm complex structure but also fungi, especially Candida albicans,
that often commensally inhabits the oral cavity. C. albicans employs an extensive armory
of various virulence factors supporting its coexistence with bacteria resulting in successful
host colonization and propagation of infection. In this article, we highlight various aspects
of individual fungal virulence factors that may facilitate the collaboration with the
associated bacterial representatives of the early colonizers of the oral cavity, the
bridging species, and the late colonizers directly involved in the development of
periodontitis, including the “red complex” species. In particular, we discuss the
involvement of candidal cell surface proteins—typical fungal adhesins as well as
originally cytosolic “moonlighting” proteins that perform a new function on the cell surface
and are also present within the biofilm structures. Another group of virulence factors
considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic
enzymes. The specific structure of the candidal cell wall, dynamically changing during
morphological transitions of the fungus that favor the biofilm formation, is equally important
and discussed. The non-protein biofilm-composing factors also show dynamic variability
upon the contact with bacteria, and their biosynthesis processes could be involved in the
stability of mixed biofilms. Biofilm-associated changes in the microbe communication
system using different quorum sensing molecules of both fungal and bacterial cells are
also emphasized in this review. All discussed virulence factors involved in the formation of
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mixed biofilm pose new challenges and influence the successful design of new diagnostic
methods and the application of appropriate therapies in periodontal diseases.
Keywords: periodontitis, multispecies biofilms, candidal virulence factors, adhesins, moonlighting proteins,
secreted aspartic proteases, quorum sensing
BACTERIA INVOLVED IN THE
PERIODONTAL DISEASE

Periodontal diseases, belonging to the most common oral diseases
worldwide, exert far-reaching consequences for human health,
being associated with further systemic diseases such as
cardiovascular diseases, diabetes, insulin resistance,
gastrointestinal and colorectal cancer, respiratory tract infection,
Alzheimer’s disease, and adverse pregnancy outcomes (Kassebaum
et al., 2014; Whitmore and Lamont, 2014; Hajishengallis, 2015;
Sonti and Fleury, 2015; Vamos et al., 2015; Bui et al., 2019; Liccardo
et al., 2019; Dominy et al., 2019; Liu et al., 2021). The etiology of
periodontal diseases is based on the formation of the polymicrobial
community residing in the subgingival compartment where further
periodontal tissue colonizationdependson thepathogenicpotential
shaped by synergistic interactions within the community or
nososymbiocity (Hajishengallis and Lamont, 2012; Hajishengallis
and Lamont, 2016). The mutual microbial coexistence, often based
on the metabolic co-adaptations, can lead to microbe functional
specialization and changes of community participant properties
from commensal to pathogenic (Wright et al., 2013; Lamont and
Hajishengallis, 2015).

The simplest classification of bacteria involved in periodontal
disease development identifies the early colonizers, adhering to
mucosal and saliva-coated tissues that include primarily Gram-
positive facultative anaerobes suchasStreptococcus spp. (S. gordonii,
S.mitis, S. oralis, and S. sanguinis) andActinomyces spp. (Socransky
et al., 1998). They influence the local environment and collaborate
with the secondary colonizers such as Fusobacterium nucleatum,
which play the bridging function for co-aggregation, and a further
adhesion of the late colonizers includingPorphyromonas gingivalis,
Tannerella forsythia, and Treponema denticola, forming the “red
complex”. These species are thought to be the major etiologic
agents of periodontal diseases (Suzuki et al., 2013). Such
microbial succession is mediated not only by induction of
changes in the local habitat, including pH and redox potential
changes, or an oxygen level decrease, which favor the next colonizer
existence but also include the tight intercellular interactions
engaging the microbial surface adhesins (Kolenbrander et al.,
2006). However, the model of successive colonization has evolved
since the development of microarray techniques, showing that the
infection progress is a much more complex process.

It was proposed that P. gingivalis plays the function of the
keystone pathogen which, even at a low level of host colonization,
canorchestrate the inflammationbyremodelingofmicrobiota from
benign into a dysbiotic one (Hajishengallis and Lamont, 2016). The
physical interaction and diffusion of soluble factors can modulate
virulence gene expression and nososymbiocity of microbes (Frias-
Lopez and Duran-Pinedo, 2012). Mostly synergistic, the
gy | www.frontiersin.org 2
interactions include providing a substratum for attachment—as
was found for S. gordonii and P. gingivalis dual-species biofilm
(Kuboniwa et al., 2006), nutritional cross-feeding, identified for S.
gordonii metabolic by-product (L-lactate) promoting the
pathogenicity of A. actinomycetemcomitans (Ramsey et al., 2011),
and coordinated metabolic cross-talk found for P. gingivalis and T.
denticola, where the production of isobutyric acid by P. gingivalis
stimulates T. denticola growth, and secretion of T. denticola
succinate affects P. gingivalis cell development (see the review of
Miller et al., 2019). Such manipulation can increase the
pathogenicity of the whole microbial community (Hajishengallis
and Lamont, 2012; Hajishengallis et al., 2012).

Moreover, the condition of the host immune systemmodulated
by accompanying disorders or medical treatment can strongly
influence polymicrobial dysbiosis and the subsequent disease
progression itself (Hajishengallis and Lamont, 2021). As a
keystone pathogen (Hajishengallis, 2014), P. gingivalis can act on
thehost immunesystemaltering theToll-like receptor response and
facilitating the survival of the entire microbial community
(Darveau, 2010). P. gingivalis also influences interleukin-8
production by gingival epithelial cells, delaying neutrophil
recruitment to the infection site (Darveau et al., 1998; Hasegawa
et al., 2008; Hajishengallis and Lamont, 2014). Finally, the surface
exposed or secreted cysteine proteinases (gingipains), which
activate or degrade complement factors C3 and C5, may lead to
the avoidanceof complement-mediateddetectionof accompanying
microbiota (Hajishengallis and Lamont, 2012; Hussain et al., 2015).

These findings have also indicated that the analysis of mixed-
species community formation should be extended to the possible
inter-kingdom interactions between bacterial and commensal
fungal species belonging to the Candida genus, especially
Candida albicans which were found to influence the
colonization or metabolic activity of early, bridging, and
keystone pathogens of periodontal disease, leading to the onset
of severe caries in vivo (Wu et al., 2015; Hwang et al., 2017; Kim
et al., 2017; Sztukowska et al., 2018; Bartnicka et al., 2019;
Bartnicka et al., 2020).
C. ALBICANS ABILITY TO FORM A
MULTISPECIES BIOFILM COMMUNITY IN
PERIODONTAL DISEASES

C. albicans is the most commonly identified yeast in the oral
cavity of healthy people (Ghannoum et al., 2010; Baumgardner,
2019). A preliminary hypothesis that this fungus may be
involved in the development of chronic periodontal disease
was based on the analysis of samples taken from supragingival
and subgingival sites of patients with chronic periodontitis for
January 2022 | Volume 11 | Article 765942
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whom a higher C. albicans colonization rate was shown
compared with healthy individuals (Urzúa et al., 2008).
Moreover, the recent finding that C. albicans is the keystone
commensal in the oral cavity, which may form interspecies
networks with different bacteria, stressed the importance of
this fungus in periodontitis (Diaz et al., 2014; Janus et al.,
2016; De-La-Torre et al., 2018; Krüger et al., 2019; Young
et al., 2020; Jabri et al., 2021). Changes in the biofilm bacterial
composition in ecological niche shared with fungi may
encourage interspecies cooperation for the benefit of all
interacting partners, like evading host immune system or
enhancing biofilm properties, but may also become an
opportunity to compete for available space or nutrients
(Figure 1). Unfortunately, the biological consequences of the
interspecies interactions within biofilm in the course of
periodontitis, for both the particular microorganisms and the
host, still largely remain unclear.

For the group of early colonizers, including S. sanguinis, S.
oralis, S. mitis, and S. gordonii, the outcome of interactions with
fungi is not sufficiently well understood, and the available reports
often contradict to each other. However, all these species were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
shown to co-aggregate with clinical isolates of C. albicans
(Jenkinson et al., 1990). In the case of S. sanguinis, one of the
first reports suggested that the type of interspecies interactions
depends on the conditions of the specific niche, from which the
bacteria were derived. Prior exposure of C. albicans oral isolates
to S. sanguinis isolated from healthy and HIV-infected
individuals resulted in an inhibition or promotion of candidal
germ tube formation, respectively (Nair et al., 2001). Further in
vitro analyses showed that the addition of S. sanguinis and S.
mitis cells to C. albicans ATCC 18804 cells pre-incubated to
promote initial fungal adhesion considerably reduced fungal
CFU in mixed biofilm compared with single-species fungal
biofilm, while also the presence of S. mitis, but not S.
sanguinis, reduced C. albicans filamentation (do Rosário Palma
et al., 2019). These data contrast with a study of biofilm
formation on the salivary flow which showed that C. albicans
strain ATCC SC5314 exhibits an enhanced biofilm-formation
capacity in the presence of S. sanguinis and S. gordonii (Diaz
et al., 2012). Hence, the question remains whether or not a group
of early colonizers modulates fungal biofilm formation to
influence oral health or disease progression in the host
FIGURE 1 | The influence of oral bacteria on the virulence and pathogenicity of Candida albicans. The interactions of C. albicans and oral bacteria occur through
many mechanisms and may result in either reduction or enhancement of fungal virulence. For some bacteria, the published preliminary analyses have not yet
determined unequivocally the nature of the influence of bacteria on the development of mixed infection with C. albicans. AI-2, autoinducer 2; Aa, Aggregatibacter
actinomycetemcomitans.
January 2022 | Volume 11 | Article 765942
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organism. Furthermore, the study using Galleria mellonella as an
alternative model of mixed bacterial–fungal infection did not
show any significant changes in fungal abundance and
morphological changes during 12 h of co-infections of larvae
by C. albicans strain ATCC 18804, S. mitis, and S. sanguinis (do
Rosário Palma et al., 2019). However, for other bacterium from
the group of early colonizers—S. gordonii—a promotion of C.
albicans strain ATCC SC5314 biofilm formation was
demonstrated (Bamford et al., 2009). Since the S. gordonii luxS
mutant deficient in the production of quorum-sensing molecule
(QSM)—autoinducer 2 (AI-2)—possessed a reduced ability to
induce C. albicans hyphal formation and significantly reduced
biomass of mixed biofilm, it could be suggested that fungal–
bacterial interactions involve chemical signals that influence the
development of interspecies communities (Bamford et al., 2009).
Similar results were observed for S. oralis in the mucosal tissue
model, showing also that C. albicans strain ATCC SC5314
promoted bacterial biofilm growth, consequently increasing
further fungal invasion on the oral mucosa (Diaz et al., 2012).
The use of an in vitro oral infection model showed that S. oralis
promotes the spread of C. albicans strain ATCC SC5314 and the
development of systemic infection. Mice infected with both
pathogens presented an excessive inflammatory response,
dependent on TLR2 signaling, and increased neutrophilic
activity (Xu et al., 2014b). Thus, while S. oralis cells do not
have significant virulence properties, they provide suitable
conditions for promoting the virulence of C. albicans.

One of the possible advantages of the fungal interaction with
S. gordonii and S. sanguinis is an opportunity to utilize bacterial
cells as a kind of scaffold, as bacteria by their binding to enamel
prevent C. albicans removal from the oral cavity and initiate the
formation of fungal biofilm that may be additionally stabilized by
the extracellular release of bacterial DNA (O’Sullivan et al., 2000;
Bamford et al., 2009; Xu et al., 2014a; Jack et al., 2015). In S.
sanguinis, three pilus proteins PilA, PilB, and PilC were
identified as receptors through which bacteria bind to
components of saliva and become immobilized on the tooth
surface (Okahashi et al., 2011). Moreover, it has been
documented that the C. albicans interaction with S. gordonii is
mediated by streptococcal cell wall-anchored proteins SspA and
SspB with an additional involvement of proline-rich proteins
from saliva adsorbed on the surface of bacteria and recognized by
C. albicans cells (O’Sullivan et al., 2000; Bamford et al., 2009;
Xu et al., 2014a).

For the bridging colonizer of the oral cavity—F. nucleatum—
one of the first reports suggested that the co-aggregation with
clinical isolates of C. albicans was dependent on the temperature
of fungal culture (Jabra-Rizk et al., 1999), whereas other studies
showed that co-agglutination was hindered after heat treatment
and trypsinization of F. nucleatum cells, suggesting the
important role of bacterial surface proteins in these
interactions (Bagg and Silverwood, 1986; Grimaudo and
Nesbitt, 1997). Extensive in vitro studies have shown that the
physical contact between F. nucleatum and C. albicans strain
SN152, which is isogenic to strain ATCC SC5314, results in
inhibition of fungal growth and filamentation without altering
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
fungal cell viability (Bor et al., 2016). As C. albicans blastospores
were demonstrated to be less susceptible to attack by RAW 264.7
macrophages than the filamentous cells, it was postulated that
arresting the fungal morphological changes by bacteria weakens
the host immune response, for the benefits for both partners,
allowing them to go unnoticed and spread further to other
organs (Bor et al., 2016). This hypothesis was supported by the
experiments in which the co-incubation of F. nucleatum and C.
albicans significantly reduced the production of monocyte
chemoattractant protein-1 (MCP-1) and tumor necrosis factor
(TNF-a) compared with the response of the host cells during
single-species infection (Bor et al., 2016).

Furthermore, for P. nigrescens, one of the representatives of
the genus Prevotella classified as the bridging colonizer in the
oral cavity, it was shown that 48-h coculture with C. albicans oral
isolates inhibited the formation of fungal biofilm on the surface
of polystyrene plastic, manifested by the reduction of viable
biofilm cell mass (Thein et al., 2006). In the presence of a large
number of P. nigrescens cells (107/ml), a significant decrease in
the viability of C. albicans was also noticed, suggesting that the
modulation of fungal biofilm formation correlated with the
number of bacterial cells (Thein et al., 2006). Other studies
showed an inhibitory effect of P. intermedia, isolated from the
subgingival plaque of HIV-infected patients, on the formation of
C. albicans germ tubes (Nair et al., 2001). A similar effect was also
observed for another bacterium from the group of bridging
colonizers—Campylobacter—that through the secretion of
bacteriocin-like substances with antimicrobial activity inhibited
the growth of C. albicans laboratory strain ATCC 44859 as
detected using measurements of the zone of inhibition
(Workman et al., 2007).

The presence of the highly pathogenic bacterial periodontal
pathogen belonging to the red complex—P. gingivalis—not only
induced germ-tube formation by both oral isolates and C.
albicans reference strain ATCC 10231, resulting in the
generation of a more invasive fungal phenotype, but also
stimulated the adhesion and growth of fungal hyphae on the
artificial surface (Nair et al., 2001; Bartnicka et al., 2019).
However, other studies showed that the presence of many
bacteria (107/ml) was positively correlated with a reduction in
fungal oral isolates viability, indicating that they can inhibit the
formation of C. albicans biofilm (Thein et al., 2006). Rather than
to the blastospores or pseudohyphal form, P. gingivalis easily
adhered to the hyphae of C. albicans, and the interspecies
adhesion was mediated by bacterial InlJ—a homolog of the
internalin protein family—and by gingipain RgpA (Sztukowska
et al., 2018; Bartnicka et al., 2019). Recent extensive in vivo and in
vitro studies using C. albicans reference strain ATCC 10231 have
determined the effect of a dual-species infection on the host
(Karkowska-Kuleta et al., 2018; Bartnicka et al., 2020). Using
monocyte-like cell line THP-1, it was shown that the coexistence
of bacteria with C. albicans downregulated the expression of
genes, encoding MCP-1, TNF-a, and interleukin-1b (IL-1b),
compared with the response generated by the host cells in
contact with monospecies bacterial infection (Karkowska-
Kuleta et al., 2018). Suppressing the host immune response
January 2022 | Volume 11 | Article 765942
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during dual-species infection was also postulated from the
observed lowered neutrophil response, manifested by a
significantly reduced elastase activity than in the case of pure
bacterial biofilm (Bartnicka et al., 2020). A well-established
model used to in vivo mimic the dynamics of the infection
process is the subcutaneous chamber mouse model in which
titanium or stainless steel wire coils are implanted
subcutaneously in the dorsolumbar region of each mouse. The
possible access to the contents of the chamber after the healing
period allows it to be used as a biological compartment for
studying host–microbe interactions (Genco et al., 1991; Houri-
Haddad et al., 2000). Recent study by Bartnicka et al. (2020)
based on this model indicated reduced bacterial CFUs in the first
days of mixed infection, while the presence of P. gingivalis
increased the proliferation of C. albicans on a longer time
scale. Analysis of the microbial burden in the organs isolated
from infected mice confirmed the reduced bacterial load in the
dual-species infection compared with bacterial infection
(Bartnicka et al., 2020). Accordingly, it was shown that P.
gingivalis colonization of a host previously infected with C.
albicans caused milder inflammation, leading to prolonged
survival of the infected mice, and confirming the chronic
nature of the dual-species infection (Bartnicka et al., 2020).

For another microorganism highly associated with aggressive
periodontal disease, such asAggregatibacter actinomycetemcomitans,
a Gram-negative bacterium belonging to the Aa complex, the ability
to inhibit C. albicans filamentation and biofilm formation, mediated
by secretory AI-2, was previously demonstrated (Bachtiar et al.,
2014; Baker et al., 2017). Taking into account the fact that C. albicans
blastospores are less sensitive to the action of host macrophages (Bor
et al., 2016), it can be concluded that the bacteria, by suppressing
fungal biofilm formation, indirectly protectC. albicans from the host
immune system. The recent studies of polymicrobial biofilms by
Bhardwaj et al. (2020) showed that the simultaneous presence of A.
actinomycetemcomitans and Gram-positive bacteria—S. gordonii
and S. mutans—significantly accelerated the growth of C. albicans
reference strain ATCC 24433. Moreover, an increased ability of
polymicrobial communities to induce an inflammatory response of
host cells was demonstrated. Both biofilms and biofilm supernatants
significantly induced the increase of TNF-a and IL-8 at the gene and
protein levels (Bhardwaj et al., 2020). In a recent study by Young
et al. (2020), two biofilm models were used to investigate the role of
C. albicans in the multispecies community. The first model of hard
tissue related to caries initially involved a 24-h co-incubation of two
pioneering species, C. albicans laboratory strain 3153A and S.
mutans (107 CFU/ml of bacteria and fungi in an equal volume),
followed by the addition of a mixture of four species—F. nucleatum,
A. naeslundii,Veillonella dispar, and Lactobacillus casei (107 CFU/ml
for each bacterium), which were co-incubated for the next 4 days to
form a biofilm structure. Whereas the second model of soft-tissue
related to periodontitis/denture stomatitis contained ten bacteria
species—S. oralis, S. mitis, S. intermedius, and F. nucleatum—which
were pioneering biofilm species, but also F. nucleatum ssp. vincentii,
A. naeslundii. V. dispar, P. gingivalis, P. intermedia, and A.
actinomycetemcomitans. It has been shown that the addition of C.
albicans increases the mass and rate of biofilm metabolism in both
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
tested systems, causing a simultaneous quantitative change in the
bacterial composition (Young et al., 2020). Although V. dispar and
streptococci remained the main species, there was an increase in P.
gingivalis and F. nucleatum presence in the soft-tissue and hard-
tissue biofilm, respectively. In both systems, the presence of C.
albicans significantly raised the pH of the supernatant to more
neutral, which was associated with a decrease in the lactate level. In
addition, an increase in the activity of superoxide dismutase (SOD)
in the biofilm of soft tissues was noted and according to the study’s
authors, this result was associated with an increased presence of
anaerobic bacteria (Young et al., 2020).
FUNGAL VIRULENCE FACTORS
IMPORTANT FOR BIOFILM
COMMUNITY FORMATION

The armory of virulence-related molecules that Candida fungi
have at their disposal includes surface-located adhesins and
invasins, atypical cell wall proteins (moonlighting proteins),
cell wall polysaccharides—mannans, glucans, and chitin,
secreted hydrolytic enzymes, toxins, and low molecular weight
compounds like quorum sensing molecules and other secondary
metabolites (for comprehensive reviews see Hoyer and Cota,
2016; Snarr et al., 2017; Rapala-Kozik et al., 2018; Rodrigues and
Černáková 2020; Satala et al., 2020a). These factors are involved
in interactions with host proteins and cells, the evasion of host
immune system, and intra- and interspecies communication.
Moreover, such mechanisms related to virulence like hyphae
formation, biofilm production, phenotypic switching, and
enhanced stress tolerance are highly responsible for the
effectiveness of fungi as pathogens (Staniszewska, 2020). All of
these virulence factors and mechanisms might be affected by
multifaceted interactions with a variety of bacterial species
during co-colonization of subgingival sites and the formation
of a mixed biofilm community in the course of periodontal
disease. Better understanding of these interaction mechanisms
could contribute in the future to taking control of microbial
infections related to the formation of multispecies consortia.

One of the courses of research on the contribution of different
fungal virulence factors in interactions with bacteria is the study
of the expression of selected master regulatory genes involved in
controlling such processes as fungal filamentation, adhesion, or
biofilm production (Figure 2). Also, the expression level of
particular genes encoding individual virulence factors, like
adhesins, cell wall remodeling enzymes, or secreted hydrolases
may be analyzed after fungal contact with bacterial companions.
Another research approach is the use of C. albicans deletion
mutant strains or yeast strains with overexpressed individual
virulence factors or key transcriptomic regulators of fungal
virulence-related processes for the formation of mixed biofilms
or contact with bacteria. In addition, the study of changes in the
fungal proteome after exposure to bacteria may also provide
valuable information on mutual influences. Finally, the analyses
of direct physicochemical interactions between native molecules
January 2022 | Volume 11 | Article 765942
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produced by cells of various pathogens are successfully used to
characterize microbial contact in a mixed community. All these
approaches, although they differ significantly, also complement
each other, allowing for a more comprehensive depiction of the
complex relations within the subgingival plaque.

Main Adhesins and Moonlighting Proteins
The major C. albicans adhesins comprise a group of typical cell
wall proteins highly glycosylated and covalently bound to the cell
surface, often via the glycosylphosphatidylinositol (GPI) anchor.
Their main representatives with confirmed participation in the
binding of various ligands are proteins from agglutinin-like
sequence family (Als1-7, Als9), enhanced adherence to
polystyrene protein (Eap1), hyphal cell wall protein 1 (Hwp1),
and structurally related proteins Hwp2 and Rbt1 (Staab et al.,
1999; Li and Palecek, 2003; Younes et al., 2011; Monniot et al.,
2013; Hoyer and Cota, 2016).

In the group of oral streptococci, the problem of co-adhesion
of bacteria and fungi during biofilm development has been quite
decently studied and attempts have been made to indicate the
mechanisms of these interactions. It was demonstrated that
when C. albicans strain ATCC 18804 creates biofilm together
with S. mitis, the expression levels of genes encoding major
adhesins, agglutinin-like sequence proteins ALS1 and ALS3, and
hyphal cell wall protein HWP1 were significantly upregulated,
whereas in the coexistence in biofilm with S. sanguinis, only the
gene expression for HWP1 was upregulated, for ALS3 the
expression did not change, and for ALS1 downregulation was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
observed (do Rosário Palma et al., 2019). On the other hand, the
increase in ALS1 gene expression was noticed during the
formation of mature biofilm by C. albicans strain SC5314 and
S. oralis at a ratio of 1:10 and the als1D/D deletion mutant strain
was deficient in co-aggregation with this bacterial species (Xu
et al., 2017). Nevertheless, so far most information on the
adhesion of C. albicans to streptococci is available for S.
gordonii. Studies using C. albicans two control strains CAI12
and DAY185 and mutant strains deprived of Als1 and Als3
proteins showed the joint participation of these two proteins in
the interactions with S. gordonii, with little contribution from
other adhesins from Als family—Als2 or Als4 (Hoyer et al.,
2014). Furthermore, a co-incubation of C. albicans wild-type
strain SC5314 and S. gordonii for 1 h at 37°C in YPT-Glc
medium increased the expression of several genes encoding cell
wall proteins equipped with GPI anchor, including adhesin-
encoding genes ALS1, HYR1, and EAP1 (Dutton et al., 2016a).
Of these genes, the latter, when overexpressed on the surface of
Saccharomyces cerevisiae cells, was indicated as responsible for
direct interactions with S. gordonii planktonic cells (Nobbs et al.,
2010). In this research, employing S. cerevisiae as a surrogate host
for candidal adhesive proteins, also Als3 was demonstrated as a
protein that binds bacteria strongly, while other adhesins, Hwp1
and Rbt1 bound streptococcal cells significantly weaker (Nobbs
et al., 2010). The role of Als3 adhesin in binding to S. gordonii
cells was also confirmed using a C. albicans 1843 als3D/als3D
deletion mutant, for which the co-aggregation of fungal cells with
preformed bacterial monolayer was nearly completely abolished,
FIGURE 2 | Change in the gene expression and amounts of Candida albicans proteins during coexistence with oral bacteria. Interspecies interactions may show
either an enhancement (green) or inhibitory (red) effect on individual C. albicans virulence factors. For some aspects (gray), the described effect is ambiguous and
strictly depends on the experimental conditions. Aa, A. actinomycetemcomitans.
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and as a bacterial partner in these interactions the S. gordonii
protein SspB, representative of antigen I/II family polypeptide
adhesins, was indicated (Silverman et al., 2010). In opposition to
these results are the observations presented by Montelongo-
Jauregui et al. (2019), as in their studies the C. albicans als3D/D
mutant strain was capable to form biofilms together with S.
gordonii, a finding explained by substantial differences in the
experimental approach and the media used. In this case, the
mixed biofilm was initiated by the simultaneous introduction of
fungi and bacteria at a ratio of 1:10 into the well of the microplate
and formed for further 24 h in basal medium mucin synthetic
saliva, which was able to restore the ability to form a single
biofilm by mutant strains of C. albicans. Moreover, in the studies
carried out by Klotz et al. (2007) that exploited also S. cerevisiae
cells carrying C. albicans adhesins, Als5 was indicated as a
protein sufficient for co-aggregation of fungi with S. gordonii.

In the continuation of research carried out by Nobbs et al.
(2010), specific fragments of the Als3 protein, namely, N-
terminally located fragments comprising aa 166–225, 218–285,
270–305, and 277–286 were found to be primarily responsible for
the interaction with S. gordonii cells and SspB protein, whereas
the lack of amyloid-forming region (AFR) (aa 325–331) and
central repeat domain (aa 434–830) reduced the binding with
bacteria only by 50% (Bamford et al., 2015). In similar studies,
the use of C. albicans strains with site-directed Als3 mutations
suggested the significant contribution of the N-terminal domain-
located peptide-binding pocket (PBC) in the binding of
streptococcal SspB and the lack of involvement of the AFR
fragment in these interactions (Hoyer et al., 2014).

Interestingly, Salvatori et al. (2020) demonstrated that heat-
fixed culture supernatants from S. gordonii induced the
formation of two phenotypically different types of
microcolonies by C. albicans. In the prevailing type of floating
dense microcolonies detached from the surface, an increase in
the expression of the adhesin genes ALS3 and HWP1 was
observed, alongside with the decrease in the expression of
genes ECE1, HYR1, EAP1, and HWP2, thus prompting the
authors to postulate that this is a phenotype associated with
the facilitated spread of fungi in the organism on the one hand,
and the maintenance of the commensal state of the fungi on the
other hand (Salvatori et al., 2020).

The relative changes in the expression of genes, encoding
adhesins ALS3, EAP1, and HWP1, comprised their upregulation
during growth for 72 h in a mixed biofilm formed by C. albicans
ATCC 90028 and four different species of oral bacteria—S.
sanguinis, S. gordonii, Actinomyces odontolyticus, and
Actinomyces viscosus, whereas with the additional presence of
P. gingivalis these expression levels were significantly lower than
for mixed biofilms without this strict anaerobe (Morse et al.,
2019). Moreover, the formation of bacterial–fungal biofilms
including P. gingivalis resulted in a different pattern of C.
albicans gene expression compared with biofilms produced
only by C. albicans, and the ALS3 gene was downregulated
under these conditions (Morse et al., 2019).

In the case of the bacterial species other than streptococci,
which are related to the development of periodontitis, there are
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
neither many reports on the direct interactions of particular
molecules during mixed bacterial–fungal biofilm formation nor
the involvement of individual virulence factors. In the case of F.
nucleatum, Grimaudo and Nesbitt demonstrated in 1997 that the
cell wall carbohydrate or carbohydrate-containing molecule is
involved in the interactions with proteinaceous components
presented at the surface of bacteria, as the addition of mannose,
glucosamine, and alpha-methyl mannoside significantly reduced
microbial co-aggregation. Subsequently, with the use of the C.
albicans mutant library, the strain defective in the expression of
putative adhesin-like cell wall mannoprotein Flo9 demonstrated a
significant reduction in co-aggregation and biofilm formation with
F. nucleatum, and this process was significantly disturbed in the
presence of mannose. Therefore, this particular protein might be
indicated as a C. albicans partner in direct interactions with F.
nucleatum, and the important role of its glycosylation was also
confirmed with the C. albicans mutant strain deprived of alpha-
1,6-mannosyltransferase Och1, which was also characterized by
weakened aggregation with bacteria (Wu et al., 2015).

In a study on the transcription levels of C. albicans genes
during the formation of mixed-species biofilm with S. mutans in
the presence of spent media from A. actinomycetemcomitans
culture, the expression level of ALS3 and HWP1 genes in fungal
cells was decreased probably as a result of the action of AI-2
produced by the latter species (Bachtiar and Bachtiar, 2020).

The direct contact between C. albicans and P. gingivalis
during biofilm formation is based on the binding of various
adhesive proteins. Initial detailed studies on the interactions
between these two pathogens concerned the changes in the
expression of genes encoding fungal adhesins during biofilm
formation under anaerobic conditions for 72 h on the titanium
surface with the concentration of microorganisms ~1 × 105 CFU/
ml for C. albicans and ~1 × 107 CFU/ml for bacterial species
(Cavalcanti et al., 2016). Under these conditions, the expression
level of adhesin HWP1 was decreased, and no statistically
significant changes were observed for ALS1 and ALS3 genes. In
the case of the latter gene, the significant upregulation was
noticed in mixed biofilm composed additionally of S. sanguinis
and S. mutans; however, this level was similar also in the biofilm
composed of fungi and streptococci without P. gingivalis. On the
other hand, the level of HWP1 gene expression was reduced in
such a multispecies biofilm compared with the biofilm formed by
S. sanguinis, S. mutans, and C. albicans ATCC 90028, and
comparable to that in a single fungal biofilm, thus proving the
downregulation of this gene in the presence of P. gingivalis
(Cavalcanti et al., 2016).

Sztukowska et al. (2018) showed that P. gingivalis InlJ
internalin-family protein interacts with C. albicans SC5314
hypha-associated adhesin Als3, as the binding of C. albicans
mutant strain als3D to P. gingivalis significantly decreased
compared with the wild strain and the binding was
additionally confirmed using S. cerevisiae cells overexpressing
C. albicans Als3. Surprisingly, bacterial FimA-deficient mutants
adhered to fungal hyphae comparably to the wild type,
suggesting a marginal role of fimbriae in the aforementioned
heterotypic pathogenic interactions (Sztukowska et al., 2018).
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Further analyses of direct interactions between C. albicans ATCC
10231 and P. gingivalis in mixed biofilm in the simultaneous
model of interaction were presented in the work by Bartnicka
et al. (2019). Under aerobic conditions, a 3-h contact during
mixed biofilm formation with P. gingivalis wild strain resulted in
the increase in the expression levels of ALS3 and HWP1 genes,
while ALS7 expression remained unchanged, whereas under
anaerobic conditions, unfavorable for fungi, the expression of
ALS3 was reduced, and that for ALS7 andHWP1 remained at the
same level as in single fungal biofilm. In the case of using a
bacterial mutant strain DKDRAB devoid of proteolytic enzymes
—gingipains—the increase in gene expression for all three
adhesins was evident under both conditions tested (Bartnicka
et al., 2019). Subsequently, a proteomic analysis using cell-
surface shaving with trypsin was performed to identify fungal
proteins exposed on the cell wall during mixed biofilm formation
for 24 h in the simultaneous model of interaction. Corroborating
the results of gene expression, the surface exposition of the Als3
protein significantly increased in biofilm formed in normoxia
with the P. gingivalis DKDRAB strain. Moreover, under these
conditions also Als1, Rbt1, and Als2 adhesins were overproduced
by C. albicans during mixed biofilm formation, the latter protein
under anoxic conditions. Additionally, the increase in the
amount of cell surface mannoprotein Mp65, which possesses
both adhesive properties and activity in cell-wall glucan
metabolism, was demonstrated for both tested bacterial species
and biofilm growth conditions. It should be taken into account
that all these fungal proteins may be targeted for proteolytic
processing by bacterial gingipains during direct contact between
pathogens (Bartnicka et al., 2019).

Additionally, the expression of the ENO1 gene, encoding the
cytosolic glycolytic enzyme, enolase, was unaffected during 3 h of
C. albicans contact with any bacterial cells in normoxia and only
slightly decreased after contact with P. gingivalis DKDRAB in
anoxia. C. albicans enolase belongs to the group of moonlighting
proteins—proteins performing a completely different function in
a location different from the original one—and is repeatedly
identified at the fungal cell surface where it is involved in the
binding of different host proteins (Satala et al., 2020a; Satala et al.,
2020b; Karkowska-Kuleta et al., 2021). Further proteomic studies
showed the overproduction of surface-localized Eno1 during
biofilm formation with P. gingivalis wild type and the mutant
strain in both normoxia and anoxia. Among other surface-
displayed moonlighting proteins, also the production of C.
albicans phosphoglycerate kinase (Pgk1) and hexokinase 2
(Hxk2) increased under aerobic conditions upon contact in
biofilm with P. gingivalis wild type strain, and alcohol
dehydrogenase 1 (Adh1) in anoxia and gingipain-depleted
mutant strain (Bartnicka et al., 2019).

Of these abovementioned fungal cell surface proteins, a selected
few were purified from C. albicans ATCC 10231 cell walls—Als3
and Eno1—or culture supernatants—Mp65—and their ability to
bind to the P. gingivalis cells was demonstrated. They bound to
both the wild strain and the gingipain-deficient strain, indicating
the presence of numerous binding partners on the bacterial surface.
Finally, the direct interactions between these fungal proteins and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
the surface bacterial gingipain RgpA, possessing a hemagglutinin
adhesive domain in addition to the catalytic one, were verified in
thermodynamic and kinetic analyses with surface plasmon
resonance (SPR) measurements (Potempa et al., 2003; Bartnicka
et al., 2019). A higher binding affinity was indicated for the Eno1–
RgpA complex than for two other proteins, being typical adhesins.
This may indicate that this moonlighting protein abundant in
biofilm is a significant support in bacterial–fungal interactions in
addition to typical candidal adhesins. Moreover, these three fungal
proteins, Als3, Mp65, and Eno1, were identified as citrullinated by
the bacterial enzyme—peptidylarginine deiminase (PPAD)—
during the interactions of C. albicans ATCC 10231 with P.
gingivalis at a ratio of 1:10 in mixed biofilm formed for 24 h in
the simultaneous model of interaction in RPMI 1640 medium.
Additionally, also other surface-exposed candidal moonlighting
proteins were prone to this modification, including Hxk2, Pgk1,
Adh1, pyruvate decarboxylase (Pdc1), and glyceraldehyde-3-
phosphate dehydrogenase (Tdh3) (Karkowska-Kuleta et al., 2018;
Karkowska-Kuleta et al., 2020). This modification may influence
their role in biofilm, as it was pointed out that citrullination by
PPAD is important in the process of mixed biofilm formation
because the adhesion of the P. gingivalis mutant strain deprived of
PPAD was significantly lower than that observed for the wild-type
strain (Karkowska-Kuleta et al., 2018). In addition, also the
interaction with the host proteins may be altered since the
citrullination of surface-exposed fungal proteins resulted also in
the reduced binding of human plasminogen (Karkowska-Kuleta
et al., 2020).

Regulation of Hypha Formation and
Biofilm Production
The master transcriptional regulatory network controlling C.
albicans biofilm formation and filamentation includes proteins
Bcr1, Tec1, Efg1, Ndt80, Rob1, and Brg1, while about a thousand
target genes belong to this complex network (Nobile et al., 2012).
In response to diverse environmental stimuli occurring in the
host’s niche, various interrelated signaling cascades, including
the cyclic adenosine monophosphate (cAMP)-dependent protein
kinase A (PKA) pathway and the mitogen-activated protein
kinase (MAPK) signal transduction pathways, are triggered to
activate transcription factors controlling the change in fungal
morphology (Basso et al., 2019). Influencing the expression of
these regulatory genes during contact with bacteria may have far-
reaching consequences for the candidal morphogenesis and
existence in mixed biofilm. In the case of the interaction of
fungi with streptococci, there is a wide variation in the
observations of the effect on changing the fungal morphology
following contact with different bacterial species, as described
above. The studies of do Rosário Palma et al. (2019) showed that
interactions of C. albicans standard strain ATCC 18804 with S.
mitis during the formation of mixed biofilm in 24-well microtiter
plates for 48 h, when streptococci were added to the fungal
biofilm preformed for 2 h after initial adhesion of 107/ml of C.
albicans cells, resulted in the upregulation of genes involved in
the biofilm formation and filamentation, like BCR1 required for
the formation of biofilm and regulation of genes encoding cell
January 2022 | Volume 11 | Article 765942

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Satala et al. Candida albicans in the Formation of Multispecies Biofilm
surface-associated proteins and CPH1 involved in the
filamentation (Nobile and Mitchell, 2005; Nobile et al., 2006;
Maiti et al., 2015). Additionally, an increase with uncertain
statistical significance was also detected for EFG1, the major
transcriptional regulator involved in fungal morphogenesis and a
key transcriptional activator of hypha-specific genes (HSGs)
(Stoldt et al., 1997; do Rosário Palma et al., 2019). In contrary,
in the same work, the downregulation of BCR1 and EFG1 was
noticed under the same conditions for C. albicans ATCC 18804
interaction with S. sanguinis (do Rosário Palma et al., 2019).
Moreover, the analyses of changes in the proteome of mature 48-
h biofilm formed by C. albicans standard laboratory strain
SC5314 after its 2-h exposure to 108 heat-killed bacteria
revealed the reduction in the expression of Efg1 protein upon
the contact with S. mitis and S. sanguinis, as well as with P.
gingivalis, F. nucleatum, and A. actinomycetemcomitans (Truong
et al., 2020).

During the contact of C. albicans strain SC5314 with S. oralis
at a ratio of 1:10, the EFG1 gene was significantly upregulated
mainly in the late stages of biofilm growth, resulting also in the
increase in the gene expression of adhesin ALS1 and stimulation
of cross-kingdom mucosal biofilm formation (Xu et al., 2017),
whereas under the contact of C. albicans strain SC5314 with S.
gordonii for 1 h at 37°C, the upregulation of the TEC1 gene
involved in the regulation of filamentous growth was shown
(Schweizer et al., 2000; Dutton et al., 2016a). In the work of
Salvatori et al. (2020), the C. albicans floating microcolonies
formed in the presence of heat-fixed culture supernatants from S.
gordonii were characterized by the increase in the expression
levels of genes EFG1 and HGC1. These genes encode G1 cyclin-
related protein specific for hyphae and crucial for hyphal
morphogenesis (Zheng et al., 2004). In the studies of Chinnici
et al. (2019), it was demonstrated that C. albicans knockout
mutant strains deprived of transcription factors Sfl2, Brg1, Tec1,
Tup1, Efg1, and Rim101 had reduced ability to form dual-species
biofilms with S. gordonii as compared to wild-type bacterial–
fungal biofilms, indicating positive regulation by these factors.
On the contrary, in the studies performed by Montelongo-
Jauregui et al. (2019), the employment of C. albicans efg1D/D,
brg1D/D, and bcr1D/D mutant strains to the formation of mixed
biofilms with S. gordonii in basal medium mucin artificial saliva
showed no significant differences compared with the wild-type
strains. Hence, the authors suggested the ability to restore biofilm
formation of filamentation-defective C. albicans mutant strains
by S. gordonii and no need for filamentation to interact with
these bacteria. Such divergent observations invariably indicate
the complexity of the mechanisms governing the interactions
between streptococci and Candida and their significant
dependence on growth conditions, the methodological
approach applied, and environmental requirements.

One of the external factors influencing the morphology of
fungi is the secreted quorum sensing molecules (QSM). Farnesol
is the best-known QSM produced by C. albicans, acting as a
diffusible filament-suppressing signal, and also inhibiting biofilm
formation (Hornby et al., 2001; Ramage et al., 2002). Farnesol
stops the transition from yeast-like cells to hyphae, mainly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
through an inhibitory effect on the Ras1-Cyr1/cAMP-PKA
cascade (Polke et al., 2017; Wang et al., 2020). During the
formation of mixed-species biofilm by C. albicans SC5314 and
S. gordonii, the addition of farnesol to mixed biofilm culture did
not inhibit hyphal formation as in monospecies biofilm. It could
be an effect of the inactivation of fungal farnesol receptors by
bacteria or influencing the fungal cAMP-PKA pathway or
stimulation of another intracellular signaling pathway, which
predominated the farnesol inhibitory signal; however, further
detailed studies of the mechanisms are required (Bamford
et al., 2009).

Cell Wall Glucans, Mannans, and Chitin
C. albicans cell wall scaffold is composed of linear or branched
polysaccharides including chitin and b-1,3-glucan, forming the
inner layer of the wall, and b-1,6-glucan and mannan structures
linked to cell wall proteins via O- and N-glycosidic bonds, which
build the outer part of the cell wall being in immanent contact
with the host and the environment (Hall and Gow, 2013; Klis
et al., 2014). During the infection, these polysaccharides are
recognized by different host receptors, including lectins or
complement factors, and they strongly induce host defense
mechanisms and innate immune response; however, they are
also responsible for evading the human immune system and
contribute to the spread of pathogens within an organism (Snarr
et al., 2017).

The correct O-mannosylation of the surface-exposed fungal
proteins provided by the activity of Mnn1 and Mnn2 proteins
was indicated as necessary for the interactions of C. albicans with
S. gordonii (Dutton et al., 2014). The formation of mixed biofilms
by C. albicans mnt1D mnt2D mutant strains and bacteria was
significantly disturbed, probably as a result of improper surface
exposition of fungal cell wall adhesins (Dutton et al., 2014). On
the contrary, in the studies performed by Montelongo-Jauregui
et al. (2019), C. albicans mutant strains with deletions of genes
encoding cell wall and biofilm matrix-related proteins, including
Kre5 andMnn9, did not exhibit major defects in the formation of
dual species biofilms with S. gordonii in basal medium mucin
synthetic saliva. Kre5 protein provides the appropriate amount
and ratio of glucans in the cell wall and Mnn9 is responsible for
proper cell wall proteins’ mannosylation (Southard et al., 1999;
Herrero et al., 2004). Similar observations were demonstrated for
C. albicans mutants devoid of transcription factors Rlm1 and
Zap1 involved in the cell wall and biofilm matrix biogenesis
(Nobile et al., 2009; Delgado-Silva et al., 2014; Montelongo-
Jauregui et al., 2019). As other studies have also shown, the
formation of mixed-species biofilm with S. gordonii resulted in
downregulation of the CHT2 gene, encoding GPI-linked
chitinase necessary for normal filamentous growth and
responsible for remodeling of chitin in the fungal cell wall
(McCreath et al., 1995; Dutton et al., 2016a). These few reports
suggest that mixed biofilm formation with streptococci may have
some effect on fungal cell wall biogenesis and maintenance, but
more comprehensive studies are still required.

When creating a mixed biofilm by C. albicans ATCC 10231
and P. gingivalis wild-type strain and mutant strain deprived of
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gingipains, the increase in the amount of protein on the cell
surface was determined for Cht2 in normoxia, whereas in anoxia
such a protein quantity enhancement was only observed for the
mixed biofilm formed with the bacterial mutant strain (Bartnicka
et al., 2019). Also, the amount of surface-exposed endo-1,3(4)-b-
glucanase 1 (Eng1), the protein responsible for cell separation
after budding, was higher in mixed biofilm formed under two
investigated culture conditions, but only with the wild-type
strain of bacteria, while for the Mp65 protein, responsible for
the metabolism of cell wall glucan, the increase was observed
under aerobic conditions after contact with mutant strain and
under anaerobic conditions for both bacterial strains (Esteban
et al., 2005; Sandini et al., 2007; Bartnicka et al., 2019). Moreover,
changes were also noticed for protein Bgl2, a cell wall-associated
1,3-b-glucosyltransferase involved in cell wall remodeling, whose
level increased in normoxia in biofilm formed with mutant
strain, while for Phr1, cell surface glycosidase involved in
glucan cross-linking also in normoxia, but for wild-type strain
(Sarthy et al., 1997; Fonzi, 1999; Bartnicka et al., 2019).
Moreover, some of these proteins were also indicated as
susceptible for modifications by P. gingivalis PPAD, as the
citrullination at most two places was identified with mass
spectrometry analysis for Eng1, Bgl2, Phr1, and Mp65
(Karkowska-Kuleta et al., 2020). Importantly, in the case of the
bacterial deiminase, the citrullination also requires a pre-
hydrolysis of the protein by R gingipain to expose the C-
terminal arginine (Goulas et al., 2015); however, the impact of
these enzymatic modifications on the structure and activity of
fungal enzymes still needs to be elucidated. Further
investigations of these processes are required because the
influence on the surface presence or activity of particular
enzymes involved in the remodeling of C. albicans cell wall by
accompanying bacteria might cause changes not only in its
composition, structure, and rigidity but also in interactions
with the host immune system, which may indirectly alter the
pathogenic potential of fungi forming a mixed biofilm.

Proteases and Other Hydrolytic Enzymes
C. albicans produce ten secreted aspartyl proteinases (Sap1-10),
of which Sap1-8 are secreted to the extracellular milieu, while
Sap9 and Sap10 are equipped with the GPI anchor and remain
bound to the cell surface and act there for the rearrangement of
molecules exposed by fungi on the cell wall (Aoki et al., 2011;
Schild et al., 2011; Rapala-Kozik et al., 2018). Another major
virulence factor with hydrolase activity secreted by C. albicans is
also phospholipase D1 (Pld1) involved in the fungal invasion on
host tissues (Dolan et al., 2004).

In the studies of Dutton et al. (2014), a consistent reduction in
the abundance of Sap9 was found in proteomic analyses in result
of the interaction between C. albicans mnt1D mnt2D mutant
strain and S. gordonii. Therefore, it could be concluded that this
protein may play an important role in modulating cross-
kingdom interactions. In the continuation of this work, it was
presented using the C. albicans sap9Dmutant that this proteinase
might contribute to the competition of C. albicans within oral
microbial biofilms, as Sap9 may be involved in the degradation of
salivary pellicle-binding sites for streptococci (Dutton et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
2016b). When studying the biofilm formation process with the
anaerobe P. gingivalis, after a 3-h contact of C. albicans ATCC
10231 and P. gingivalis wild strain in aerobic conditions, the level
of SAP9 gene expression was increased compared with
monospecies fungal biofilm, whereas for SAP3 and SAP6 the
gene expression did not change (Bartnicka et al., 2019). In
contrast, when a bacterial gingipain-deficient strain DKDRAB
was used, only the level of SAP6 expression was significantly
increased. At anoxic conditions, the production of biofilm with
this impaired strain resulted in the upregulation of SAP3, SAP6,
and SAP9, while for wild-type strain only SAP6 was upregulated
under the conditions tested, without any changes for the genes of
the other tested proteases (Bartnicka et al., 2019). The obtained
results may provide some evidence for the role that proteinases
may play during the formation of a mixed biofilm with P.
gingivalis, but their specific functions still need to be
elucidated. Additionally, at the level of protein production, the
formation of mixed biofilm for 24 h in the simultaneous model of
interaction in RPMI 1640 medium by C. albicans ATCC 10231
and P. gingivalis mutant strain at a ratio of 1:10 increased the
amount of lysophospholipase 1 (Plb1), a lipolytic enzyme being
an important candidal virulence factor (Leidich et al., 1998;
Bartnicka et al., 2019).

In 2016, Cavalcanti et al. analyzed the relative changes in the
expression of genes encoding proteinases Sap2, Sap4, Sap6, and
phospholipase D1 (Pld1) during biofilm formation by C. albicans
ATCC 90028, S. sanguinis, S. mutans, and P. gingivalis at anaerobic
conditions for 72 h on the titanium surface. When biofilm was
formed by fungi and P. gingivalis, the expression levels of SAP2 and
SAP6 significantly increased, for SAP4 it was reduced, and forPLD1
it remained unchanged. In the presence of streptococci, the
obtained results were comparable (Cavalcanti et al., 2016). The
formation of mixed biofilm by C. albicans and S. sanguinis, S.
gordonii,A. odontolyticus, andA. viscosus cultured in 5%CO2/95%
air for 72 h resulted in an increase in the gene expression for
proteinases SAP4 and SAP6 and phospholipase D1 (PLD1)
compared with single-species fungal biofilm. The additional
presence of P. gingivalis in this complex did not induce changes
in high expression levels of SAP4 compared with monospecies
biofilm, but it resulted in a decrease in SAP6 expression when
compared tonotonlymonospeciesbiofilmbut also fungal–bacterial
biofilm without P. gingivalis, while the expression of PLD1
decreased in the biofilm containing P. gingivalis compared with
themixed biofilm formedwithout this anaerobic bacteriumbut did
not change compared to the single species fungal biofilm (Morse
et al., 2019). These observations may indicate that a specific
composition of bacterial species possesses the capability to
modulate interactions within the complex microbial community.
INFLUENCE OF PERIODONTAL
BIOFILM FORMATION ON DIAGNOSIS
AND TREATMENT

Persistent infections located within the gingival pockets might be
the source of pathogens capable to spread further in the host
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organism, causing disseminated infections at distant locations or
contributing to the development of systemic health-threatening
diseases like atherosclerotic disease, rheumatoid arthritis (RA),
and respiratory or gastrointestinal illnesses, especially in the
cases of immunosuppression or other predisposing factors
(Paju and Scannapieco, 2007; Han and Wang, 2013; Vieira
Colombo et al., 2016). The correct diagnosis and effective
treatment of such subsequent microbial infections are not
always quickly feasible and trouble-free. Likewise, it is difficult
to prevent effectively the influence of a microbial factor on the
development or course of systemic secondary diseases in
humans. In the case of invasive candidiasis, including deep-
seated infections of inner organs and candidemia, the standard
diagnostic method used is to cultivate the fungi from tissue
samples or blood. Nevertheless, its main disadvantages are the
possibility of detection of only viable and culturable Candida
cells, prolonged waiting time for results, and low sensitivity, as
almost half of the cases of invasive candidiasis remain
undiagnosed (Clancy and Nguyen, 2013; Clancy and Nguyen,
2018). Other currently proposed diagnostic tests, in addition to
the PCR and T2 Candida nanodiagnostic panel, are based on the
detection of Candida antigens or, more often, of antibodies
against different molecules exposed by the pathogen, including
the components of the fungal cell wall, such as mannan and b-
1,3-glucan, and antibodies against antigens located on the cell
wall of C. albicans hyphal forms, i.e., CAGTA—Candida albicans
germ tube antibodies (Mikulska et al., 2010; Avni et al., 2011;
Martıńez-Jiménez et al., 2014; Mylonakis et al., 2015; León et al.,
2016). These tests presuppose the development of an immune
response by the host during such systemic candidiasis and the
production of specific antibodies directed against particular
surface-exposed fungal antigens (Bouza et al., 2020). The
antigen-directed tests are frequently used in combination with
tests detecting antibodies to increase diagnostic sensitivity
(Ahamefula Osibe et al., 2020).

There is always a possibility that modifications of microbial
molecules taking place during the coexistence of many different
microorganisms in a biofilm during severe periodontitis may also
affect the course of the subsequent spread of pathogens, and thus
also the correct diagnosis of such infections and an effective
method of their treatment (Figure 3). One such posttranslational
protein modification in the case of C. albicans is citrullination of
surface-exposed proteins in the reaction catalyzed by P. gingivalis
PPAD, as the change in the net charge of a protein may affect its
structure and function, also within specific protein domains, and
also its immunomodulatory properties, meaning the ability of
antigen presentation and recognition by the immune system
(Doyle and Mamula, 2012). The modification of arginine to
citrulline might result in the altered presentation of the modified
peptides to CD4+ T cells, as these two amino acids differ in the
affinity to the binding pockets of HLA-DR (human leukocyte
antigen–DR isotype) proteins in favor of the latter (Scally et al.,
2013). Together with certain genetic predispositions, the
citrullination of human proteins may therefore be associated
with the development of autoimmune diseases and the
production of anti-citrullinated protein antibodies (ACPAs),
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e.g., in the course of RA, and one well-known example of
such modified proteins associated with self-intolerance in
RA is human a-enolase (Schellekens et al., 1998; James et al.,
2014; Gerstner et al., 2020). As indicated by Lundberg et al.
(2008), P. gingivalis infection localized in the periodontium,
resulting in the citrullination of bacterial enolase, might be
related to cross-reactivity of the antibodies specific to an
immunodominant epitope of human citrullinated a-enolase.
The question remains whether the citrullination of the fungal
enolase that occurs during mixed C. albicans infection with
P. gingivalis may also exert such effects implying the
potential commencement of autoimmunity. It was previously
demonstrated that PPAD might also citrullinate human a-
enolase within the sequence that is responsible for the disease-
specific antibody response in patients with RA (Lundberg et al.,
2008; Wegner et al., 2010). Therefore, this assumption is quite
reasonable, as in fungal enolase, the citrullination via bacterial
deiminase targets the R333 residue located within a sequence
homologous to that in human enolase, which also contains a
modified arginine residue being identified as reactive with sera of
RA patients (Lundberg et al., 2008; Karkowska-Kuleta
et al., 2020).

As mentioned above, except C. albicans enolase, also other
fungal surface-exposed or secreted proteins might be
citrullinated by PPAD (Karkowska-Kuleta et al., 2018;
Karkowska-Kuleta et al., 2020). Some of these proteins,
including Tdh3, Pgk1, Pdc11, Bgl2, Mp65, Pga4, Pra1, Ssb1,
and Ssa2, were indicated in other studies as immunoreactive
during systemic fungal infections, and they are currently
considered as potential diagnostic markers (Pitarch et al., 1999;
Pitarch et al., 2004; López-Ribot et al., 2004; Mochon et al., 2010;
Pitarch et al., 2016). In the studies of Vaz et al. (2021), several
proteins secreted by C. albicans hyphae were postulated as
immunoreactive in patients with catheter-associated and non-
catheter-associated invasive candidiasis. Of these proteins, C.
albicans Eno1 and Bgl2 showed antibody-reactivity patterns
allowing the classification of patients with invasive candidiasis,
whereas the antibody response observed for Tdh3 was distinctive
for catheter-associated invasive candidial infection. Cell wall
protein Mp65 was described as the main target of human T-
cell response to C. albicans and has also been considered as a new
objective in the diagnosis of candidemia (Gomez et al., 1996;
Berzaghi et al., 2009; Torosantucci et al., 2017). Furthermore, the
elevated levels of anti-Bgl2p antibodies and the seropositivity of
antibodies against Pgk1 were demonstrated as independent
predictors of systemic candidiasis by Pitarch et al. (2006). The
modification of these proteins by bacterial PPAD during
coinfection may likely affect their serodiagnostic usefulness, but
further research on this issue is certainly required. Importantly,
in the case of bacterial deiminase, the structure of the active
center of the enzyme determines its predominant affinity for the
C-terminal arginine, and not for arginine located within the
protein chain, as is the case with human deiminases (Goulas
et al., 2015). This implies the need for peptide bond hydrolysis by
proteases after the C-terminal arginine residue, and this activity
is attributed to arginine gingipains A and B (RgpA and RgpB)
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secreted and surface-exposed by P. gingivalis (Potempa et al.,
2003). Fungal proteins may be degraded to a varying degree by
bacterial proteases depending on their structure and the
conditions of the microenvironment (Bartnicka et al., 2019).
Therefore, a further question of how proteolytic processing of
these proteins might alter the host immune response to fungal
antigens remains to be explored.

Furthermore, in the case of direct interactions between F.
nucleatum and C. albicans resulting in the inhibition of fungal
filamentation (Bor et al., 2016), the diagnosis of fungal infection
based on the detection of host antibodies directed against
antigens presented on the surface of germ tubes (CAGTA)
may be significantly hampered. A similar observation was
reported for C. albicans in contact with P. nigrescens (Thein
et al., 2006). Hence, similar conclusions could be drawn about
the consequences for diagnostics. Also, the arrival of a new
member in the consortium of C. albicans and S. sanguinis, S.
gordonii, A. odontolyticus, and A. viscosus, which stimulated the
formation of hyphae by fungi, may partially inhibit the
filamentation process as shown for P. gingivalis introduced to
this complex biofilm and thus make detection of C. albicans
hyphae more difficult. Nevertheless, under the tested conditions,
in the mixed biofilm composed of these species, the level of
filamentation was still higher than in a single fungal biofilm, but
with uncertain statistical significance (Morse et al., 2019). Also,
the varied influence of streptococci on fungal filamentation may
have an impact on diagnostics based on the detection of hyphae.
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Currently, a promising approach for the diagnosis of
periodontal disease is the analysis of the metabolome of fluids
collected from the oral cavity, including saliva or gingival
crevicular fluid (Mikkonen et al., 2016). They contain
numerous different molecules being the result of metabolic
processes taking place at the site of infection, including both
those derived from the host and those produced by inhabiting
microorganisms. Any change in the delicate balance between the
host and its microbiome, or the appearance of a new component
in the latter, may be reflected in the subtle differentiation in the
set of metabolites found in the niche analyzed (Na et al., 2021;
Thomas et al., 2021). Possibly, the analysis of changes in the
amount of certain metabolites could give information about the
rate and direction of the development of periodontal disease and
enable monitoring the treatment process; however, it still
requires further extensive research, given the significant impact
of systemic diseases on the composition of this fluid and the fact
that results of studies on different patient groups are often
contradictory (Nguyen et al., 2020; Baima et al., 2021).

One of the proposed biomarkers of periodontal disease is
prostaglandin E2 (PGE2), whose production by fibroblasts and
smooth muscle cells increased under inflammatory conditions
(Båge et al., 2011; Elabdeen et al., 2013). As it has been
demonstrated by Erb-Downward and Noverr (2007), C.
albicans may also synthesize PGE2, but via distinct pathways
than in human cells, using fatty acid desaturase homolog Ole2
and a multicopper oxidase homolog Fet3. Therefore, fungal
FIGURE 3 | Potential effects of the interaction of Candida albicans with bacteria in a biofilm, influencing the diagnosis and treatment of mixed infection.
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contribution to mixed biofilm during aggressive periodontal
disease could disturb the analysis of the level of PGE2 in
gingival crevicular fluid and influence disease diagnosis. In
addition, it has been shown that PGE2 stimulates the
production of germ tubes by C. albicans, which may favor the
detection of fungi based on filamentation-related antigens
(Noverr and Huffnagle, 2004).

The oral microbiome dysbiosis during periodontal disease
might result also in changes in salivary metabolomics, including
repeatedly indicated upregulation in salivary levels of valine,
isoleucine, phenylalanine, tyrosine, proline, succinate, butyrate,
and cadaverine (Nguyen et al., 2020; Baima et al., 2021). In C.
albicans, the increased polyamine levels control the change from
yeast-like cells to filamentous forms (Herrero et al., 1999) and
their synthesis is related to the activity of polyamine biosynthetic
enzymes, such as ornithine decarboxylase and spermidine
synthase (Hamana et al., 1989). Therefore, the observed
changes in the level of polyamines may not only depend on
the presence of Candida yeasts in the microbiome in periodontal
tissues but also affect the morphology of the fungi and their
detection based on the presence of hyphae.

Moreover, variations in the levels of lactate, pyruvate, N-
acetyl groups, and methanol in saliva might also be predictive for
oral health or disease (Baima et al., 2021). Upregulation has been
observed in healthy subjects for the latter two, and reports of
changes in lactate and pyruvate levels are contradictory
depending on the type of studies (Baima et al., 2021). The
differentiation in access to carbon sources significantly
influences the structure of C. albicans cell wall, as well as its
proteome and secretome (Ene et al., 2012a). Lactate-grown cells
exhibit higher levels of proteins involved in b-glucan remodeling,
including glucanosyltransferases Pga4, Phr1, and Phr2 and exo-
glucanase Xog1, whereas for glucose-grown cells other cell wall-
organizing enzymes prevailed, like Bgl2 (Ene et al., 2012b). Such
fluctuations in the architecture of the cell wall related to the
availability of different carbon sources may also be important in
the diagnosis based on the presence and exposition of different
polysaccharides of the candidial cell wall or secreted proteins.

In addition to diagnostics, also the prevention of infections
caused by Candida is particularly important. Currently, two
Candida vaccines are undergoing clinical trials and the
preliminary results are encouraging (Oliveira et al., 2021). The
first type of vaccine, PEV7, is based on the recombinant C.
albicans aspartyl proteinase 2 (Sap2), and the second type, NDV-
3/NDV-3A, on the recombinant N-terminal part of C. albicans
agglutinin-like sequence protein (Als3) (De Bernardis et al.,
2012; Schmidt et al., 2012; Edwards et al., 2018). However, in
the case when the epitopes recognized by the antibodies
produced during the protective response will be altered due to
the intermicrobial interaction-dependent modifications, the
effectiveness of the immunization may adversely differ from
that assumed. One such example might be protein Als3,
demonstrated as susceptible for citrullination within the N-
terminal domain, where two citrulline residues at positions 175
and 188 after incubation with P. gingivalis PPAD were identified
(Karkowska-Kuleta et al., 2020).
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As with diagnostics, the coexistence of C. albicanswith bacteria
in polymicrobial biofilms may also have an impact on the
treatment of mixed infections. The composition of membrane
sterols is a key factor of azole resistance at the intermediate and
mature stages of biofilm development (Mukherjee et al., 2003).
Therefore, the alternation in sterol synthesis or their membrane
incorporation caused by the presence of bacteria in the mixed
community might be an important contribution to the antifungal
resistance or susceptibility by C. albicans (Bhattacharya et al.,
2020). In C. albicans biofilms treated for 2 h with heat-killed
bacteria S. mitis, S. sanguinis, P. gingivalis, F. nucleatum, or A.
actinomycetemcomitans, the expression levels of proteins Erg11—
lanosterol 14-alpha-demethylase, a key enzyme in ergosterol
biosynthesis, and Erg13—3-hydroxy-3-methylglutaryl coenzyme
A synthase involved in sterol biosynthesis, were somewhat
reduced (Kirsch et al., 1988; Liu et al., 2005; Truong et al.,
2020). However, further studies in the context of fungal
resistance to azoles were not conducted in that study (Truong
et al., 2020). Also, the experimental design concerns heat-killed
bacteria, a procedure that disrupts the native surface disposition;
therefore, a verification of these results during biofilm formation
could shed new light on the influence of these bacteria on sterol
synthesis. Furthermore, it was previously demonstrated that
upregulation of ERG11 gene expression in response to
fluconazole was detected after about 2 h since stimulation with
an antifungal drug; therefore, investigating these relations at
extended time intervals should be considered (Henry et al., 2000).

In the studies of the formation of mixed biofilms by S.
gordonii and C. albicans in basal medium mucin synthetic
saliva, the increased resistance of dual-species biofilms
compared with single-species biofilms to a combinatorial
therapy consisting of clindamycin and either fluconazole,
amphotericin B, or caspofungin was demonstrated
(Montelongo-Jauregui et al., 2016). These findings were further
confirmed with the analysis of the formation of dual-species
biofilms between these two species on the surface of titanium
discs, where the increased resistance to combinations of
clindamycin and the abovementioned antifungal drugs used at
high concentrations was demonstrated again (Montelongo-
Jauregui et al., 2018). A continuation of these studies allowed
to demonstrate that during dual-species biofilm formation, C.
albicans adhesin (als3D/D) and filamentation deletion mutant
strains bcr1D/D, efg1D/D, and brg1D/D displayed the resistance to
antimicrobial treatment with amphotericin B and clindamycin
similar to those formed by their respective wild type strains
(Montelongo-Jauregui et al., 2019). However, in the case of
mixed biofilms formed by S. gordonii and C. albicans kre5D/D
and mnn9D/D mutant strains, the increased bacterial
susceptibility to clindamycin was observed, indicating the
protective role of fungal biofilm matrix glucans and mannans
against antibiotics (Montelongo-Jauregui et al., 2019). Similar
conclusions concerning the bacterial protection against
antimicrobials by C. albicans were drawn for the streptococcal
resistance to ampicillin and erythromycin in cross-kingdom
biofilms, albeit without indicating the exact mechanism
(Chinnici et al., 2019).
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It could be also assumed that while C. albicans formed a
biofilm with P. gingivalis and there were changes observed in the
frequency of surface exposition of enzymes related to remodeling
of the fungal cell wall, as well as their modifications by bacterial
enzymes were identified, this could have an impact on the
composition of the cell wall polysaccharides and the biofilm
matrix. An indirect effect of such changes would be the
variability of the mixed biofilm in resistance to the
antibacterial or antifungal drugs used; nevertheless, this
problem requires further detailed investigations. In the studies
by Taff et al. (2012), it was demonstrated that C. albicans cell wall
modifying enzymes Bgl2, Phr1, and Xog1 are involved in b-1,3-
glucan transport and its accumulation in the biofilm matrix and
their activity is related to the resistance of fungal cells growing in
the biofilm to the treatment with fluconazole. The mechanism of
this phenomenon is related to the drug sequestration by the
biofilm matrix and preventing reaching the target cells (Taff
et al., 2012). As two of these enzymes—Phr1 and Bgl2—are
present on the cell surface in an increased amount in the mixed
biofilm formed with P. gingivalis and are also susceptible to the
modifications by bacterial enzymes (Bartnicka et al., 2019;
Karkowska-Kuleta et al., 2020), it could be hypothesized that
in the case of such dual-species biofilm it could have an impact
on its resistance to the antifungal drug, albeit this issue still
requires further research. On the other hand, studies of mixed
biofilms also showed that under conditions of reduced heme
availability within the biofilm formed by C. albicans and P.
gingivalis, the competition for heme augments the virulence of P.
gingivalis, which was also reflected in the increase in bacterial
resistance to cefazolin and sulfamethoxazole tested with the disk
diffusion method (Guo et al., 2020).

Recently, the studies conducted by Young et al. (2020)
concerning the role of C. albicans as a keystone commensal in
polymicrobial oral biofilms associated with periodontitis/denture
stomatitis showed that the presence of fungi in such biofilm did
not affect their susceptibility to short-term used biofilm
eradication agents. Such biofilms were formed in the presence
or absence of C. albicans by S. oralis, S. mitis, S. intermedius, F.
nucleatum, F. nucleatum ssp vincentii, Actinomyces naeslundii,
Veillonella dispar, P. gingivalis, P. intermedia, and A.
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actinomycetemcomitans and then analyzed for biofilm
thickness and metabolic activity, as well as for bacterial and
fungal load following 10-min treatment with chlorhexidine
gluconate, EDTA, potassium iodide, or antifungal drug
miconazole (Young et al., 2020). These studies showed that
under the conditions applied, the presence of C. albicans in
multispecies biofilm did not provide significant protection for
the microbiota against the range of treatment agents used,
compared with bacterial biofilms formed without fungi.
Moreover, the attention was drawn to the indispensable
necessity to mechanically remove such biofilms during
treatment as an effective introduction to further chemical
therapy (Young et al., 2020). The data published so far show
that the analysis of the influence of bacterial–fungal biofilm
formation on their resistance to the applied treatment is
particularly complex and still requires extensive examination.

Further comprehensive studies on the interrelationship
between bacteria and fungi in mixed biofilm in the course of
periodontitis may in the future help in designing more precise
and effective methods of prevention and diagnosis of secondary
diseases, as well as in combating the resistance of such biofilms to
the applied treatment.
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