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The circadian misalignment of the gut microbiota caused by unusual eating times in adult
animals is related to disease development. However, whether the composition and diurnal
rhythm of gut microbiota can be optimized by synchronizing the window period of eating
with natural eating habits to reduce the risk of diarrhea remains unclear, especially in
growing animals. In this study, 108 5-week-old weaned rabbits (nocturnal animals) were
randomly subjected to daytime feeding (DF) and night-restricted feeding (NRF). At age 12
weeks, six rabbits were selected from each group, and caecum and cecal contents, as
well as serum samples were collected at 4-h intervals during 24 h. Overall, NRF was found
to reduce the risk of diarrhea in growing rabbits, improved the diurnal rhythm and
abundance of beneficial microorganisms, along with the production of beneficial
metabolites, whereas reduced the abundance of potential pathogens (Synergistes,
Desuilfovibrio, and Alistipes). Moreover, NRF improved diurnal rhythm of tryptophan
hydroxylase isoform 1 and serotonin. Furthermore, NRF strengthened the diurnal
amplitude of body core temperature, and promoted the diurnal expression of intestinal
clock genes (BMAL1, CLOCK, REV-ERBea, and PERT), and genes related to the
regulation of the intestinal barrier (CLAUDIN-T7), and intestinal epithelial cell self-
proliferation and renewal (BMI1). In vitro simulation experiments further revealed that
synchronization of microbial-driven serotonin rhythm and eating activity-driven body
temperature oscillations, which are important zeitgebers, could promote the diurnal
expression of clock genes and CLAUDIN-1 in rabbit intestinal epithelial cells (RIEC), and
enhance RIEC proliferation. This is the first study to reveal that NRF reprograms the diurnal
rhythm of the gut microbiome, promotes the diurnal expression of clock genes and tight
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junction genes via synchronization of microbial-driven serotonin rhythm and eating
activity-driven body temperature oscillations, thereby improving intestinal health and
reducing the risk of diarrhea in growing rabbits. Collectively, these results provide a
new perspective for the healthy feeding and management of growing animals.

Keywords: night-restricted feeding, diurnal rhythm, gut microbiota, serotonin, body temperature

INTRODUCTION

Unhealthy adult lifestyles that include shift work, nighttime
social activities and jet lag are becoming more prevalent, and
consequently, associated health problems have also become more
prominent (Parsons et al.,, 2015; Koshy et al., 2019).
Epidemiological investigations have determined that unhealthy
lifestyle-promoted metabolic syndromes and intestinal
inflammatory diseases result in heavy global economic burden
(Bishehsari et al., 2020). However, the increasing academic
burden on students has become a serious concern, as it has
contributed toward the annual increase in insufficient sleep and
nocturnal diets in children, which in turn are associated to higher
rates of obesity, cardiovascular disease, and chronic intestinal
inflammatory diseases during childhood (Eastman et al., 2015).
Therefore, in recent years, unhealthy lifestyles causing
disturbances in the diurnal rhythm of intestinal
microorganisms have become the focus of research (Asher and
Sassone-Corsi, 2015; Murakami and Tognini, 2019; Bishehsari
et al., 2020). However, there are still many challenged associated
with studying the diurnal rhythms of human gut microbes, such
as continuous multi-temporal sampling, differences in
environmental and dietary composition, and particularly the
lack of studies on children and growing animals (Frazier and
Chang, 2020). Hence, selecting growing animal models to study
the interference of mistimed eating on intestinal microbiological
diurnal rhythm is of great significance to fill knowledge gaps
regarding the impact of irregular lifestyle on the health of
children and growing animals.

Rabbits are widely used in clinical trials, and are also an
important source of high-quality protein for humans (Bosze Zs
and Houdebine, 2006; Cullere and Dalle Zotte, 2018). Similar to
the irregular eating habits in humans, daytime eating in rabbits is
contrary to their natural feeding habits and may disrupt the
diurnal rhythm of the intestinal microbes, thereby affecting their
accuracy in the study of intestinal diseases and productivity in
rabbit breeding (Krohn et al., 1999; Gidenne et al., 2009; Guo
et al., 2021). Previous studies have suggested that intestinal
microbes play a critical role in maintaining the metabolic
health, and that mistimed eating can cause elevated abundance
of proinflammatory microbes and alterations in the composition
of rhythmic microbes. This imbalance can disrupt the host
metabolic homeostasis and activate inflammatory signaling
pathways, ultimately promoting the occurrence of metabolic
syndromes, chronic inflammation, and intestinal cancer (Asher
and Sassone-Corsi, 2015; Deaver et al., 2018; Parkar et al., 2019).
Recent studies revealed that occurrence of these diseases is
associated with microbial metabolites-mediated signaling

molecules that disrupt clock gene expression in peripheral
tissues, such as the intestine and liver (Thaiss et al., 2016;
Liang and FitzGerald, 2017). Currently, the microbial driving
signal molecules, primarily including short-chain fatty acids
(SCFAs), bile acids, hydrogen sulfide, vitamins, and serotonin,
have been proven to regulate the expression of clock genes in
peripheral tissues (Tahara et al., 2018; Frazier and Chang, 2020;
Ku et al., 20205 Li et al., 2021). Among them, Clostridium species
is one of the main microbial flora in the intestine that contributes
for the synthesis of more than 95% of serotonin by intestinal
chromaffin cells (Yano et al., 2015). Moreover, it was confirmed
that additional serotonin in vitro could increase the diurnal
expression of PERI and BMALI in peripheral tissues and
suprachiasmatic nucleus through G protein-coupled receptor
signaling pathways, and also promote proliferation of intestinal
epithelial cells (Paulus and Mintz, 2012; Aoki et al., 2014; Yano
et al,, 2015; Moon et al., 2020). Notably, intestinal epithelial cells
are renewed every 4-5 days. When the diurnal rhythm of clock
genes expression is disturbed, the proliferation of intestinal
epithelial cells is blocked, resulting in the loss of intestinal
barrier integrity (Stokes et al.,, 2017; Parasram and Karpowicz,
2019). In addition, tight junction genes that maintain intestinal
barrier function are also regulated by BMALI and CLOCK,
exhibiting diurnal rhythms (Kyoko et al., 2014). Thus,
unhealthy lifestyles, such as jet lag and a high-fat diet, can
disrupt the diurnal rhythm of the intestinal barrier function,
thereby increasing the susceptibility to intestinal diseases
(Tuganbaev et al., 2020). However, further investigation is
required to determine whether mistimed eating in growing
rabbits disrupts the diurnal expression of the intestinal clock
gene through microbial-driven serotonin signaling. Whether this
leads to circadian disruption of the intestinal barrier function
regulated by clock genes and decreased intestinal epithelial cell
proliferation, ultimately causing an increased risk of intestinal
diseases such as diarrhea, also requires investigation.

As a nonpharmacological intervention, time-restricted
feeding to limit eating time and match the endogenous diurnal
rhythm of the body is expected to correct diurnal rhythm
disorders of peripheral tissue clock genes, and optimize
intestinal flora composition and diurnal rhythm, thereby
reducing the risk of inflammatory intestinal diseases (Hu et al.,
2018; Ye et al., 2020). Current studies have shown that restricting
the eating time window during the daytime activity phase of
diurnal animals or nighttime activity period in nocturnal animals
can promote metabolic health. Moreover, inappropriate time-
restricted feeding regimes, such as alternate-day fasting, has no
beneficial effect on regulating the metabolism or cardiovascular
health, which may be related to the mismatch between the
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eating-fasting window and the endogenous diurnal rhythm
(Hatori et al.,, 2012; de Cabo and Mattson, 2019; Waldman
et al., 2020; Templeman et al., 2021). These results suggest that
matching the window period of restricted eating occurring to the
endogenous diurnal rhythm is key to determine the beneficial
effects of time-restricted feeding. Furthermore, our previous
research also determined that restricting the eating window in
growing rabbits to occur at nighttime can match its rhythm of
activity behavior, thereby enhancing the diurnal rhythm
expression and amplitude of peripheral tissue clock genes (Guo
et al., 2021). At the same time, restricted eating at night also
strengthened the diurnal rhythm of body temperature by eating
and activity behavior in growing rabbits. In vitro square wave
temperature simulation experiments have confirmed that body
temperature is an important zeitgeber, promoting cell
proliferation and clock gene diurnal rhythm expression (Brown
et al,, 2002; Buhr et al., 2010; Guo et al.,, 2021). These results
suggest that whether microbial-driven serotonin rhythm
matches the eating activity-driven body temperature
oscillations may be critical in influencing the intestinal health
of growing rabbits. To confirm this hypothesis, in this study,
growing rabbits were used as experimental model to explore
whether night-restricted feeding can improve intestinal health
through synchronization between microbial-driven serotonin
rhythm and eating activity-driven body temperature
oscillations through in vitro and in vivo experiments, thereby
reducing the high risk of diarrhea in early developmental stages.

MATERIALS AND METHODS

Ethics Statement

All animal management and experimental procedures were
carried out in accordance with the Guidelines for Experimental
Animals established by the Ministry of Science and Technology.
All experimental protocols were approved by the Ethical
Committee of China Agricultural University (AW31101202-1-2).

Experimental Design and Sample
Collection

A total of 216 weaning female Ira rabbits (35 days of age, initial body
weight 0.91 + 0.10 kg) were raised in an open barn at the Qingdao
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Kangda Rabbit Development (Shandong, China) during the
summer. According to our previous study (Guo et al, 2021),
rabbits with similar body weight were randomly assigned to
daytime feeding (DF, n = 108) and night-restricted feeding (NRF,
n = 108) groups and these rabbits were housed and fed in individual
cages (three rabbits per cage). The DF group could access food
throughout the day (batch feeding at 6:00 AM; ZT: Zeitgeber time;
ZT0 denotes sunrise at 6:00 AM). The NRF group could access food
only at nighttime (from 19:00 PM to 6:00 AM; batch feeding at
19:00 PM, ZT13 denotes sunset at 19:00 PM) (Figure 1A). All
rabbits were provided with water ad libitum. The same amount of
food was provided to both groups; any surplus feed was cleared
away and weighed daily, and there was no significant difference in
food intake between the two groups throughout the experiment.
The diet was antibiotic-free, and formulated to provide the
predicted nutrient requirements of the growing rabbits according
our previous study (Wang et al.,, 2019).

Three rabbits from each group were selected for observation
eating behavior by software (The Observer XT, Wageningen,
Netherlands). Six rabbits from each group were anesthetized
and embedded thermometer in abdominal cavity (Star Oddi
DST micro-T; MeterMall, OH, USA). In addition, mortality and
diarrhea were recorded daily during the experiment. At 84 days of
age, serum was collected from six healthy rabbits of each group
and then immediately euthanized by cervical dislocation at 4-h
intervals (daytime: 7:00, 11:00, and 15:00; nighttime: 19:00, 23:00,
and 3:00). The intestinal content from the mid-cecum was
collected and stored at —80°C for subsequent genomic DNA
isolation and metabolites analysis. The middle segments of the
jejunum and cecum were collected for the evaluation of gene
expression, and the jejunum samples collected at 7:00 were used
for examination of intestinal morphology.

Microbial DNA Extraction and Sequencing

Genomic DNA was extracted from cecal contents using the Power
Soil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA)
following the manufacturer’s instructions. DNA was stored at —80°
C until further processing. The V3-V4 region of the 16S rRNA gene
with specific barcodes was amplified using the forward primer 5’
ACTCCTACGGGAGGCAGCA-3" and the reverse primer 5'-
GGACTACHVGGGTWTCTAAT-3". After amplification, high-
throughput sequencing was performed using the Illumina HiSeq

D
OR P Value
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FIGURE 1 | Experimental design and morbidity of growing rabbits (n = 216). (A) Design of animal feeding regimens. DF rabbits were allowed access to food
throughout the day. NRF rabbits were allowed access to food from 19:00 PM to 6:00 AM. Yellow boxes indicate food availability. (B)The diurnal rhythm of eating
behavior. (C) Odds ratio of diarrhea and (D) mortality risk in growing rabbits during the experiment. DF, daytime feeding; NRF, night-restricted feeding.
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2500 PE250 platform (Illumina, San Diego, CA, USA). The raw
sequencing data are available in Sequence Read Archive (SRA) with
accession numbers (PRINA632844).

Bioinformatic Analysis

Raw reads were uploaded into Quantitative Insights into Microbial
Ecology (QIIME2) software and the DADA2 software package
wrapped in QIIME2 was used to quality filter, trim, denoise, and
merge fastq files (Callahan et al., 2016; Bolyen et al., 2019). Clean
reads were then conducted on feature classification to output
amplicon sequence variants (ASVs) by DADA2, and the ASVs
with relative abundance < 0.005% were filtered. Taxonomy
annotation of the ASVs was performed based on the SILVA 132
database with naive Bayes classifier. In addition, sequence data were
rarefied to a depth of 29,675 sequences per sample for diversity
calculations. For beta diversity analysis, nonmetric multidimensional
scaling (NMDS) were performed according to unweighted UniFrac
distances. Significant differences among groups were tested by
analysis of similarity (ANOSIM). Furthermore, we employed
Linear Discriminant Analysis (LDA) effect size to select biomarkers
within different groups. SIMCA (version 13.0) was used to partial
least-squares discriminant analysis (PLS-DA).

SCFA and Metabolite Measurements

SCFAs were measured by gas chromatography according to a
previously described method (Wang et al., 2019). Briefly, 1.5 g of
thawed cecal content was resuspended in 1.5 mL of sterile
distilled water, and the entire sample was centrifuged at 15,000
x g for 10 min at 4°C. The supernatant (1 mL) was collected,
transferred to an ampule, and vortexed with 200 puL of
metaphosphoric acid. The mixture was then incubated in an
ice bath for 30 min. After centrifugation at 15,000 x g for 10 min,
the sample was injected into a gas chromatograph
(centrifugation at 15,000 x g) equipped with an HP 19091N-
213 column (30.0 m x 0.32 mm; Agilent, Santa Clara, CA, USA).
Injector and detector temperatures were 185°C and 210°C,
respectively. In addition, non-starch polysaccharides in cecal
content were quantified by liquid chromatography-tandem
mass spectrometry (LC-MS/MS) using a Dionex Ultimate 3000
HPLC-system (AB Sciex, Darmstadt, Germany) connected to a
tandem API 3200 Q Trap MS/MS device (AB Sciex) according to
a previously described method (Evans et al., 2009).

Intestinal Morphology

Jejunum specimens were immediately fixed in 4% (v/v)
paraformaldehyde, and tissues were dehydrated and embedded
according to standard procedures. Tissues embedded in paraffin
blocks were sectioned (4 pm) and stained with hematoxylin and
eosin (H&E). Based on the analysis of representative microscopic
images, intestinal villus height and crypt depth were measured
using NIS-Elements Basic Research software, version 2.20
(Nikon, Tokyo, Japan).

Cell Culture and Assessment of

Cell Proliferation

Rabbit intestinal epithelial cell (RIEC) was a kind gift from Prof.
Dong-Sheng Che (Jilin Agricultural University). RIEC was

cultured in DMEM/F12 (11330-032, Gibco, Carlsbad, CA,
USA) medium with 5% serum and 1% penicillin/streptomycin.
RIEC were incubated in 5% CO, at 37°C. For serotonin (Ser)
treatment, 10 UM serotonin (Sigma, St. Louis, MO, USA) was
added to the medium at 37°C. Square-wave temperature (SWT)
treatment according to our previous study (Guo et al,, 2021),
cells were cultured under a square-wave temperature rhythm (12
hours at 39°C, 12 hours at 35°C) for 4 days, the cells in control
group were cultured at 37°C. For serotonin and body
temperature matching treatment, cells were added with
serotonin at 39°C (39°C + Ser) or 35°C (35°C + Ser) during
square-wave temperature treatment. Cells were collected every 4
h for 24 h.

RIEC was seeded in 96-well plates at a density of 1 x 10* cells/
well. Cell viability of RIEC was measured every 12 h using the
Cell Counting Kit-8 (CCK-8; Beyotime Institute of
Biotechnol(‘)vgy, Shanghai, China). After cell viability assay, the
BeyoClick' ™ EdU cell proliferation kit (Beyotime, Shanghai,
China) was used to detect RIEC proliferation following the
manufacturer’s protocol. Briefly, 10 UM EdU was added to the
wells for 2 h at 37°C. Then, cells were fixed and permeabilized
with 4% para-formaldehyde and 0.3% Triton X-100 for 15 min at
room temperature, respectively. After cells were washed with 3%
BSA in PBS, cells were incubated with lick additive solution in
dark for 30 min. RIEC nuclei were visualized with Hoechst 33342
(Olympus, Tokyo, Japan). At least five randomly separate fields
from each sample image were used to quantification of RIEC
proliferative rate.

Real-Time Quantitative PCR Analysis
(aPCR)

Total RNA was extracted from cecum, jejunum, and RIEC
specimens using TRIzol reagent (Invitrogen, Carlsbad, CA,
USA), and reverse transcription was performed according to
the manufacturer’s protocols. Analysis of mRNA expression was
performed using SsoFast EvaGreen Supermix in a CFX96 real-
time PCR machine (Bio-Rad, Hercules, CA, USA). The relative
mRNA expression of each group was normalized to
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA
expression and data were analyzed using the 2**“" method.
Primer pairs are listed in Table S1.

Enzyme-Linked Immunosorbent Assay
(ELISA)

Serum levels of interleukin (IL)-1, IL-6, IL-10, IL-17, interferon
(IFN)-y, nuclear factor kappa B (NF-kf), tumor necrosis factor
(TNF)-0, lipopolysaccharide (LPS), and serotonin were
determined using matched antibody pair enzyme-linked
immunosorbent assay (ELISA) kits (R&D Inc., Beijing, China),
according to the manufacturer’s instructions.

Statistical Analysis

The non-parametric Jonckheere-Terpstra—Kendall Cycle
(JTK_Cycle) was used to analyze the significance, amplitude,
and phase of 24-h rhythms as previously described in R (Hughes
et al., 2010). The odds ratio (OR) was used to evaluate the
incidence of diarrhea and mortality, and the Chi-square test was
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calculated at a 95% confidence interval (95% CI). Differences in
non-parametric data between the two groups were analyzed
using the Wilcoxon rank-sum test. For all other data, Student’s
t-test was used for comparing the differences between two
groups. Statistical analyses were performed using SPSS 20.0
software (SPSS, Inc., Chicago, IL, USA). In addition,
Spearman’s rho non- parametric correlations and p-values
(false-discovery rate corrected p value) were calculated using
the Psych packages (http://cran.r-project.org/web/packages/
psych/). Figures were generated by Prism 7.0 software
(GraphPad Software, Inc., La Jolla, CA, USA).

RESULTS

NRF Enhances the Diurnal Oscillation of
Body Temperature and Reduces the Risk
of Diarrhea in Growing Rabbits

Analysis of the eating behavior of growing rabbits in the DF and
NRF groups revealed that the DF group ate mainly during the
daytime, whereas the eating behavior of the NRF group occurred
only at nighttime (Figure 1B). Moreover, in agreement with our
previous study (Guo et al., 2021), NRF was found to strengthen
diurnal oscillations of body temperature by eating and activity
behavior in growing rabbits and significantly increased body
temperature during nighttime (Supplementary Figure 1A). In
addition, the cumulative risk of diarrhea was also significantly
lower in the NRF group after day 68 (Figures 1C, D; p < 0.05).
These results indicate that NRF is consistent with nocturnal
feeding habits in growing rabbits, which is more conducive to
healthy breeding.

NRF Significantly Alters the Structure and
Composition of the Intestinal Microbiota in
Growing Rabbits

The dominant microbial phylum in growing rabbits was
Firmicutes followed by Bacteroidetes, Verrucomicrobia, and
Proteobacteria (Figure 2A). NMDS analyses (unweighted
UniFrac) revealed that NRF and DF divided microorganisms
into two distinct categories (Figure 2B). Further analysis by
ANOSIM revealed that there was significant differences in
microflora structure between the NRF and DF groups
(Supplementary Figure 1B; R = 0.676, P = 0.002). Similar
results were further confirmed by PLS-DA analysis (Figure 2C;
R? (Y) = 0.804, Q* = 0.613), indicating a significant effect of the
eating time on the gut microbiota structure.

To further explore the influence of NRF on the gut microbe
composition of growing rabbits, linear discriminant analysis effect
size analysis (LDA > 2) and Wilcoxon rank-sum test was performed
on the gut microbiota of DF and NRF groups at different taxonomic
levels. Firmicutes and Epsilonbacteraeota were enriched in the NRF
group, whereas Proteobacteria, Synergistetes, and Patescibacteria
were enriched in the DF group (Supplementary Figure 1C). At the
genus level (Figure 2D and Supplementary Table S2), the NRF
group was enriched with beneficial microorganisms, such as
Rikenella, Ruminococcaceae_V9D2013_group, and

Ruminiclostridium_6). In contrast, DF significantly enriched
potentially conditioned pathogenic bacteria, such as Synergistes,
Desulfovibrio, and Alistipes (Vartoukian et al., 2007; Rowan et al.,
2010; Chen et al., 2017). These results indicate that NRF
significantly changed the structure and optimized the
composition of the intestinal microbiome in growing rabbits.

NRF Optimizes the Rhythmic
Microorganisms and Promotes the
Production of Beneficial Metabolites in
Growing Rabbit

To assess the 24-h diurnal rhythm variation of gut
microorganisms in growing rabbits, the ASVs in the DF and
NRF groups were evaluated by JTK analysis. Approximately 3%
and 4% of ASVs in DF and NRF groups were found to have a
diurnal rhythm (Supplementary Figure 2A; ADJ.P < 0.05),
respectively. Venn diagram analyses further demonstrated that
the rhythmic ASVs were specific for the DF and NRF groups
(Supplementary Figure 2B). Radar plot also showed that the
ASVs rhythmic peaks in the DF group were distributed across all
time points, whereas in the NRF group occurred primarily
during the daytime fasting periods (Figure 3A). Subsequently,
JTK analysis of the microorganisms at the phylum level
determined that DF caused a diurnal rhythm in Proteobacteria
as compared with the NRF group (Figure 3B; ADJ.P < 0.05). At
the genus level, Intestinimonas and Flavonifractor showed
diurnal rhythm in the DF group (Figure 3B and
Supplementary Table S3). In contrast, NRF promoted diurnal
rhythm of Clostridium (Lachnospiraceae_ NK4A136_group,
Ruminococcaceae_UCG-013, and Roseburia), which are related
to promoting the synthesis of serotonin by intestinal chromaffin
cells (Yano et al.,, 2015; Mandic et al., 2019). These results
indicated that NRF reprogrammed the diurnal rhythm of
gut microbiota.

Moreover, NRF-induced gut microbiota structure and
composition changes in growing rabbits were found to be
accompanied by changes in microbial metabolites. JTK analysis
of SCFA concentrations in cecal contents revealed that only
isovaleric acid followed a diurnal rhythm in the DF group
(Figure 4A; ADJ.P < 0.05). The mean propionic acid
concentration in the DF group was significantly higher than in
the NRF group across all times points, whereas valeric acid and
isovaleric acid concentrations in the NRF group were
significantly higher than those in the DF group (p < 0.01). In
addition, analysis of non-starch polysaccharides in cecal contents
revealed that NRF resulted in significantly higher concentrations
of lactulose (Figure 4B). Taken together, NRF promoted diurnal
rhythm changes in beneficial intestinal microorganisms and the
production of beneficial metabolites.

NRF Significantly Enhances the Rhythmic
Expression of Intestinal Clock Genes and
Clock-Controlled Genes in Growing
Rabbits

Microbial-driven metabolite signals regulate the expression of
host peripheral tissue clock genes. Therefore, the effects of NRF
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on the intestinal clock gene expression in growing rabbits was
explored. JTK analysis of the intestinal clock gene expression
revealed that NRF significantly promoted the diurnal rhythm
expression and amplitude of BMALI, CLOCK, REV-ERBa, and
PERI in the cecum compared with the expression patterns
observed in the DF group (Figure 5A; ADJ.P < 0.05).
Subsequent analysis of the expression of CLAUDIN-1, a key
regulator of the intestinal barrier function, revealed that NRF
promoted the high-in-daytime and low-at-night rhythm
(ADJ.P < 0.05). Moreover, NRF increased the average
expression of CLAUDIN-1 (Figure 5B; p < 0.05), but the level
of OCCLUDIN was no significant difference between the two
groups (Figure 5C). The proliferation and renewal of intestinal
epithelial cells is essential to maintain the integrity of the
intestinal mucosa, a process that is regulated by the

—4 -3 -2 -1 0 1 2 3
LDA SCORE (log 10)

FIGURE 2 | Feeding time affects the composition and microbial diversity of the gut microbiota in growing rabbits. (A) The taxonomic composition of cecum
microorganisms at the phylum level and genus level (1%, according to relative abundance) under different feeding time regimens. (B) Nonmetric multidimensional
scaling (NMDS) and (C) PLS-DA analysis of the cecal microbe. (D) LEfSe analysis at the genus level (LDA > 2). DF, daytime feeding; NRF, night-restricted feeding.

proliferation and differentiation of crypt stem cells mediated by
BMII and LGRS5. Herein, the expression of BMI1 was found to
have a diurnal rhythm in the NRF group (AD].P < 0.05), and the
expression of both BMI1 and LGR5 was significantly higher than
that in the DF group throughout the day (p < 0.01), whereas no
significant difference was identified between the two groups for
apoptosis inducing factors (Figures 5D-F). Similar to cecum
results, NRF also promoted the diurnal rhythm expression of
BMI1 and CLAUDIN-I in the jejunum (Supplementary
Figures 3A-E). Therefore, whether NRF affected the intestinal
morphology in growing rabbits was evaluated next. Unlike the
cecum, the mucosa of the jejunum is covered with villi, which
makes it relatively easy to detect changes in intestinal
morphology. Overall, NRF was found to significantly increase
the height of jejunal villi (p < 0.05), but had no significant effect
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on the depth of the intestinal crypts and mucosal thickness
(Supplementary Figure 3F). Therefore, these results suggest that
NRF strengthens the diurnal rhythm of intestinal clock genes
and clock-control genes, which is partly beneficial for promoting
intestinal barrier function and integrity in growing rabbits.

The immune function of the body is regulated by clock genes
and also changes in diurnal rhythm (Murakami and Tognini,
2019). To investigate the effect of NRF on the immune function
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FIGURE 3 | The diurnal rhythm of gut microbiome phyla and genus under different feeding time regimens. (A) Polar plot represents the number of rhythmic ASVs
with an estimated peak value for each time as determined by JTK analysis. The radius of black concentric circles indicates the number of rhythmic ASVs, and the
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in growing rabbits, immune-related indicators in the serum of
growing rabbits were analyzed. NRF was found to significantly
increase the diurnal amplitude of IL-10 and decreased the
diurnal amplitude of NF-xf3, IL-1f, IL-6, TNFo., and IFN-y in
the serum (Supplementary Figure 4A). Moreover, it
significantly reduced IL-6 concentrations during the nighttime
period (p < 0.05). Next, analyses at the gene level also showed
that NRF reduced the diurnal amplitude of NF-x{3 and increased
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FIGURE 5 | Effects of feeding time on the expression of clock and clock-controlled genes in cecum of growing rabbits (n = 6 per time point). (A) The expression of
clock genes. (B, C) Tight junction genes. (D-F) Intestinal epithelial cells regeneration and apoptosis genes. (G, H) Serotonin synthesis rate-limiting enzyme TPH1
genes expression and the diurnal rhythm of serotonin in serum. White boxes indicate daytime and gray boxes indicate nighttime. (I) Expression of PERT gene in
rabbit intestinal epithelial cells induced by serotonin. ADJ.P for adjusted minimal p-values, ADJ.P < 0.05 indicates significant diurnal rhythm, AMP represents
amplitude, *ADJ.P < 0.05; **ADJ.P < 0.01. Differences between the DF and NRF groups were determined with a t-test, *p < 0.05; **p < 0.01. DF, daytime feeding;

NRF, night-restricted feeding. Data are shown as the mean + SEM.

the diurnal amplitude of IL-10 (Supplementary Figure 4B).
Therefore, these results suggest that NRF reduced the diurnal
amplitude and concentration of proinflammatory factors that
may be related to the reduction of host susceptibility to disease
(Hilker and Schmitz, 2008).

Diurnal Oscillations of Serotonin and Body
Temperature Induced by NRF Can
Regulate Diurnal Rhythmic Expression of
Intestinal Clock Genes

Microbial-driven metabolite signals and body temperature
diurnal oscillations can both regulate the diurnal rhythm
expression of clock genes in peripheral tissues (Buhr et al,
2010; Leone et al.,, 2015; Luzader et al., 2018). To further
explore the regulatory relationship between host intestinal
clock genes, gut microbiota, and body temperature oscillations,
correlations between ASVs, clock genes, clock controlled genes,
microbial metabolites, and body temperature diurnal oscillation
were evaluated in the NRF or DF group. Ruminococcaceae spp.
belonging to the Clostridium family were found to regulate the
synthesis of serotonin in intestinal chromaffin cells. In the NRF
group, Ruminococcaceae_NK4A214 group was found to be
positively correlated with serotonin synthesis rate limiting
enzymes tryptophan hydroxylase isoform 1 (TPHI) and
CLOCK (Supplementary Figure 5A). Moreover, NRF showed
to promote the rhythmic expression of TPHI, and the serum
serotonin concentration also showed the low-in-daytime and
high-at-night rhythm (Figures 5G, H), which was consistent
with the diurnal rhythm of body temperature in growing rabbits.
However, TPHI expression and peak of serotonin concentration
in the DF group were detected during daytime, which was
contrary to the peak of body temperature in growing rabbits at

nighttime. Furthermore, a negative correlation between body
temperature and serotonin in the DF group was observed
(Supplementary Figure 5D), whereas a positive correlation
was identified between body temperature and TPHI and
CLOCK in the NRF group (Supplementary Figure 5B). These
results imply that the synchronization of microbial-driven
serotonin rhythm and eating activity-driven body temperature
oscillations may be critical for NRF to alter the rhythmic
expression of intestinal clock and tight junction genes.

To further verify this hypothesis in vitro, simulation of the
rhythmic synchronization of serotonin and square wave
temperature were respectively used to detect the expression of
clock and cell proliferation in RIEC. The dose addition of
serotonin concentration to RIEC was tested, revealing that 10 uM
serotonin significantly promoted PERI expression (Figure 5I).
After 12-h rhythmic addition of 10 uM serotonin or 39-35°C
square wave temperature treatment (SWT), the diurnal rhythm
expression of PERI, BMALI, CLOCK, and CLAUDIN-1 were
significantly increased (Figures 6A). Next, the rhythmic addition
time of serotonin was performed during the high temperature
period (39°C + Ser) to simulate the synchronization of serotonin
rhythm and eating activity-driven body temperature oscillations in
growing rabbits. BMALI, CLOCK, and CLAUDIN-1 showed
significant rhythmic expression (Figures 6A), resulting in
significantly higher expression of CLAUDIN-1 than in the other
groups in the CT1-CT9 time period (Figure 6A; p < 0.05), and also
delayed the phases of CLOCK (Supplementary Figure 6).
Afterwards, the rhythmic addition of serotonin in the low
temperature period (35°C + Ser) was used to simulate the
desynchronization of serotonin rhythm and eating activity-driven
body temperature oscillations in growing rabbits. The diurnal
amplitude of PERI, BMALI, and CLAUDIN-1 were significantly
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FIGURE 6 | Effects of serotonin and temperature diurnal oscillation on expression of clock and tight junction gene in rabbit intestinal epithelial cells (RIEC). (A) Effects
of rhythmic addition of serotonin and square wave temperature on the expression of clock and Claudin-1 in RIEC. The control group (Control, Con); the 12 h
rhythmically added serotonin group (Serotonin, Ser); the square wave temperature group (SWT); addition of serotonin at 39°C (39°C + Ser); addition of serotonin at
35°C (35°C + Ser). (B) Cell viability of RIEC. (C) The percentage EdU-positive RIECs and (D) RIEC proliferation using EJU staining. ADJ.P for adjusted minimal p-
values, ADJ.P < 0.05 indicates significant diurnal rhythm, AMP represents amplitude, *ADJ.P < 0.05; **ADJ.P < 0.01. Differences between the groups were
determined with a t-test. Data are shown as the mean + SEM. *p < 0.05; **p < 0.01.

decreased (Supplementary Figure 6; p < 0.05). In addition, the
proliferation of RIEC in the 35°C + Ser treatment group was
significantly lower than that in the other three treatment groups
(Figures 6B-D; p < 0.05). Therefore, these results suggest that NRF
promotes the synchronization of serotonin rhythm and body
temperature oscillations in growing rabbits, which is beneficial to
strengthen the diurnal expression of intestinal clock gene and also
promote proliferation of intestinal epithelial cells.

DISCUSSION

The endogenous diurnal rhythm of the body is regulated by
multiple environmental factors (Zhang et al, 2020). Numerous
studies have demonstrated that microbial-driven serotonin and
body temperature oscillation, as important zeitgebers, participate
in the regulation of the clock genes expression in peripheral tissues
(Buhr et al.,, 2010; Leone et al., 2015; Luzader et al., 2018). However,
most of the current studies have focused on the effects of single
factors on clock gene expression of peripheral tissues or cells. Thus,
it remains unclear whether the synchronization of microbe-driven
serotonin rhythm and eating activity-driven body temperature

oscillations improve gut clock gene expression. The present study
reveals for the first time that NRF promotes diurnal rhythmic
expression of intestinal clock and tight junction genes in growing
rabbits via the synchronization of microbe-driven serotonin rhythm
and eating activity-driven body temperature oscillations. In
addition, NRF was shown to increase the abundance and diurnal
rhythm of beneficial microorganisms, and enhance the production
of beneficial metabolites. Moreover, NRF can also reduce the
abundance of conditional pathogens and the diurnal amplitude of
proinflammatory factors, thereby reducing the risk of diarrhea in
growing rabbits.

Feeding and fasting cycles can cause diurnal fluctuations of
indigenous spore-forming microbes (mainly Clostridium) (Thaiss
et al,, 2016; Liang and FitzGerald, 2017), thereby intervening in the
process of serotonin synthesis by Clostridium-mediated intestinal
chromatffin cells (Paulus and Mintz, 2012; Yano et al., 2015; Mandic
et al., 2019). NRF was found to promote the diurnal rhythm of the
gut microorganisms (such as Lachnospiraceae_ NK4A136_group
and Ruminococcaceae_UCG-013) belonging to Clostridium, and
also promote the low-in-daytime and high-at-night rhythm
of TPHI, which is a rate-limiting step in the biosynthesis of
serotonin. In addition, the gut can synthesize more than 90% of
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the serotonin of the body, which is consistent with the diurnal
rhythm of serotonin in the blood (Ebert-Zavos et al., 2013). For this
reason, the concentration of serotonin in the serum was also herein
evaluated. Overall, serotonin concentrations in the NRF group were
found to exhibit low-in-daytime and high-at-night rhythm, whereas
DF was associated with high-in-daytime and low-at-night rhythm,
which may be related to serotonin being a derivative of tryptophan,
an essential amino acid primarily derived from food (Pontes et al.,
2010). These results suggest that microbial-driven serotonin
synthesis in intestinal chromaffin cells are influenced by eating
rhythms. Therefore, the rhythm of eating behavior in growing
rabbits was analyzed, revealing that the eating time in the NRF
and DF groups occurred at nighttime and daytime, respectively,
which was consistent with the serotonin synthesis rhythm.

Serotonin, as an important zeitgeber, can regulate the
expression of clock genes in peripheral tissues. Studies have
reported that adding supernatant containing Clostridium
metabolites to small intestinal organoids can induce changes in
the diurnal rhythm and phase of PERI and BMALI (Luzader
et al, 2018; Ku et al, 2020). Herein, consistent with previous
studies, NRF promoted serotonin diurnal rhythm, and
strengthened the diurnal rhythm expression and amplitude of
intestinal BMALI, CLOCK, and REV-ERBc. Moreover, previous
study confirmed that the CLAUDIN-1 regulated the intestinal
barrier function through the interaction of the BMAL1-CLOCK
heterodimer with its E-box promoter sequence (Kyoko et al.,
2014). In addition, LGR5 and BMII, which control the
proliferation and renewal of intestinal epithelial cells, were also
regulated by BMALI. However, mistimed eating times can lead
to disordered diurnal expression of these genes, thereby
increasing host intestinal permeability, and the risk of
inflammatory bowel disease and metabolic disease (Stokes
et al,, 2017). Interestingly, NRF was found to enhance the
expression of intestinal clock genes and promote the diurnal
rhythm expression of CLAUDIN-1 and BMI1, also increasing the
expression of CLAUDIN-1 and BMII at the overall level
throughout the day. These results suggest that NRF may
promote diurnal expression of intestinal clock genes and
downstream clock-controlled genes through microbial-driven
serotonin in growing rabbits. To further verify this hypothesis,
a rhythmic addition of serotonin in vitro experiment was
performed to reveal that serotonin can induce the diurnal
expression of clock and tight junction genes in RIEC, and
promote cell proliferation, which was consistent with previous
findings (Aoki et al., 2014; Spohn et al., 2016). Thus, these results
partially confirm that microbial-driven serotonin signals, as one
of the zeitgebers, regulate clock gene expression in growing
rabbit intestinal epithelial cells.

The endogenous diurnal rhythms are regulated by multiple
environmental factors to maintain the stability of the biological
clock of the body (Zhang et al., 2020). Our previous research
showed that NRF promotes the rhythms of eating and activity
behavior to match the endogenous biological rhythms in
growing rabbits, thereby increasing the diurnal oscillations of
their body temperature (Guo et al., 2021). Body temperature, as
an important zeitgeber, can activate cAMP-response element

binding protein (CREB) through the Ca*'-CaM signaling
pathway mediated by the temperature sensor TRPV4, thereby
binding to the cAMP response element (CRE) located at the
PERI/2 promoter and initiates gene expression (Buhr et al., 2010;
Shibasaki et al., 2015). Similarly, serotonin activates CREB
through G protein-coupled receptor-mediated cAMP-PKA
signaling pathway, thereby initiating PER1/2 expression (Noda
et al., 2004; Lee et al., 2010; Aoki et al,, 2014). These results
suggest that whether the microbial-driven serotonin is
synchronized with the diurnal oscillations of body temperature
may influence diurnal rhythmic expression of intestinal clock
genes. The present study showed that the diurnal rhythm of
serotonin in the NRF group was synchronized with body
temperature oscillations. Serotonin peaks appeared in the
eating and activity time of growing rabbits at nighttime,
whereas those in the DF group appeared during the daytime,
which may disrupt the expression of the clock gene as it is not
synchronized with the diurnal oscillations of body temperature.
Moreover, DF could lead to the loss of diurnal rhythm of cecal
clock gene and CLAUDIN-1, and decrease the amplitude of these
genes. Indeed, in vitro simulations of serotonin and body
temperature asynchrony were found to decrease the diurnal
amplitude of the RIEC clock gene and CLAUDIN-I1, whereas
simulations of serotonin rhythm synchronization with body
temperature oscillations were found to enhance the diurnal
amplitude of these genes. Therefore, these results partially
confirm that microbial-driven serotonin rhythm and eating
activity-driven body temperature oscillations synergistically
promote the diurnal rhythm expression of gut clock gene and
CLAUDIN-1. However, these findings raise new scientific
questions, such as what type of relationship exists between
microorganisms and body temperature oscillations? It has been
shown that diurnal oscillations in body temperature cause
changes in the diurnal rhythms of gut microbiota, and that gut
microbiota can participate in host thermoregulation through the
metabolites, such as SCFAs (Bo et al., 2019; Paulose et al., 2019).
These results imply that there is an interaction between gut
microbes and body temperature, which needs to be
experimentally investigated using sterile animals, fecal bacteria
transplantations, and TRPV-family members knockout models.

The intestinal epithelial barrier plays an important role in
inhibiting bacterial translocation. When the intestinal barrier is
impaired, it causes microbial translocation and subsequent
activation of the innate immune system, thereby resulting in
intestinal inflammatory diseases (Andersen et al., 2017; Yang et al.,
2019). However, most of the current studies on intestinal barrier
function have focused on the comparison of a single time point.
Recent studies have found that tight junction genes, which play a
critical role in the intestinal barrier, show diurnal rhythm, while
simulating human shifts, jet lag, and high-fat diets were found to
cause loss of the diurnal rhythms of intestinal tight junction genes in
mice, leading to an increased risk of infestation by intestinal
conditional pathogens (Kyoko et al., 2014; Tuganbaev et al., 2020).
In the present study, both in vivo and in vitro experiments revealed
that NRF synchronizes the microbial-driven serotonin rhythm and
eating activity-driven body temperature oscillations, which promoted
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the diurnal rhythm expression and amplitude of tight junction genes,
and also promoted the proliferation of RIEC. These results imply that
NRF strengthens the intestinal barrier function in growing rabbits
and helps prevent the invasion of pathogenic microorganisms.
Subsequent analysis of microbiome data further revealed that DF
significantly increases the relative abundance of Synergistes associated
with an intestinal micro-ecological imbalance (Vartoukian et al,
2007; Bjorkhaug et al., 2019). In addition, Desulfovibrio, Synergistes,
and Alistipes are potential pathogens, and their abundance
significantly increased in the DF group. It is worth noting that an
increase in Desulfovibrio abundance is a precursor to intestinal micro-
ecological imbalances caused by the cytotoxic sulfide produced by
this microorganism. Furthermore, cytotoxic sulfide can inhibit
phagocytosis and bactericidal effects, as well as mitochondrial
oxidative phosphorylation component cytochrome c oxidase,
thereby causing ulcerative colitis and inflammatory bowel disease
(Fite et al., 2004; Rowan et al., 2010; Nicholls et al., 2013). Thus, these
results suggest that DF significantly increases the relative abundance
of conditioned pathogenic bacteria in growing rabbits and increases
the risk of intestinal inflammation, which is consistent with the
findings in the current study where DF increased the rhythmic
amplitude and concentration of proinflammatory factors in the
intestine and serum. In contrast, NRF was able to promote the
diurnal rhythm and relative abundance of microorganisms (such as
Ruminiclostridium spp. and Lachnospiraceae_ NK4A136_group)
associated with the production of SCFAs, which could in turn
inhibit histone deacetylases of macrophage and dendritic cells to
reduce the expression of proinflammatory factors (Glauben et al,
2006; Fellows et al., 2018; Yuille et al., 2018). Herein, NRF also
significantly increased the concentrations of valeric acid and
isovaleric acids in the cecum, significantly decreased the
concentrations of serum proinflammatory factors at some time
points, and also decreased the rhythmic amplitude of
proinflammatory factors, events that may be related to reduced
host susceptibility to disease (Hilker and Schmitz, 2008). In
addition, NRF increased the lactulose content in the cecum, which
is a nondigestible prebiotic in the intestine that can promote intestinal
health by regulating the growth of endophytic bacteria (Masanetz
etal,, 2011). Therefore, these results suggest that NRF matching with
endogenous diurnal rhythms in growing rabbits strengthens the
diurnal rhythm of intestinal clock genes and barrier function,
optimizes the structure and composition of gut microbiota, and
produces more beneficial metabolites to reduce concentration and
diurnal amplitude of inflammatory cytokines, thereby reducing
susceptibility to disease. Overall, these effects are consistent with
NRF potential for reducing the risk of diarrhea in growing rabbits.
However, the present study also has limitations. More detailed clock
knockout and sterile animal experimental investigations are needed
to determine the specific underlying molecular mechanisms of NRF
for promoting intestinal health in growing rabbits.

In conclusion, showed for the first time that NRF reprograms
the diurnal rhythm of the gut microbiome and promotes the
synchronization of microbe-driven serotonin rhythm and eating
activity-driven body temperature oscillations in growing rabbits.
These events result in improved diurnal expression of intestinal
clock genes and genes related to maintenance of intestinal barrier

function, as well as in enhanced cell proliferation and renewal.
Furthermore, through in vitro simulation experiments, serotonin
rhythm was shown to synchronize with diurnal oscillations of
body temperature, thereby promoting rhythmic expression of
clock and tight junction genes in RIEC, and improving cell
proliferation. Taken together, these results provide new
perspectives to guide precision breeding of young animals and
healthy eating habits in children.
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