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Coagulase-negative staphylococci (CoNS), including Staphylococcus (S) epidermidis, are
responsible for ~70% of all post-surgical endophthalmitis, a potentially blinding eye
infection. However, the pathobiology of CoNS endophthalmitis is limited to
epidemiological and clinical case studies with few experimental studies. Here, we
report both in v i t ro and in v ivo models to study the pathobio logy of
S. epidermidis endophthalmitis in mice. We found that S. epidermidis is rapidly cleared
from mouse eyes, and a relatively higher dose (i.e., 107 CFU/eye) was needed to cause
endophthalmitis. Our time-course study revealed that bacterial load peaked at 24 h post-
infection followed by a gradual decline up to 72 h. A similar time-dependent decrease in
levels of inflammatory mediators and Toll-like receptor (TLR) expression was also
observed. In contrast, neutrophil infiltration continued to increase up to 72 h coinciding
with significant retinal tissue damage and loss of visual function. In vitro, S.
epidermidis induced the activation of various inflammatory signaling pathways (i.e., NF-
kB, ERK, and P38) and the production of both cytokines and chemokines in mouse
BMDMs, human RPE, and retinal Muller glia. Altogether, we show that bacterial burden is
reduced in S. epidermidis endophthalmitis, while tissue damage and visual function loss
continue. Thus, our study provides new insights into the pathogenesis of
CoNS endophthalmitis.

Keywords: eye, retina, endophthalmitis, Staphylococcus epidermidis, innate immunity, inflammation
INTRODUCTION

Staphylococcus (S) epidermidis is a Gram-positive bacteria, which commonly present on the skin as a
part of its normal flora (Otto, 2009; Brown and Horswill, 2020). However, along with other
coagulase-negative staphylococci (CoNS), it remains a leading cause of nosocomial infections, in
part, due to its inherent ability to acquire antibiotic resistance (May et al., 2014; Lee et al., 2018).
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Earlier considered to be an innocuous microbe, S. epidermidis is
now studied as an opportunistic pathogen and the cause behind
multiple diseases, including life-threatening antibiotic-resistant
infections (Otto, 2009; Cui et al., 2019). In the eye, S. epidermidis
and other coagulase-negative staphylococci (CoNS) have been
reported to cause conjunctivitis, blepharitis, corneal ulcers, and
endophthalmitis (Flores-Páez et al., 2015). In addition, CoNS are
frequently recovered from aqueous and vitreous samples in
postsurgical complications (Johnson et al., 1997; Priya et al.,
2014; Teweldemedhin et al., 2017; Romanowski et al., 2021). One
of the key virulence properties of S. epidermidis in causing ocular
infections is attributed to its ability to create biofilms on
intraocular and soft contact lenses (Faghri and Razavi, 2009;
Konduri et al., 2021) as well as ocular prostheses (Moreno
et al., 2020).

The severity of eye infections due to CoNS increases when the
bacteria gain access to intraocular tissue, such as during
endophthalmitis, a dreaded complication arising from post-
operative or traumatic injuries, which can lead to vision loss
(Giese and Mondino, 2001; Miller et al., 2019). The most
common form of endophthalmitis is exogenous, which occurs
when microbial organisms on/around the ocular surface, or from
any external source, get inside the eye (Miller et al., 2019).
However, microbes can enter the eye via hematogenous spread
resulting in endogenous endophthalmitis (Gregory et al., 2007).
Several bacterial and fungal pathogens have been reported to
cause endophthalmitis; Staphylococcus species, particularly
CoNS, such as S. epidermidis, accounts for almost 70% of all
exogenous bacterial endophthalmitis (Smith et al., 1986; Kumar
et al., 2013; Miller et al., 2019). On the skin, S. epidermidis not
only is considered harmless but also exerts beneficiary roles in
protecting the skin from infections by boosting innate immunity
and outcompeting pathogenic bacteria (Naik et al., 2015; Nguyen
et al., 2017). Similarly, S. epidermidis colonizing the healthy
conjunctiva have been reported to have distinctive genotypic and
phenotypic characteristics as compared to those causing ocular
infections (Flores-Páez et al., 2015). However, S. epidermidis
dwelling on conjunctiva and skin surrounding the eye can easily
contaminate the medical devices used during ocular surgeries,
allowing entry inside the eye (O'Day et al., 1982; Bode et al., 1985;
Uçkay et al., 2009).

Despite the higher incidence of endophthalmitis due to S.
epidermidis and other CoNS (Callegan et al., 2002; Lalitha et al.,
2017; Malmin et al., 2021), our current understanding of the
pathobiology and host–pathogen interactions during S.
epidermidis endophthalmitis is limited to a few previous studies
in rat and rabbitmodels (Scorza andBerni, 1966; Pleyer et al., 1992;
Ravindranath et al., 1997; Oguz et al., 2004; Kim and Kim, 2011).
Moreover, most of these experimental models were utilized to test
the therapeutic efficacyof antibiotics. Studies are lacking to examine
the disease process, i.e., the initiation, progression, and eventual
termination of the host’s innate immune responses. This prompted
us to carry out the current study with two main objectives: 1) to
develop amousemodel of S. epidermidis endophthalmitis and 2) to
study the interaction of S. epidermidis with innate immune and
retinal residential cells.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
RESULTS

S. epidermidis Induces Endophthalmitis in
B6 Mice at a Higher Infectious Dose
Because different pathogens cause experimental endophthalmitis
at certain infectious doses (Gupta et al., 2019; Francis et al., 2020;
Kumar et al., 2020; Livingston et al., 2021), we performed a dose-
response study beginning with an intravitreal injection of 5,000 cfu
of S. epidermidis, a dose required for S. aureus endophthalmitis
(Singh et al., 2021). However, this inoculum was rapidly cleared
from the mouse eyes resulting in transient inflammation (data not
shown). Afterward, eyes were challenged with three higher doses
(105, 106, and 107 cfu) of S. epidermidis. Our data showed a dose-
dependent increase in corneal haze, anterior chamber opacity, and
hypopyon formation at 24 h post-infection (Figure 1A). The ERG
analysis revealed that all S. epidermidis infected mouse eyes have
reduced amplitudes of a and b waves, indicating significant loss of
retinal function in comparison to uninfected control eyes
(Figures 1B, C). Eye challenged with 107 cfu retained the least
ERG response with flat wavefront. As expected, PBS injected
control eyes did not show any bacteria growth, whereas the
intraocular bacterial burden correlated with an infectious dose,
i.e., the higher the injected inoculum, the more bacteria recovered
from the eye (Figure 1D). Interestingly, we noticed that out of six
eyes, three eyes in 105 cfu, two eyes in 106 cfu, and one eye in 107

cfu groups had lower bacterial burden than the injected inoculum.
The assessment of inflammatory mediators showed that S.
epidermidis induced the production of inflammatory cytokines
(IL1-b, IL-6, TNF-a) and chemokines (CXCL-1 and CXCL-2) in
mouse eyes (Figure 1E). However, significant elevation was
detected in eyes infected with 107 cfu followed by 106 cfu but
not by 105 cfu. These results indicate that S. epidermidis dose is a
key determinant in the pathogenesis of endophthalmitis.

S. epidermidis Infected Eyes Exhibit
Pathology and Impaired Retinal Function
Our dose-response study revealed that 107 cfu of S. epidermidis
causes a significant decline in retinal function and induces
persistent inflammation in mouse eyes. Therefore, we decided
to use a dose of 107 cfu/eye to determine temporal changes
during S. epidermidis endophthalmitis via assessment of the
disease progression up to 72 h. Our data showed that infected
eyes had visible opacity and corneal haze at 24 h, which
subsequently reduced at 48- and 72-h time points (Figure 2A).
In contrast, the histological analysis revealed time-dependent
retinal tissue damage, with increased retinal folds and heavy
cellular infiltrates in the vitreous cavity (Figure 2B). This
coincided with a significant reduction in retinal function
assessed by ERG analysis (Figure 2C). The amplitudes of both
a and b waves were significantly decreased at all time points, i.e.,
24, 48, and 72 h post-infection (Figure 2D). Relatively, the b
wave amplitudes were lower than a wave, indicating impairment
of photoreceptor functions. Interestingly, bacterial burden
estimation revealed a time-dependent decrease in the viable
bacterial count, indicating enhanced bacterial clearance
(Figure 2E). To ensure whether the observed reduction in
November 2021 | Volume 11 | Article 780648
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bacterial burden is not due to S. epidermidis growth defect, we
performed an ex vivo growth curve using human vitreous. Our
data showed that similar to enriched bacterial culture media, S.
epidermidis exhibited classical log and lag phases of bacterial
growth in the vitreous, indicating the unlikelihood of defective
bacterial growth (Figure S1).

S. epidermidis Induces Inflammatory
Responses and PMN Infiltration in the Eye
One of the hallmarks of bacterial infection is the induction of
inflammatory response (Kumar et al., 2016; Kumar et al., 2020;
Francis et al., 2020). To determine innate immune response
during S. epidermidis endophthalmitis, we assessed the
expression of key inflammatory mediators in infected eyes.
Our data showed that S. epidermidis induced the expressions
of inflammatory cytokines (IL1-b, IL-6, and TNF-a) as well as
chemokines (CXCL1 and CXCL2), at both mRNA (Figure 3A)
and protein (Figure 3B) levels. The time-course study revealed
that inflammation peaked at 24 h post-infection followed by a
significant decline at 48- and 72-h time points. We also noticed
that while inflammatory cytokines were drastically reduced at 48
and 72 h, protein levels of the chemokines CXCL1 and CXCL2
were still higher at these time points. Since chemokines play a key
role in the recruitment of immune cells, we performed flow
cytometry to measure neutrophil infiltration during S.
epidermidis endophthalmitis. Our data showed a gradual, time-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
dependent increase in PMN infiltration in S. epidermidis infected
eyes (Figure 4A), as evidenced by increased percentages of
CD11b+ Ly6G+ at all time points (Figure 4B). Together, these
results indicate the induction of an innate inflammatory
response in S. epidermidis endophthalmitis.

S. epidermidis Induces TLR Expression
and Activation of Inflammatory Signaling
Upon pathogen invasion, host cells engage TLRs for pathogen
recognition and to initiate innate immune responses (Pandey
et al., 2013). As our prior studies have implicated the essential
role of TLRs in retinal innate defense during endophthalmitis
(Kumar et al., 2010; Singh et al., 2014; Talreja et al., 2015), we
evaluated their expression in this study. Our data showed that S.
epidermidis induced the expression of Tlr2, Tlr4, Tlr6, and Tlr9,
the main TLRs involved in bacterial recognition. Time-course
analysis revealed the highest expression of all TLRs at 24 h post-
infection with a subsequent decline at 48 and 72 h (Figure 5).
After pathogen recognition, TLRs activate an inflammatory
signaling cascade involving NF-kB and MAPKs (e.g., ERK,
P38) resulting in the production of inflammatory mediators. S.
epidermidis infection resulted in IkB-a phosphorylation, which
was detectable and peaked in mouse retinal lysate at 24 h,
followed by a slow decline at 48 h. Accompanying the increase
in IkB-a phosphorylation, IkB-a degradation was more
prominent at 24 h. A similar time-dependent increase was
A B

D

E

C

FIGURE 1 | Intravitreal inoculation of S. epidermidis causes endophthalmitis in C57BL/6 mice. C57BL/6 mice eyes (n = 6 eyes each condition) were intravitreally injected
with indicated colony forming units (cfu/eye) of S. epidermidis or PBS (control, C), and eyes were processed 24 h post-infection (p.i.). (A) Slit-lamp examination was
performed, and photomicrographs were taken from representative eyes showing corneal haze/opacity. (B) Scotopic electroretinogram (ERG) analysis was performed
to assess retinal function. (C) Bar graph showing percent a- and b-wave amplitude retained with respect to control eyes set at 100%. (D) At 24 h p.i. eyes were enucleated
and homogenized, and the bacterial burden was estimated via serial dilution plating. (E) The lysates from infected and control eyes were subjected to ELISA to quantify
protein levels of indicated inflammatory mediators. Statistical analysis was performed using ANOVA with Dunnett’s multiple comparison test (C, E) or Tukey’s multiple
comparison test (D), (*) p<0.05 (**) p<0.01 (***) p<0.001 (****) p<0.0001; ns, nonsignificant.
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observed in the phosphorylation of P38 and ERK in retinal tissue
(Figure 6A). We also assessed the activation of these pathways in
retinal Muller glia and RPE, which were shown to play roles in
retinal innate defense during intraocular infection (Lenkowski and
Raymond, 2014; Singh et al., 2014; Singh et al., 2017). Our data
showed that S. epidermidis induced the activation of NF-kB, P38,
and ERK signaling inMuller glia (Figure 6B) and RPE (Figure 6C)
as evidenced by increased phosphorylation at both 30- and 90-min
time points. Altogether, these results indicate that both retina and
retinal cells directly respond to S. epidermidis and activate TLR-
mediated inflammatory signaling pathways.

S. epidermidis Induces the Production of
Inflammatory Mediators in Retinal Cells
Next, we assessed the biological relevance of the induced signaling
pathways; we determined the effect of S. epidermidis on the
expression and secretion of inflammatory cytokines. We observed
thathumanMullerglia challengedwithS. epidermidishad increased
expression of IL-1b andTNF-a both at themRNA (Figure 7A) and
protein (Figure 7B) levels. Moreover, the response was found to be
time-dependent with a relative increase at the 6-h time point.
Human RPE cells also exhibited a similar pattern of IL-1b and
TNF-amRNA (Figure 7C) and protein (Figure 7D) expression in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
response to S. epidermidis infection. PMNs and monocytes/
macrophages are also major infiltrating innate immune cells
during ocular infections (Singh et al., 2021); therefore, we decided
to assess the inflammatory response ofmouseBMDMs.To this end,
our data showed that S. epidermidis induced robust Il-6 and Cxcl1
mRNA(Figure7E) andprotein expressions (Figure7F) in cultured
BMDMs. The induced expression of other inflammatory cytokines
such as Il-1b and Tnf-a both at mRNA and proteins was also
detected inBMDMs (Figure S2). It should benoted that therewas a
differential response based on cell types, with BMDMs expressing
much higher levels of inflammatorymediators compared toMuller
glia and RPE. These results suggest that retinal cells possess the
ability to respond to S. epidermidis infection by secreting
inflammatory mediators.
DISCUSSION

S. epidermidis and other coagulase-negative Staphylococci (CoNS)
are the most commonly recovered bacterial species from
endophthalmitis patients (Miller et al., 2019; Malmin et al.,
2021). They are also key constituents of the human microflora
and usually colonizing moist areas, thereby considered as
A

B

D E

C

FIGURE 2 | S. epidermidis induces retinal tissue damage in the eye. C57BL/6 mice eyes (n = 5 eyes at each time point) were given intravitreal injections of 107 cfu/eye
of S. epidermidis or PBS (control, C), and eyes were processed at indicated times post-infection. Eyes with PBS injection harvested at 72 h p.i. were used as control.
(A) Slit-lamp examination was performed, and photomicrographs were taken from representative eyes to visualize corneal haze/opacity. (B) At indicated time points
post-infection, eyes were enucleated, paraffin fixed, and stained with H&E. (C) Scotopic electroretinogram (ERG) analysis was performed to assess retinal function.
(D) Bar graph showing percent a- and b-wave amplitude retained with respect to control (C) eyes set at 100%. (E) At indicated time points, eyes were enucleated and
homogenized, and the bacterial burden was estimated via serial dilution plating. C, cornea; AC, anterior chamber; L, lens; VC, vitreous chamber; R, retina; ONH, optic
nerve head. Statistical analysis was performed using ANOVA with Dunnett’s multiple comparison test (D) or Tukey’s multiple comparison test (E), (**) p<0.01 (***) p<0.001
(****) p<0.0001; ns, nonsignificant.
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opportunistic pathogens (Kloos and Musselwhite, 1975; Grice
et al., 2009). Today, CoNS represent one of the major
nosocomial pathogens impacting human health (Rogers et al.,
2009; Becker et al., 2014; Nguyen et al., 2017). In the eye, S.
epidermidis colonizes the conjunctiva (Schleifer and Kloos, 1975).
Therefore, during ocular surgeries, S. epidermidis can enter inside
the eye through contaminated surgical devices and result in
endophthalmitis (Lowy, 1998; Durand, 2013). Although most
clinical studies have reported S. epidermidis to cause less severe
endophthalmitis as compared to S. aureus (Pichi et al., 2014), few
experimental studies have been conducted to understand its
pathobiology (Pleyer et al., 1992; Ravindranath et al., 1995;
Ravindranath et al., 1997). Because the eye is an immune
privilege organ, it could provide a conducive milieu for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
opportunistic pathogens. Moreover, the treatment of CoNS
infections is becoming more challenging due to the emergence
of multidrug resistance among large proportions of ocular isolates
(Asbell et al., 2015; Asbell et al., 2020). Therefore, it is crucial to
understand the host–pathogen interactions during ocular CoNS
infections. In this study, using in vitro and in vivo experimental
models, we provide mechanistic insights into the pathogenesis of
S. epidermidis endophthalmitis (Figure 8). Most importantly, our
study shows that while the bacterial burden gradually declines in
the infected eye, neutrophil infiltration and retinal tissue damage
continue until 72 h, resulting in significant vision loss. Collectively,
to the best of our knowledge, this is the first study to elucidate the
innate immune responses and pathobiology of S. epidermidis
endophthalmitis in a murine model.
A

B

FIGURE 3 | S. epidermidis infected eyes exhibit inflammatory response during endophthalmitis. C57BL/6 mice eyes (n = 6 eyes at each time point) were infected by
intravitreal injection of 107 cfu/eye of S. epidermidis or PBS (control, C) for indicated time points. (A) At designated time points, neural retina was harvested and subjected
to qPCR analysis for inflammatory mediators, Il-1b, Il-6, Tnf-a, Cxcl1, and Cxcl2. (B) Whole eye lysates were subjected to ELISA to quantify the protein levels of the
same inflammatory mediators. Statistical analysis was performed using ANOVA with Dunnett’s multiple comparison test (A, B), (*) p<0.05 (**) p<0.01 (***) p<0.001 (****)
p<0.0001; ns, nonsignificant.
A B

FIGURE 4 | S. epidermidis induces PMN infiltration in C57BL/6 mice eyes. C57BL/6 mice eyes (n = 6 eyes) were infected by intravitreal injection of S. epidermidis
(107 cfu/eye). Eyes with PBS injection harvested at 72 h p.i. were used as control. At indicated time points, retinas were harvested, and single-cell suspensions were
stained with anti-CD45-PECy5, anti-CD11b-APC, and anti-Ly6G-FITC antibodies. (A) The representative dot plots indicate S. epidermidis induced retinal PMN
(CD11b-Ly6G double-positive) infiltration. (B) The bar graph represents the percentage of neutrophil infiltration at different time intervals with respect to control eyes
set at 100%. Statistical analysis was performed using ANOVA with Dunnett’s multiple comparison test (B), (*) p<0.05 (**) p<0.01 ns, nonsignificant.
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In healthy individuals, S. epidermidis is considered a low
virulence pathogen as compared to S. aureus (Pichi et al., 2014).
However, in immunocompromised individuals, it possesses the
greatest pathogenic potential among CoNS (Giese and Mondino,
2001; Paharik and Horswill, 2016). Although S. epidermidis
pathogenesis has been extensively studied in the context of
foreign body infections (Uçkay et al., 2009), specifically the
biofilm formation, little is known about its virulence factors
responsible for causing ocular infections. Thus, to establish
endophthalmitis, we performed a dose-response study by
intravitreal injections of S. epidermidis. We found that bacterial
inoculum in the range of 105 to 107 cfu/eye induced an
inflammatory response and opacity within 24 h with 107 cfu/eye
dose causing increased disease severity. This observation indicates
that unlike S. aureus, which induces endophthalmitis at 5,000 cfu/
eye (Talreja et al., 2015), S. epidermidis needed a much higher
inoculum. This is also consistent with prior studies in rat and
rabbit models, where authors reported that a certain threshold of
inoculum was needed to overcome immune responses and for
persistent infection (Pleyer et al., 1992; Maxwell et al., 1993;
Ravindranath et al., 1995). However, when we performed a
time-dependent study using 107 cfu/eye dose of S. epidermidis,
we found that bacterial burden was only slightly increased at 24-h
time followed by a rapid decline at later time points. In our prior
studies with S. aureus, we showed that bacteria continue to grow
inside the eye from 24 to 72 h (Shamsuddin and Kumar, 2011;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Kumar et al., 2016; Singh et al., 2021); therefore, we used the same
timeline. However, future studies, with the early time points (6 and
12 h) might be helpful to dissect intraocular proliferation of S.
epidermidis. In ex vivo, we found that S. epidermidis grew in the
human vitreous up to 24 h; however, the growth rate was lower
than enriched bacterial growth media. The observed differences
are likely due to lesser availability of nutrients in the vitreous
rather than defect in bacteria growth.

The gross eye exam revealed the clearance of anterior
chamber opacity at 48 and 72 h, indicating a recovery. These
results suggest that mouse eye/vitreous can kill S. epidermidis, a
phenomenon known as spontaneous sterilization discovered by
Meredith et al. in a rabbit model (Meredith et al., 1990).
However, our use of a mouse model provides the added
advantage of versatility, which is needed to properly study the
pathogenesis of S. epidermidis endophthalmitis via the wide
availability of genetic and immunological tools. Similar to our
prior study in S. aureus endophthalmitis (Singh et al., 2020), we
did not observe any significant difference in the pathogenesis of
S. epidermidis endophthalmitis in male versus female mice,
indicating the applicability of our findings across genders.

Once inside the vitreous, retinal cells recognize pathogens via
pattern recognition receptors such as TLRs (Singh and Kumar,
2015) and elicit inflammatory signaling pathways (Kumar and
Shamsuddin, 2012; Pandey et al., 2013). Our data show that
intravitreal inoculation of S. epidermidis initiated retinal innate
FIGURE 5 | S. epidermidis induces Toll-like receptor (TLR) expression in mouse retina. C57BL/6 mice eyes (n = 4 eyes each time point) were infected with S. epidermidis
(107 cfu/eye) by intravitreal injections, and the retina tissue was harvested at the indicated time points. Eyes with PBS injection harvested at 72 h p.i. were used as control.
Infected and control (C) retinal tissues were used for RNA isolation and subjected to qPCR for various Toll-like receptors (Tlr 2, 4, 6, 9). The data are presented as fold
changes in comparison with uninfected controls. Statistical analysis was performed using ANOVA with Dunnett’s multiple comparison test, (*) p<0.05 (**) p<0.01 (****)
p<0.0001.
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A

B

C

FIGURE 6 | S. epidermidis induces inflammatory signaling in mouse retina and cultured human retinal cells. Retinal tissues were harvested from S. epidermidis (107

cfu/eye) infected eyes (n = 6 eyes, 2 eyes were pooled into one sample) at the indicated time points. (A) The activations of inflammatory signaling proteins were
assessed by western blot using specific anti-IkB-a (phospho- and total), anti-ERK (phospho- and total), and anti-P38 (phospho- and total) antibodies, with b-actin as
a loading control. In another experiment, cultured human retinal Muller glial cells (B) (MIO-M1 cell line) and retinal pigment epithelial cells (C) (ARPE-19 cell line) were
infected with S. epidermidis (MOI of 10) for 30 and 90 min. Cell lysates were probed for indicated phospho- and total proteins. In all experiments, band intensities
were quantified by using the Image Studio software and presented as the relative band intensity of phospho/total vs. b-actin. Statistical analysis was performed using
ANOVA with Dunnett’s multiple comparison test (A–C) (*) p<0.05 (**) p<0.01; ns, nonsignificant.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org November 2021 | Volume 11 | Article 7806487
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immune response by inducing the expression of several TLRs,
followed by induction of NFkB and MAPK signaling with
increased phosphorylation of IkBa, ERK, and P38 proteins in
mouse retinal tissue. Because the retina is a complex tissue, to
determine the contribution of retinal cell types in innate
response to S. epidermidis, in vitro studies were performed
using retinal Muller glia and RPE, representing retinal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
residential cells (Strauss, 2005; Kumar et al., 2013; Linehan and
Fitzgerald, 2015). We found that both Muller glia and RPE
exhibited the activation of these signaling pathways within
30 min of S. epidermidis exposure, indicating their role in
orchestrating an innate response during endophthalmitis. We
previously reported that retinal cells respond to bacterial
virulence factors via TLRs (Shamsuddin and Kumar, 2011;
A

B D
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F

C

FIGURE 7 | S. epidermidis induces inflammatory responses in cultured mouse BMDMs and human retinal cells. (A, B) Human retinal Muller glial cells (MIO-M1 cell
line) (C, D) human retinal pigment epithelial cells (ARPE-19 cells), and (E, F) mouse bone marrow-derived macrophages (BMDMs) were infected with S. epidermidis
(MOI of 10) for 4 or 6 h. At indicated time points, cells were harvested for qPCR analysis of inflammatory cytokines/chemokines (A, C, E), and culture supernatants
were used for ELISA to quantify their protein levels (B, D, F). Statistical analysis was performed using ANOVA with Sidak’s multiple comparison test (A–D) and t-test
(E, F) (*) p<0.05 (**) p<0.01 (***) p<0.001 (****) p<0.0001.
FIGURE 8 | Schematic of pathobiology of S. epidermidis endophthalmitis. Intraocular inoculation of S. epidermidis is recognized by TLRs expressed on infiltrating
immune cells such as monocytes/macrophages, retinal residential cells, Muller glia, and RPE. Upon activation of inflammatory signaling, these cells secrete inflammatory
cytokine and chemokines to recruit PMNs. Although essential to control bacterial growth, increased inflammation and PMN infiltration cause collateral retinal tissue damage
during endophthalmitis, culminating in reduced visual function and blindness.
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Kumar and Shamsuddin, 2012; Kumar et al., 2013; Singh et al.,
2014). Moreover, Muller glia cells were found to participate in
clearance of S. aureus by secreting antimicrobial peptides
(Shamsuddin and Kumar, 2011) and the production of both
ROS and NO, and by phagocytosis (Singh et al., 2014). Hence, we
speculate similar antimicrobial mechanisms exhibited by Muller
glia during S. epidermidis endophthalmitis.

The eye is protected from systemic circulation due to the
presence of blood-retinal barrier (BRB), which is essential in
maintaining visual function. It is composed of two major cell
types: the endothelial cell, which constitutes inner BRB, and a
single layer of RPE cells forming the outer barriers (Singh et al.,
2019). Both these cells play a critical role in controlling the
infiltration of immune cells during retinal infection, including
endophthalmitis (Coburn et al., 2016). Because of their intimate
contact with choroid and other retinal cell types (e.g.,
photoreceptors), RPE senses the presence of pathogenic stimuli
coming from both choroid as well as from vitreous. Thus, RPE
plays a pivotal role in eliciting innate immune responses via
activation of microbial sensors (TLRs, NOD-like receptors,
NLR), cytokine/chemokine production, and an array of
complement components to combat retinal infections (Detrick
and Hooks, 2010). Inside the retina, the activated RPE cells
interact with microglia, thereby acting as an inflammatory signal
to upregulate microglial cells to secrete cytokines (Kumar et al.,
2004). Furthermore, RPE cells constitutively express AMPs, and
its expression is regulated during pathogen insults to protect the
blood-retinal barrier (Liu et al., 2021). Studies have also shown
that iNOS triggered by secreted cytokines in RPE against
Staphylococcus infections mediates anti-inflammatory effects
that, in turn, prevent IDO-1-dependent tissue damage (Spekker-
Bosker et al., 2019). Our data show the activation of inflammatory
signaling and the production of inflammatory mediators by RPE
in response to S. epidermidis infection indicate their role in the
activation of an innate immune response.

Neutrophils are the primary infiltrating cells of the vitreous
during endophthalmitis (Miller et al., 2019; Kumar et al., 2020;
Singh et al., 2021). Although neutrophil deficiency reduces
ocular inflammation, it comes with the price of increased
bacterial proliferation in the eye (Talreja et al., 2014; Talreja
et al., 2015). Thus, a fine balance is needed to have sufficient
PMN infiltration to kill pathogens without causing collateral
ocular tissue damage. Our data show that S. epidermidis burden
is decreased in infected eyes as time progresses coinciding with
increased PMN infiltration. Thus, PMNs are likely to be
responsible for enhanced bacterial clearance of S. epidermidis
in later stages of infection. As neutrophils are the first responder
during infection, we found that their depletion exacerbates
bacterial and fungal endophthalmitis (Talreja et al., 2014;
Gupta et al., 2019), indicating an indispensable role. We
anticipate that in neutropenic mice, S. epidermidis might grow
more; however, whether inflammation or disease outcome be
better or worse needs further investigation.

Our in vitro study using S. epidermidis infected mouse
BMDMs also showed secreted inflammatory cytokines and
chemokines. Thus, both PMNs and monocyte/macrophages,
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while eradicating bacteria, contribute to ocular inflammation.
The influx of these phagocytic cells into the eye is facilitated due
to BRB breakdown and the production of inflammatory
mediators in endophthalmitis. We found that the levels of IL-
6, TNF-a, and IL-1b cytokines peaked at 24 h followed by a steep
decline. However, the decrease in protein levels of chemokines,
CXCL1, and CXCL2 was more gradual. We believe that these
chemokines might be responsible for continued infiltration of
PMNs. In addition to chemokines, induced expression of E-
selectin and ICAM-1 cells has been implicated in the infiltration
of PMNs during endophthalmitis (Giese et al., 2000). The
expression of these adhesion molecules is predominantly
observed on endothelial cells in the iris, ciliary body, and
choroid, indicating that these are the main sites for cellular
infiltration into the eye in endophthalmitis. We observed that
while bacterial burden and inflammatory cytokines subsided in S.
epidermidis endophthalmitis, histological analysis revealed
significant damage to the retina culminating in a reduced ERG
response. These findings have clinical implications in
endophthalmitis caused by typically low virulence pathogen
because the clarity of vitreous is often used as an endpoint in
laboratory diagnosis to terminate antimicrobial therapy.
However, our study indicates that inflammation persists
despite declining bacterial numbers. Similarly, in bacterial
meningitis, antibiotic treatment has been shown to increase
inflammation and tissue destruction due to the release of
bacterial cell wall components (Quagliarello and Scheld, 1992).
Thus, we propose to use adjunct anti-inflammatory therapeutics
with antibiotics for the treatment of bacterial endophthalmitis
(Francis et al., 2020; Singh et al., 2021).

In conclusion, our findings suggest that although S.
epidermidis was able to establish endophthalmitis in mice at a
relatively higher inoculum, it elicited significant inflammation
and mediated retinal tissue damage in the eye. Further studies are
needed to determine precise mechanisms underlying increased
PMN infiltration to better understand the pathobiology of S.
epidermidis endophthalmitis, which would aid in the
development of therapeutic modalities.
MATERIAL AND METHODS

Bacterial Strain and Growth Conditions
The bacterial strain used in this study is a coagulase-negative
strain, S. epidermidis, identifiable as ATCC12228. The strain was
routinely cultured in tryptic soy medium (TSA or TSB; Sigma, St.
Louis, MO) at 37°C for all the experiments. For in vitro and in
vivo infection experiments, overnight-grown bacteria were rinsed
and diluted in 1X PBS to achieve the desired colony forming
units (cfu). For S. epidermidis growth curve analysis, 180 µl of
homogenized human vitreous, Muller Hinton broth (MHB), or
TSB was added to each well of a microtiter plate and 20 µl of
bacterial suspension (5x104 cfu/ml). After 6, 12, 24, and 48 h
from each well, 20-µl aliquots were obtained and serially diluted
to determine the bacterial count on tryptic soy agar (TSA).
November 2021 | Volume 11 | Article 780648

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Das et al. Pathobiology of Staphylococcus Epidermidis Endophthalmitis
Retinal Cell Culture and Maintenance
The human retinal pigment epithelial cell line ARPE-19 was
maintained in Dulbecco’s modified Eagle’s medium nutrient
mixture F-12 (DMEM F-12), whereas the human retinal
Muller glia cell line MIO-M1 was cultured in DMEM
GlutaMAX, both with supplementation of 10% fetal bovine
serum (FBS) and 1% penicillin-streptomycin antibiotic solution
at 37°C in 5% CO2. However, prior to infection, the cells were
cultured in serum and antibiotic-free media and infected with S.
epidermidis (MOI, 10:1) for various time points. The cells were
used for extraction of RNA or proteins, whereas cell-free culture
media were collected for cytokine ELISA.

Isolation of Bone Marrow-Derived
Macrophages
The isolation of bone marrow-derived macrophages (BMDMs)
was done from C57BL/6 mice as described earlier (Singh et al.,
2021). Briefly, 6–8 weeks old mice were euthanized, and bone
marrows were extracted from their tibias and femurs with RPMI-
1640 media containing 10% FBS and 0.2 mM EDTA,
maintaining an aseptic condition inside a BSL-2 cabinet. Cells
were centrifuged at 400 x g for 5 min at 4°C, followed by the lysis
of RBCs in differential NaCl solutions. The cells were then rinsed
with the media and transferred to a Petri dish containing an
RPMI-1640 medium supplemented with 10% FBS, 1% antibiotic,
and 10 ng/ml macrophage colony-stimulating factor (M-CSF) to
allow macrophage differentiation. Cells were maintained in a 5%
CO2 incubator at 37°C. After 6 days post isolation, BMDMs were
seeded in six-well plates and challenged with S. epidermidis
(MOI, 10:1). The cells were used for the extraction of RNA or
proteins, whereas culture media were collected for
cytokine ELISA.

Cytokine ELISA
After infection, the culture supernatants from in vitro
experiments were collected, and the levels of IL-1b, IL-6,
TNFa, CXCL1, and CXCL2 were determined by ELISA using
commercially available kits as described previously (Talreja et al.,
2015). ELISA was performed as per the manufacturer’s
instructions (R&D systems, Minneapolis, MN). For in vivo
cytokine estimation, the whole eyes were enucleated,
homogenized in 1X PBS by beating against stainless-steel beads
in a Tissue lyser (Qiagen, Valencia, CA, USA), and centrifuged,
and the lysates were subjected to ELISA as mentioned above. It is
pertinent to note that, before performing ELISA, protein
estimation was done using the BCA method to ensure that
equal protein concentrations were used for each sample.

RNA Extraction, cDNA Synthesis,
and qPCR
Total RNA was extracted from cultured cells or mouse retina
using a TRIzol reagent as per the manufacturer’s protocol
(Invitrogen, Carlsbad, CA). Next, cDNA was synthesized using
1 mg of the isolated RNA using a Maxima first-strand cDNA
synthesis kit according to the manufacturer’s instructions
(Thermo Scientific, Rockford, IL). The cDNA was then
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subjected to qRT-PCR on a StepOnePlus Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA) using
gene-specific PCR primers synthesized from Integrated DNA
Technologies (Coralville, IA, USA) with a PCR condition of
initial denaturation at 94°C for 5 min, followed by 40 cycles of
denaturation (94°C, 45 s), annealing (60°C, 1 min), and
extension (72°C, 45 s), with a final extension at 72°C for
10 min. The data were analyzed as a comparative DDCT

method and were presented corresponding to the fold-change
differences in gene expression in test samples with respect
to control.

Animal Housing and Use
Both male and female C57BL/6 (B6) mice (age, 6–8 weeks) were
purchased from the Jackson Laboratory (Bar Harbor, ME, USA)
and were housed in a restricted access DLAR facility at the
Kresge Eye Institute, maintained in a 12:12 light/dark cycle, and
fed with LabDiet rodent chow (Labdiet; Pico Laboratory, St.
Louis, MO, USA) and water ad libitum. Both male and female
mice, around 8 weeks of age, were used. Mice were treated in
compliance with the Association for Research in Vision and
Ophthalmology (ARVO) Statement for the Use of Animals in
Ophthalmic and Vision Research, and all procedures were
approved by the Institutional Animal Care and Use Committee
(IACUC) of Wayne State University under protocol # IACUC-
19-03-1012.

Patient Vitreous Collection
Human vitreous samples were collected under sterile conditions
from patients undergoing vitrectomy and had signed a
preoperative informed consent to use the excised vitreous fluid
for basic and clinical research. The protocol and study design
were approved by the Wayne State University School of
Medicine Institutional Review Board. Collected samples were
stored in -80°C until further use.

Induction of Bacterial Endophthalmitis
Bacterial endophthalmitis was induced in B6 mice by intravitreal
injection with specified doses of S. epidermidis. As per our
IACUC approved protocol, only the eye of each mouse can be
injected with either sterile PBS (serving as control) or bacteria.
To obtain a 107 inoculum, we concentrated 10 ml of bacterial
culture equivalent to 1 O.D (~108 cfu/ml) by pelleting and
resuspending in 200 ml of PBS. Mice were anesthetized with
ketamine and xylazine, and intravitreal injections of PBS or
bacteria (2-ml volume) were performed using a 34-gauge needle
under a microscope. This procedure is routinely performed in
the lab and reported in our several studies (Kumar et al., 2010;
Talreja et al., 2014; Kumar et al., 2016; Singh et al., 2020; Singh
et al., 2021). Disease progression was monitored using slit-lamp
examination and testing retinal function using electroretinogram
(ERG). Following the desired time point post-infection,
enucleated eyes were subjected to bacterial burden estimation,
cytokine/chemokine ELISA, polymorphonuclear neutrophil
(PMN) infiltration, and histopathology, as described in the
following sections.
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Bacterial Burden Estimation
Bacterial densities in infected eyes of WT mice were assessed
using the standard serial dilution and the bacterial plate count
method. At the indicated time points, the eyes were enucleated
and homogenized in sterile 1X PBS in a tissue lyser (Qiagen,
Valencia, CA, USA), followed by serial dilution and plating on
tryptic soy agar (TSA) plates. Results were expressed as mean ±
SD number of colony-forming units (cfu)/eye.

PMN Infiltration
Flow cytometry was performed to estimate the infiltration of
neutrophils in infected eyes as described earlier (Talreja et al.,
2015). In brief, the retinas from euthanized mice were isolated
and digested with Accumax (Millipore) for 10 min at 37°C, with
intermittent mixing using a 22-gauge needle and a syringe. Next,
to obtain a single-cell suspension, the lysate was filtered through a
40-mm cell strainer (BD Falcon, San Jose, CA, USA). The cells
were then incubated with Fc Block (BD Biosciences) for 30 min,
followed by three times washing with PBS containing 0.5% bovine
serum albumin (BSA). For staining the cells, phycoerythrin (PE)-
Cy5-conjugated CD45, Ly6G-FITC, and CD11b-APC antibodies
(BD Biosciences) were used to incubate the cells for 30 min in the
dark. Following incubation, cells were washed and suspended in
sheath fluid. The stained cells were acquired on the Accuri C6
flow cytometer (BD Biosciences) at the NEI P30 immunology
core at the Kresge Eye Institute. Data were analyzed using the
manufacturer’s software.

Retinal Function Testing
Scotopic electroretinography (ERG) was done to evaluate retinal
function in S. epidermidis induced endophthalmitis as described
previously (Francis et al., 2020). Briefly, following overnight dark
adaptation, ERGs were recorded in control and infected mice
eyes using the Celeris ERG system (Diagnosis LLC, Lowell, MA,
USA) according to the manufacturer’s instructions. The ERG a-
wave was measured as an amplitude between the ERG baseline
and the first negative peak, and the ERG b-wave was measured as
an amplitude between the first negative peak and the first positive
peak. Data were analyzed with respect to placebo control eyes.

Ocular Histology
Mice were euthanized and eyes were enucleated, fixed in 4%
formalin for histopathological analysis. The embedding,
sectioning, and hematoxylin and eosin (H&E) staining of the
tissues were done by Excalibur Pathology, Inc. (Oklahoma City,
OK, USA). The slides were further scanned under the PathScan
Enabler IV (Meyer Instruments, Inc., Houston, TX, USA) to
obtain images.

Western Blotting
Following infection, proteins were extracted from cultured cells after
beingwashedwith1XPBSand lysedwith radioimmunoprecipitation
assay (RIPA) buffer, supplemented with protease and
phosphatase inhibitor cocktails. Retinal tissues from two eyes
were pooled in RIPA buffer and sonicated, and lysates were
obtained after centrifugation. Total protein concentration was
detected using aMicro BCAprotein assay kit (Thermo Scientific,
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Rockford, IL). For western blot, the samples were run on SDS
polyacrylamide gels and electrotransferred to 0.45-mm
nitrocellulose membranes using a wet blot transfer. The
membranes were then treated with 5% skim milk in TBST (20
mMTris HCl [pH 7.6], 0.15M sodium chloride, and 0.5%Tween
20) for 1 h at RT and further incubated with respective primary
antibodies (Cell Signaling Technology, USA or Santa Cruz
Biotechnology, USA) as per the manufacturer’s protocol for
overnight on a rocker at 4°C. After washing thrice with TBST,
themembraneswere further treatedwith horseradish peroxidase
(HRP)-conjugated appropriate secondary antibodies (anti-
mouse or anti-rabbit Ig) for 2 h. Following three TBST washes,
the blots were developed with a Super Signal West Femto
chemiluminescent substrate kit (Thermo Scientific, Rockford,
IL). To generate quantitative data, immunodetected protein
band intensities were measured using the Image Studio
software (LI-COR Biosciences, NE, USA).

Statistical Analysis
All the assays were performed independently three times in
biological triplicates, and graphs were plotted showing mean ±
standard deviation. The data were analyzed using either
Student’s t-tests or ANOVA with the help of GraphPad Prism
version 8.1 (Graph Pad, CA, USA). A confidence interval of 95%
was maintained for all experimental values. A p-value < 0.05 was
considered statistically significant.
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