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Hookworm is one type of soil-transmitted helminth, which could exert an anti-
inflammatory effect in human or animal host, which provides a beneficial possibility for
the discovery of inflammatory-related disease interventions. The identification of
hookworm-derived anti-inflammatory molecules is urgently needed for future
translational research. The emergence of metabolomics has become a powerful
approach to comprehensively characterize metabolic alterations in recent times. Herein,
excretory and secretory products (ESPs) were collected from cultured adult worm, while
small intestinal contents were obtained from Nippostrongylus brasiliensis (N. brasiliensis,
Nb)-infected mice. Through ultra-high-performance liquid chromatography coupled with
mass spectrometry (UHPLC-MS) platform, metabolomics analysis was used to explore
the identification of anti-inflammatory molecules. Out of 45 differential metabolites that
were discovered from ESPs, 10 of them showed potential anti-inflammatory properties,
which could be subclassed into amino acids, furanocoumarins, linear diarylheptanoids,
gamma butyrolactones, and alpha-keto acids. In terms of intestinal contents that were
derived from N. brasiliensis-infected mice, 14 out of 301 differential metabolites were
discovered to demonstrate anti-inflammatory effects, with possible subclassification into
amino acids, benzylisoquinolines, quaternary ammonium salts, pyrimidines, pregnane
steroids, purines, biphenyls, and glycerophosphocholines. Furthermore, nine of the
differential metabolites appeared both in ESPs and infected intestinal contents, wherein
four were proven to show anti-inflammation properties, namely, L-glutamine, glutamine
(Gln), pyruvate, and alanine-Gln (Ala-Gln). In summary, we have provided a method for the
identification and analysis of parasite-derived molecules with potential anti-inflammatory
properties in the present study. This array of anti-inflammatory metabolites could provide
clues for future evaluation and translational study of these anti-inflammatory molecules.
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INTRODUCTION

As a soil-transmitted helminth, hookworm has been implicated in
the incidence of several conditions, namely, iron deficiency
anemia (IDA), malnutrition, and other chronic health
problems, which are defined by intensity of infection in human
host, wherein they can cause impaired physical and cognitive
development as well as adverse outcome of pregnancy and
lethargy (Loukas et al., 2016). Humans could be infected by
three principal species of hookworm, viz., Ancylostoma
ceylanicum, Ancylostoma duodenale, and Necator americanus,
which complete their life cycle through skin penetration,
pulmonary migration, and small intestine maturity in their host
(Brooker et al., 2004). Hookworm infection remains an important
health problem in areas with inadequate sanitation (namely rural
subtropical and tropical countries), wherein it affects almost 500
million people with approximately 4.1 million annual loss of
disability adjusted life years (DALYs) (Bartsch et al., 2016).
Meanwhile, with a major burden of hookworm infection in
areas described above, epidemiological evidence showed that a
negative correlation was observed between hookworm infection
and occurrence/frequency of inflammatory diseases such as
metabolic disorders, allergic conditions, and inflammatory
bowel disease (IBD), which could be defined as “hygiene
hypothesis” (Maizels et al., 2004; Briggs et al., 2016; Ryan et al.,
2020). Guided by this hypothesis, numerous studies of helminth-
based therapy for different inflammatory disease models have
been explored in recent years, wherein it was found that derived
products of helminths showed drug-like anti-inflammatory
activities in human, mice, and other larger animals (Summers
et al., 2005; McSorley et al., 2012; Scholmerich et al., 2017).
However, different mechanisms were elucidated in various
models intervened by different species of helminth or derived
molecules, including alternatively activated macrophages, mucus
production, and wound repairing as well as regulatory cell
population-induced abundance production of IL-10 and
powerful drivers of type II immune responses (Harris and Loke,
2018; Lothstein and Gause, 2021). Moreover, microbiome and its
metabolite interactions with helminths might also become
increasingly important for anti-inflammatory mechanisms
(Ramanan et al., 2016; Brosschot and Reynolds, 2018). Thus,
identification and evaluation of helminth-derived molecules as
anti-inflammatory agents are urgently needed for future
translational research.

Considering the ethical concerns of live helminth infection,
numerous helminth-derived molecules including proteins, lipids,
and enzymes have been identified to potentially exert several
functions of immunoregulation in different models of
inflammatory disease (Lothstein and Gause, 2021). Ac-AIP-2
and Nb-DNase II, derived from two hookworm experimental
models, namely, Ancylostoma caninum (hookworm in dog) and
N. brasiliensis (rodent hookworm), could modulate innate
immune responses and regulate dendritic cell development and
Treg activation in vitro and in vivo (Navarro et al., 2016;
Bouchery et al., 2020). As hookworm parasitizes in the small
intestine of the host, hookworm-derived excretory and secretory
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
products (ESPs) including soluble proteins, small molecules, and
extracellular vesicles could collectively play an important role in
host–pathogen interactions. However, previous studies mainly
focused on hookworm-derived proteins or enzymes with
immune regulation or anti-inflammatory properties. Only two
papers focused on the non-protein small metabolites derived
from N. brasiliensis, which identified an array of small
metabolites with potential anti-inflammatory activities in vitro
(Wangchuk et al., 2019; Yeshi et al., 2020). However, it is still
unclear what might happen to the metabolic process in vivo
during N. brasiliensis infection and/or whether these small
molecules could also exist or act within the small intestinal
environment of the host.

Metabolomics, as one of the “omics” technologies, has
egressed to become a powerful approach to comprehensively
characterize metabolic alterations in recent times, wherein
among other omics strategies, it is generally recognized as
being closer and more representative of the phenotype
(Nicholson et al., 2012; Guijas et al., 2018). Mass spectrometry
(MS)-based analysis platform makes it possible to identify and
quantify small-molecule metabolites from different tissue or
body fluid samples, which possibly reflect the health or disease
status and provide clues for disease diagnosis and treatment
(Shah et al., 2015). For parasite infection, metabolomics analysis
has been mostly applied for the discovery of biomarkers and the
identification of a new drug target or intervention strategies
(Legido-Quigley, 2010; Li et al., 2016; Huang et al., 2020).
However, only very few studies focused on the identification of
anti-inflammatory molecules during parasite infection. In the
present study, we utilized a more sensitive metabolomics
platform, ultra-high-performance liquid chromatography
coupled with mass spectrometry (UHPLC-MS), to perform
analysis of ESPs that were collected from cultured N.
brasiliensis adult worm (in vitro) and small intestinal contents
from N. brasiliensis-infected mice (in vivo), accordingly.
Furthermore, we carried out a comparative analysis to explore
common metabolites and reveal the N. brasiliensis-derived anti-
inflammatory metabolites (as shown in Figure 1A).
MATERIALS AND METHODS

Parasite, Animal, and Ethical Statement
Nippostrongylus brasiliensis (a kind gift by Professor Alex Loukas
at James Cook University, Australia) was maintained and cycled
in the laboratory of Jiangsu Institute of Parasitic Diseases (JIPD)
according to a previous published reference (Camberis et al.,
2003). C57BL/6 mice (5 weeks old, male) and Sprague–Dawley
rats (about 300 g of weight each, male) that were provided by the
Animal Center of JIPD (Wuxi, China) were used in the present
study. Standard conditions (20–25°C and 12 h light–12 h dark)
were maintained in the laboratory where the animals were
housed amid unrestricted access to standard chow and water.
The Ethical Committee for the Use of Experimental Animals
at JIPD (Wuxi, China) gave approval to the protocol of
the experiments.
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Nippostrongylus brasiliensis Culture and
ESP Preparation
Sprague–Dawley rats were used to maintain N. brasiliensis and to
collect adult worm as described previously (Camberis et al.,
2003). Briefly, L3 stage larvae (3,500 larvae/rat) were used to
infect the rats via the subcutaneous route, before they were
euthanized with carbon dioxide asphyxiation on day 7 post-
infection. Later, the rats were dissected to collect the adult worm
from their small intestine. The small intestine was moved into a
clean Petri dish containing 5 ml Dulbecco’s phosphate-buffered
saline (DPBS) (Gibco-Thermo Fisher, MA, USA), prior to
longitudinal slicing and cutting into smaller pieces. Afterwards,
pieces of the intestines were placed on a gauze at the bottom of a
funnel before it was filled with DPBS. Adult worms migrated out
after 2 h of incubation (37°C) to settle at the underneath of the
tube but retained debris of the intestinal contents of the host. The
suspension containing worms was transferred from the bottom
of the tube to a sterile centrifugated tube (50 ml), prior to
washing twice with 20 ml of DPBS comprising antibiotic-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
antimycotic(5×) (Gibco-Thermo Fisher, MA, USA) amid
counting under a dissecting microscope. Using 24-well (500
worms/well) plates, the culturing of adult worms was done for
7 days in RPMI-1640 medium (Gibco-Thermo Fisher, MA,
USA) containing antibiotic-antimycotic(1×) under 37°C and
5% CO2 conditions. The cultured supernatant was collected
every 24 h and replaced with fresh medium. Through
centrifugation (at 2,000g and 4°C) for 10 min, the eggs and
parasite fragments were removed and filtered with a 0.22-mm
filter to obtain the final ESPs before storage at −80°C till it was
used in a later experiment.

Animal Infection and Sample
Collection In Vivo
The C57BL/6 mice were used for infection and metabolomics
analysis in vivo. Briefly, allocation of the mice into two groups
(10 mice per group), namely, N. brasiliensis (Nb) and negative
control (NC) groups, was done prior to the respective
subcutaneous inoculation with L3 larvae of N. brasiliensis
A B
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C

FIGURE 1 | Schematic flowchart, OPLS-DA score plots, and corresponding permutation tests in positive and negative modes of the present study. Schematic
flowchart of metabolomic analysis for ESPs and intestinal content from Nb-infected mice (A). The scatter plots of the OPLS-DA score of ion mode: (B, F) positive
and (D, H) negative. The results of the permutation test of ion mode: (C, G) positive and (E, I) negative.
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(500 larvae/mouse) or sterile saline (both in a 100-ml volume).
On day 12 post-inoculation, the entire group of mice was
euthanized and their small intestines were taken out under
sterile conditions. The small intestinal content from each
mouse was scraped into a 1.5-ml sterile tube, weighed, and
preserved by storing at −80°C until further experiment.

Analysis of Samples Using the LC-MS/MS
Technique
An UHPLC (Agilent Technol-1290 infinity LC) that has been
coupled to a time-of-flight (TOF) quadrupole platform (AB Sciex
Triple-TOF 6600, Applied Protein Technol. Co. Ltd., Shanghai,
China) was applied for further metabolomical analysis of the
samples that were collected from ESPs and small intestinal
contents of N. brasiliensis-infected mice coupled with negative
controls, respectively (ES vs. ES-blank, Nb vs. NC). Also,
separation of the samples with the HILIC technique was
performed on a specialized column (ACQUIY-UPLC-BEH,
Waters, Ireland). Mobile phase A consisted of ammonium
acetate (25 mM)/aqueous ammonium hydroxide (25 mM),
while mobile phase B consisted of acetonitrile in the positive
and negative ESI modes. The mobile phase composition was
altered as follows: for 1 min, B was maintained at 85% before
linear reduction to 65% (within 11 min) and further reduction to
40% (within 0.1 minute) prior to keeping at this composition for
4 min. Later, the mobile gradient increased to 85% within
0.1 min but allowed a re-equilibration period of 5 min.
Separation of the samples via the RPLC system was carried out
on the Waters column (ACQUIY-UPLC-HSS T3, Ireland). The
composition of the mobile phase for the positive ESI mode
(positive) was water comprising formic acid (0.1%)—A and
acetonitrile containing formic acid (0.1%)—B, while that of
the negative ESI mode was made up of aqueous ammonium
fluoride (0.5 mM)—A and acetonitrile—B. Gradient elution was
performed by maintaining B at 0.1% for 1.5 min before linear
increase to 99% within 11.5 min prior to further keeping the
gradient for 3.5 min. Afterwards, the gradient was reduced to 1%
within 0.1 min and allowed a re-equilibration period of 3.4 min.
The temperature of the column was maintained at 25°C, while
0.3 ml/min was the flow rate of the mobile phases with sample
injected in aliquots (2 µl). The following are the conditions of the
ESI source: curtain gas (CUR), 30; gas 1, 60; gas 2, 60; source
temperature, 600°C; and ion-spray voltage floating (ISVF),
± 5,500 V. The mass/charge (m/z) range for MS (for
acquisition only) was set over 60–1,000 Da, while 0.20 s/
spectra was the TOF-MS scan accumulation time. Likewise, the
m/z range for the MS/MS auto method for acquisition was set
over 25–1,000 Da with 0.05 s/spectra being the product ion
scan (PIS) accumulation time. Acquisition of PIS was carried
out in high sensitive mode through information-dependent
acquisition (IDA). The following parameters were fixed
accordingly: 35 V with ±15 eV as collision energy (CE) and
−60 V (−) and 60 V (+) as declustering potential (DP), with the
exclusion of 4 Da isotopes and monitoring of ion candidate per
cycle (set at 10).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Processing of Data
Prior to importation to XCMS software (freely available), the
conversion of the raw data of MS (from.wiff file to.mzXML file)
was carried out with Proteo-Wizard MSConvert. Parameters
such as 25 ppm for cent-Wave m/z, c(10, 60) for peak-width,
and c(10, 100) for pre-filter were used for picking the peaks.
Likewise, grouping of the peaks was done using the
accompanying parameters, viz., mzwid (0.025), minfrac (0.5),
and bw (5). Isotopic and adduct annotations were performed
with the collection of algorithms of metabolite profile annotation
(CAMERA). Technically, variables that had more than 50% of
the non-zero measurement values (in at least one group) were
kept and employed for the extracted ion features. We established
a database in our lab using reliable standards there were readily
available to identify metabolites via comparison with accurate
m/z value (less than 25 ppm) and spectra of MS/MS.

Statistical Analysis
The R package (Ropls) was used to analyze the processed data
after sum normalization. Multivariable analysis of data was
performed, which was comprised of orthogonal partial least
squares discriminant analysis (OPLS-DA) and principal
component analysis (PCA) coupled with Pareto scaling.
Evaluation of model robustness was done with the seven-fold
cross-validation and response permutation testing. Using the
OPLS-DA model, the variable importance in projection (VIP)
score of each variable was computed to show the contribution of
VIP to the classification. Determination of significant differences
within two groups of independent measurements was statistically
carried out with Student’s t-test. Significantly changed metabolites
were screened when p <0.05 and VIP >1. Correlation between two
variables was analyzed using Pearson’s correlation analysis.

Differentially expressed metabolites were analyzed through
the metabolomics pathway using MetaboAnalyst. Presentation of
Nb infection-associated pathways was done based on pathway
impact and p-values derived from pathway topology and
pathway enrichment analyses, respectively.

Comprehensive Literature Searches and
Content Analyses of Metabolites With
Pharmacological Effects
Literature searches and database survey were comprehensively
conducted (for each metabolite) on the account of the list of
differential metabolites that were identified from the Nb and ES
groups. Databases that were searched included the Human
Metabolome Database (HMDB, comprising metabolite entries
of 114,100, including metabolites that are soluble in lipid and
water) (Wishart et al., 2013) and PubChem (Kim et al., 2016).
Additionally, references that were relevant to the biological
properties of each metabolite were identified through Google
Scholar. Anti-inflammatory, biological activities, and immune
regulation were the specific keywords that ensured a unique
search. Performance of database and reference content analyses
focused on previously reported biological properties, which was
subsequently tabularized and quoted against each substance.
November 2021 | Volume 11 | Article 781132
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RESULTS

System Stability Assessment
In this experiment, changes in the metabolic profile of the
samples were analyzed through metabolomics methods on
the account of UHPLC-Q TOF-MS technology. As shown by
the chromatographic total ion (TIC) technique of QC samples,
overlapping of the intensity and retention time of each
chromatographical peak was observed. Analysis of peaks that
were excerpted from the entire experimental and QC samples
was performed using the PCA method with results shown in
Supplementary Figure S1, wherein outliers were obviously seen
in the samples of positive and negative ion modes, while those of
the QC were clustered closely. The results suggest the stability
of the system of instrumental analysis used in this experiment
and the reliability of the experimental data obtained. Thus, the
observed metabolic spectrum differences during the experiment
could reflect the biologic differences between the samples.

Multivariate Statistical Analysis of
Metabolite Profiling
After multivariate pattern recognition analysis of OPLS-DA, the
metabolic profile of Nb was observed to be distinct from that of
NC. Thus, the OPLS-DA model (Figure 1) could clearly
distinguish between Nb and NC. The heatmap constructed
from 17 samples of mice (Figures 3A, B) supported the
aforementioned observation. Testing of the robustness of
the model showed a good predictive model performance (for
the negative ion mode: R2Y = 0.842 and Q2 = 0.608, for the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
positive ion mode: R2Y = 0.986 and Q2 = 0.956) but was not
overfitting (Figures 1C, E), indicating that Nb infection may
induce obvious alterations in the metabolism of the mice.

Similarly, a supervised analysis of the ES group was done with
OPLS-DA analysis. Observation of the OPLS-DA score plots
showed a clear discrimination between the ES and the control
groups. The permutation tests verified the validity of the model
(for the positive ion mode: R2Y = 0.996 and Q2 = 0.637, for
negative ion mode: R2Y = 0.995 and Q2 = 0.807) (Figures 1G, I).
Subsequently, heatmaps of ES metabolic characteristics were
carried out to view the data more intuitively (Figures 3C, D).
The results of heatmaps were consistent with those of OPLS-DA.
Overall, the above results indicate that the adult worms secreted
several small molecules.

Screening and Analysis of Differential
Metabolites
Through fold change (FC) and t-test methods, the volcano plot
analysis was used to identify distinctive metabolites. Easy
isolat ion of Nb infect ion-induced metabol i tes and
identification of excretory secretions of adult worms were
carried out with the help of the volcano plots. As shown in
Figure 2, points that have the greatest degrees of difference are
those found at the two extremes of the plot. Log2(FC > 1.5 or
<0.67) was plotted on the x-axis with −log10(p-value, derived
from t-test) on the y-axis (Figure 2).

Calculation of VIP score for the individual variables in the
OPLS-DA model was done to assess the VIP contribution to
classification. Obviously, a total of 301 metabolites exhibited
A B

D

E

F

G

C

FIGURE 2 | Unique and common differential metabolites in Nb vs. NC and ES vs. ES-blank groups. The volcano maps of differential metabolites of positive (A, C)
and negative (B, D) ion modes. Red scatters denote the upward trend in metabolites, blue scatters indicate the downward trend in metabolites, and black scatters
show the non-significant trend in metabolites. The chemical classification chart of distinct metabolites in the Nb (E) and ES groups (F) as well as common and
unique metabolite distribution within the two sample groups (G). Different colors in the picture indicate distinct chemical classifications. Percentage represents the
proportion of the metabolite number in the chemical classification to the total metabolite number. The Venn diagram shows the overlap of the significantly different
metabolites. Two circles were used to denote the clustering of the entire distinctly expressed metabolites into two comparison groups. The number of distinctly
expressed metabolites in one comparison group was taken as the sum of the entire figures represented in one circle.
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abundance shifts after the mice were infected with Nb, including
downregulated (71) and upregulated (230) metabolites. In
totality, 45 different metabolites were screened among the ES/
ES-blank, wherein 16 were downregulated, while 29 were
upregulated. Supplementary Table S1 shows detailed information
of individual metabolites such as fold change analysis, HMDB-ID,
and VIP values.

Different metabolites in the Nb group belong to nine different
chemical classification categories/groups with seven in the ES
group (Figures 2E, F). Three categories that had the highest
differential metabolite content among the Nb and ES groups
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
were mainly organic acids and their derivatives, followed by lipid-
like and lipid compounds and organoheterocyclic molecules.

In addition, the difference in the expression of patterns of
metabolites in various samples was assessed with hierarchical
cluster analysis heatmap (Figure 3). Importantly, clustering
heatmaps can more intuitively show the relationship between
samples. Usually, the variation patterns of metabolome
compositions are clearly shown by the heatmap, wherein they
are obviously separated from the control. Exemplarily, alanine
glutamine and pyruvate were abundantly present in the ESPs of
Nb but absent in the culture medium.
A B

D

C

FIGURE 3 | Heatmaps of different metabolites within the Nb and ES groups. (A, C) show the positive ion mode and (B, D) show the negative ion mode. The
significance of metabolite change (red denotes upregulated and blue indicates downregulated) was proportional to the color of each section. Rows correspond to
metabolites, while columns correspond to samples.
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Nine metabolites were found to be common with regard to
their differential features when differences in their metabolic
profiles were compared, namely, Nb vs. NC and ES vs. ES-blank
(Figure 2G), wherein these metabolites comprised mostly
products of organic acids and derivatives, followed by
organoheterocyclic molecules as well as lipid-like and lipid
compounds (Table 1).

Comprehensive literature search coupled with database survey
discovered 20 small molecules with anti-inflammatory activity with
Table 2 showing the retention times, m/z, and chemotaxonomy,
alongside the described biological activities of the metabolites.
Besides anti-inflammatory activity shown in Table 2, the
associated activities of metabolites were also discovered including
improved intestinal immunity (Ala-Gln, phenylalanine) and
neuroprotective (betaine, curcumin), antitumor (betaine,
curcumin), antidiabetic (betaine), antiproliferative (curcumin),
anti-aging (curcumin), antioxidant (irbesartan), and
gastroprotective properties (gamma-aminobutyric acid).

Analyses of the Biosynthetic and
Metabolic Pathways of the Identified
Compounds
Through KEGG pathway analysis for the related biological effects
and pathways of distinctly expressed metabolites, the determined
metabolic pathway enrichment diagram (Figure 4) suggests that
eight similar metabolic pathways were observed in the Nb and ES
groups. These include metabolism of central carbons in tumor;
metabolism of glutamate, aspartate, and alanine; digestion and
absorption of proteins; absorption of minerals; biosynthesis of
amino acids; metabolism of glutamine; and biosynthesis of
amino-acyl tRNA and transporters of ATP binding cassette.
Figure 4 displays the perturbed metabolic pathways in samples
of intestinal content, thereby depicting bile secretion; mTOR
signaling pathway; insulin resistance; GABAergic synapse;
biosynthesis of isoleucine, leucine, and valine; and metabolism
of beta-alanine, cholesterol, pyrimidine, histidine, and
glycerophospholipids, which were significantly enriched in the
infected mice compared with the healthy control. Meanwhile,
metabolism of pyruvate, glutathione, cysteine, methionine,
threonine, glycine, and serine as well as bicarbonate reclamation
in the proximal tubules; glucagon signaling pathway; type II
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
diabetes mellitus; citrate cycle (TCA cycle); and other metabolic
pathways were significantly affected in the ES group.
DISCUSSION

Available evidence suggests that hookworm could exert an anti-
inflammation property for their long-term survival in human or
animal host, which may in turn provide a beneficial effect against
inflammatory-related diseases (Ferreira et al., 2017; Lothstein
and Gause, 2021). Consequently, screening and identification of
hookworm-derived molecules with pharmacological activity will
be highly investigated in the near future. Besides genomic and
proteomic techniques, the application of the metabolomic
platform to the pharmaceutical field has begun in recent years,
wherein it could screen and identify non-protein small
metabolites, thereby reflecting metabolic changes in the host
(Wangchuk et al., 2019; Yeshi et al., 2020). The difficulty in
obtaining and maintaining human hookworms in the laboratory
is a major challenge in human hookworm studies. In view of the
similarity of life cycle and pathogenicity to human hookworm, N.
brasiliensis has been defined as a model and is widely used in
human hookworm research especially in immunobiology, drug
screening, etc. (Dominguez et al., 2000; Camberis et al., 2003).
Therefore, N. brasiliensis was employed as a model to carry out
two independent metabolomics analyses in order to explore anti-
inflammatory molecules that were derived from N. brasiliensis
through in-vitro and in-vivo pathways in the current study.

Principal molecules of helminths constitute the ESPs and
parasite external surface (Hewitson et al., 2009). As a key
boundary between the hosts and helminthic parasites, ESPs are
usually secreted as a mixture of carbohydrates, lipids, and
proteins from the outer surface or oral orifice of the parasite
(Pearson et al., 2012). We analyzed ESPs of N. brasiliensis in our
study, wherein 10 out of 45 differential metabolites were
discovered to demonstrate potential anti-inflammatory
properties as described in published works. These metabolites
could be subclassed into amino acids, furanocoumarins, linear
diarylheptanoids, gamma butyrolactones, and alpha-keto acids.
Although glutamine and phenylalanine have also been detected
in previous research through GC-MS-based platform
TABLE 1 | List of the common differential metabolites in Nb vs. NC and ES vs. ES-blank.

ESI mode Metabolites Superclass m/z rt (s) ES vs. ES-blank Nb vs. NC

VIP p-value VIP p-value

+ L-Glutamine Organic acids and derivatives 169.057 373.919 7.297 0.002 1.028 0.006
+ Ile-Gly-Ile Organic acids and derivatives 302.205 211.549 1.703 0.009 2.989 0.000
+ Thymine Organoheterocyclic compounds 127.050 97.825 2.059 0.001 7.988 0.006
+ D-pyroglutamic acid Organic acids and derivatives 130.049 374.519 10.833 0.015 2.103 0.018
− Glutamine Organic acids and derivatives 145.062 374.131 7.870 0.036 2.012 0.009
− Pyruvate Organic acids and derivatives 87.008 130.075 1.791 0.049 1.237 0.001
− Ala-Gln Organic acids and derivatives 216.099 354.041 10.097 0.002 1.357 0.001
− Ser-Asn Organic acids and derivatives 218.078 368.522 1.282 0.006 1.013 0.021
− 9,10-Dihydroxy-12z-octadecenoic acid Lipids and lipid-like molecules 313.239 78.357 3.041 0.031 5.962 0.015
N
ovember 2021 | Volume
 11 | Article
ESI mode: +, positive ion mode; −, negative ion mode.
m/z, mass-to-charge ratio; rt, retention time; VIP, variable importance in the projection; FC, fold change.
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(Wangchuk et al., 2019), the other eight metabolites have not
been found in other previous published works, which may be
ascribable to the application of different metabolomical
platforms. Furthermore, through non-targeted liquid
chromatography mass spectrometry (LC-MS) platform,
metabolites such as betaine and L-glutamine were also found
to be in ESPs of N. brasiliensis L3 stage (Yeshi et al., 2020).
Therefore, standardization of metabolomics analysis for ESPs of
hookworm should be established in the future to increase the
credibility of the results.

In addition to in-vitro work on the ESPs of cultured adult
worm, the in-vivo study on the N. brasiliensis-parasitized mouse
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
small intestines could provide direct information on host–
parasite interaction (Wangchuk et al., 2019). In the present
study, we carried out metabolomics analysis of the intestinal
contents of N. brasiliensis-infected mouse for the first time, and
our results revealed that 301 metabolites were differentially
expressed. Through literature searching, we discovered 14
metabolites with anti-inflammatory or antioxidative properties
which could be subclassed into amino acids, benzylisoquinolines,
quaternary ammonium salts, pyrimidines, pregnane steroids,
purines, biphenyls, and glycerophosphocholines. For example,
as a candidate for anti-inflammation, glutamine could crucially
influence the long-term treatment outcome of inflammatory
TABLE 2 | Summary table of differential metabolites with pharmacological activity.

Name Superclass m/z rt (s) Reported pharmacological activities ES Nb

VIP p-
value

VIP p-
value

Ala-Gln Organic acids and
derivatives

216.099 354.041 Improved intestinal immunity (Shimizu and Son, 2007; Araújo et al., 2015);
anti-inflammatory (Cruzat et al., 2015; Foschetti et al., 2020; Liu et al., 2020)

10.097 0.002 1.357 0.001

Pyruvate Organic acids and
derivatives

87.008 130.075 Anti-inflammatory (Wang et al., 2009; Yang et al., 2016) 1.791 0.049 1.237 0.001

Glutamine Organic acids and
derivatives

145.062 374.131 Anti-inflammatory (Ren et al., 2013) 7.87 0.036 2.012 0.009

L-Glutamine Organic acids and
derivatives

Su 373.919 Anti-inflammatory (Almeida et al., 2020; Paixao et al., 2021) 7.297 0.002 1.028 0.006

Betaine Organic acids and
derivatives

118.085 274.605 Neuroprotective (Singhal et al., 2020); antitumor (Kim et al., 2014);
antidiabetic (Jiang et al., 2019); anti-inflammatory (Yang et al., 2018)

5.896 0.000

Bergaptol Phenylpropanoids
and polyketides

203.051 302.917 Anti-inflammatory (Shen et al., 2020) 3.794 0.014

Gamma-L-
glutamyl-L-
valine

Organic acids and
derivatives

227.104 377.969 Anti-inflammatory (Chee et al., 2017; Guha et al., 2020) 1.659 0.002

Curcumin Phenylpropanoids
and polyketides

367.106 305.841 Antiproliferative (Chainoglou and Hadjipavlou-Litina, 2019); anti-aging (Zia
et al., 2021); antitumor (Carroll et al., 2011; Feng et al., 2017);
neuroprotective (Vecchi Brumatti et al., 2014; Yu et al., 2018); anti-
inflammatory (Ammar el et al., 2011; Ma et al., 2017)

15.442 0.011

Phenylalanine Organic acids and
derivatives

164.072 257.387 Improved intestinal immunity (Feng et al., 2015); anti-inflammatory (Neurauter
et al., 2008)

1.902 0.026

D-saccharic
acid 1,4-
lactone

Organoheterocyclic
compounds

190.995 307.027 Anti-inflammatory (Bhattacharya et al., 2013) 1.013 0.043

Olanzapine 157.096 252.236 Anti-inflammatory (Sugino et al., 2009; Faour-Nmarne and Azab, 2016;
Stapel et al., 2018)

1.452 0.001

Papaverine Organoheterocyclic
compounds

340.145 370.151 Anti-inflammatory (Alves de Almeida et al., 2017; Leem et al., 2021) 1.083 0.001

Carnitine Organic nitrogen
compounds

162.111 356.015 Anti-inflammatory (Chittur et al., 2011; Orsal et al., 2013) 5.629 0.001

Thiamine Organoheterocyclic
compounds

283.124 360.263 Anti-inflammatory (Pan et al., 2017; Belsky et al., 2018; Marik, 2018; Ma
et al., 2021)

2.017 0.002

Pregnenolone Lipids and lipid-like
molecules

317.245 32.036 Anti-inflammatory (Vallée et al., 2014; Vallée, 2016; Murugan et al., 2019) 1.21 0.006

Adenine Organoheterocyclic
compounds

136.06 142.232 Anti-inflammatory (Fukuda et al., 2017; Silwal et al., 2018) 2.228 0.007

Irbesartan Benzenoids 429.258 151.72 Antioxidant (El-Said et al., 2019); anti-inflammatory (Yisireyili et al., 2018;
Zhong et al., 2020; Nijiati et al., 2021)

2.962 0.008

PC(16:0/
16:0)

Lipids and lipid-like
molecules

756.548 147.302 Anti-inflammatory (Treede et al., 2007; Treede et al., 2009; Chen et al., 2019) 2.02 0.022

Gamma-
aminobutyric
acid

Organic acids and
derivatives

180.1 38.032 Gastroprotective (Xie et al., 2017); anti-inflammatory (Choi et al., 2012;
Huang et al., 2019; Ngo and Vo, 2019)

2.328 0.046

Arginine Organic acids and
derivatives

175.117 301.295 Anti-inflammatory (Holen et al., 2014; Badurdeen et al., 2015; Yue et al.,
2015; Birmani et al., 2019)

1.583 0.048
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conditions by regulating inflammation through pathways such as
mitogen-activated protein-kinases (MAPK), signal transducer
and activator of transcription (STAT), and nuclear factor-
kappa B (NF-kB) (Ren et al., 2013). Also, existing evidence has
shown that in response to vaccination against the influenza virus,
L-glutamine could improve the immunity of the mucosa by
modulating the salivary cytokine profile (IL-6 and IL-10) and
increasing SIgA levels in the upper airways (Paixao et al., 2021).
Irbesartan could ameliorate inflammation and fibrosis in the
hypertensive renal injury model through inhibiting Th22 cell
chemotaxis and infiltration as well as CCL20, CCL22, and CCL27
expression (Zhong et al., 2020). Papaverine could inhibit the
activation of NLRP3 inflammasome by modulating NF-kappa B
and CREB signaling pathways, which results in reduced
microglial activation and neuronal cell death (Leem et al.,
2021). Olanzapine treatment could decrease in expression and
secretion of IL-1beta and TNF-alpha significantly in ex vivo
stimulation of primary human peripheral blood mononuclear
cells (Stapel et al., 2018). All these suggest that a switch to anti-
inflammation status of host immune systemmight have occurred
with the production of numerous anti-inflammatory metabolites
during N. brasiliensis infection in mice. This could further
confirm the inhibitory role of inflammatory responses
following infection by the parasites.

To further explore the source of the differential metabolites,
especially those with anti-inflammatory properties, we compared
the differential metabolites from ESPs and intestinal contents of
mice that were infected by N. brasiliensis. We found that nine
metabolites co-existed in two different samples which we
speculated to originate from N. brasiliensis. Furthermore, four
metabolites of the discovered nine common metabolites had
anti-inflammatory properties, and they included L-glutamine,
glutamine, pyruvate, and Ala-Gln. For instance, pyruvate, a key
intermediate in glucose metabolism, could exert an anti-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
inflammation role in models of experimental stroke and
inflammation, as well as systemic inflammation and multiple
dysfunctions (Wang et al., 2009; Yang et al., 2016). Ala-Gln,
short for the dipeptide alanyl-glutamine, could attenuate
inflammation in various experiments including intestinal
mucositis, Escherichia coli lipopolysaccharide-induced vascular
hyporeactivity, asthma, obesity-associated diabetes, and
concomitant inflammatory via sirtuin 1/HUR signaling in b
cells (Jing et al., 2007; Araújo et al., 2015; Cruzat et al., 2015;
Liu et al., 2020). Besides the N. brasiliensis-derived anti-
inflammatory metabolites, the host-derived metabolites might
be more important for anti-inflammation roles after N.
brasiliensis infection as demonstrated by the other 10 anti-
inflammatory metabolites that were also discovered in this
work. However, the other metabolites detected in the present
study might also have anti-inflammatory effects or other
pharmacological activities which require further research. On
the other hand, the trilateral relationship among parasite,
microbiota, and host cells should also be taken into
consideration (Midha et al., 2021), which indicates that
intestinal microbiota may also play a crucial role for the
alteration of metabolites during N. brasiliensis infection in a
mouse model, albeit a comprehensive investigation is needed for
a clear understanding of this interaction.

In summary, we have established a method for the analysis of
parasite-derived anti-inflammatory molecules and revealed an
array of metabolites with anti-inflammatory activities through
the UHPLC-MS platform, which could therefore provide clues
for the further identification, evaluation, and translation of such
metabolites in the not too distant future. However, N. brasiliensis,
a model of human hookworm, is different from human
hookworm in terms of species taxonomy and parasitism
as reported above (Camberis et al., 2003). How to translate
N. brasiliensis-based study results to the pharmacological
A B

FIGURE 4 | Bubble plot of the pathway analysis of Nb vs. NC (A) and ES vs. ES-blank (B). A metabolic pathway is represented by each bubble in the bubble chart.
In the topological analysis, the pathway is influenced by factors such as the size and abscissa of the bubble. The ordinate and color of the bubble with the latter
indicating the p-value of the enrichment analysis. The darker the color, the smaller the p-value and the more significant the enrichment degree. The rich factor
represents the ratio of the different metabolites in the pathway to the detected metabolites.
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properties of human hookworm will be another question that
needs to be interrogated in the future.
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