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Since its emergence in China at the end of 2019, SARS-CoV-2 has rapidly spread across
the world to become a global public health emergency. Since then, the pandemic has
evolved with the large worldwide emergence of new variants, such as the Alpha (B.1.1.7
variant), Beta (B.1.351 variant), and Gamma (P.1 variant), and some other under
investigation such as the A.27 in France. Many studies are focusing on antibody
neutralisation changes according to the spike mutations, but to date, little is known
regarding their respective replication capacities. In this work, we demonstrate that the
Alpha variant provides an earlier replication in vitro, on Vero E6 and A549 cells, than Beta,
Gamma, A.27, and historical lineages. This earlier replication was associated with higher
infectious titres in cell-culture supernatants, in line with the higher viral loads observed
among Alpha-infected patients. Interestingly, Beta and Gamma variants presented similar
kinetic and viral load than the other non-Alpha-tested variants.
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INTRODUCTION

In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent
of coronavirus infectious disease 2019 (COVID-19), emerge worldwide. Following its rapid spread,
SARS-CoV-2 was declared as pandemic by the World Health Organisation (WHO) on 11 March
2020 (Zhu et al., 2020). To date, COVID-19 has affected more than 200 countries with more than
250 million confirmed cases and more than 5 million deaths. SARS-CoV-2 infects the upper and
lower respiratory tract, causing mild to severe respiratory syndromes (Harrison et al., 2020).

Since the beginning of these pandemic, several variants of SARS-CoV-2 have emerged. The first
successful emergence was observed in March to April 2020 with the spread of the D614G mutation
(Hodcroft et al., 2021). This mutation has been associated to higher viral loads and a better adhesion
to the angiotensin-converting enzyme 2 (ACE2) cellular receptor (Korber et al., 2020). Since the late
2020, several new variants of concerns were identified. The Alpha variant, also known as the 20I/
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501Y.V1 or B.1.1.7 variant, has been firstly detected in London in
December 2020 and rapidly spreading across Europe and
worldwide. This variant is associated to higher viral loads and
higher number of deaths (Challen et al., 2021 Davies et al., 2021).
It presents, over all its genome, a total of 14 amino-acid
substitutions and 3 deletions including several mutations in the
S-glycoprotein, mainly the D69/70 and D144 deletions and the
N501Y. Outside the S-glycoprotein, the main characteristic
mutations are relating to ORF1 (T1001I, A1708D, I2230T, and
D3665-3677), ORF8 (Q27stop, R25I, K68stop, and Y73C), and
nucleocapsid (D3L, R203K, G204R/P, and S235F) (Duerr et al.,
2021). The Beta, also known as the B.1.351, 20H/501Y.V2 or
South-African variant, has been firstly detected in South-Africa
in December 2020 and has also already spread worldwide. This
Beta variant was phylogenetically distinct from the three main
lineages (B.1.1.54, B.1.1.56, and C.1) circulating widely in South
Africa during the first epidemic wave (Tegally et al., 2021a). The
Beta has shown two mutations on the S-glycoprotein, the N501Y,
also characterised in the Alpha variant, and the E484K mutation
actually known to confer the antibody resistance against SARS-
CoV-2 (Tegally et al., 2021b). Outside the S-glycoprotein, two
other mutations relating to ORF 1 (K1655N) and nucleocapsid
(T205I) on the viral genome are mainly described (Tegally et al.,
2020; Garcia-Beltran et al., 2021). Similarly, the Gamma variant,
also known as the P.1, 20J/501Y.V3 or Brazilian variant, shows
both N501Y and E484k mutations with the addition of the
K417T. The Gamma variant is responsible of a large new
outbreak in Brazil, causing high mortality, and is currently
spreading in Americas and Europe (Buss et al., 2021). Outside
the S-glycoprotein, the main described mutations are relating to
ORF1 (S1188L, K1798G, D3675-3677, and E5666D), ORF8
(E92K and 28269–28273 insertion), and nucleocapsid (P80R,
R203K, G204R/P) (Sun et al., 2021). Another variant of interest,
the A.27 or 19B/501Y, has also been recently detected and is
slowly spreading in France. It is characterised into the S-
glycoprotein by the absence of the D614G mutation but the
presence of L452R and N501Y mutations that could improve
viral transmission. Outside the S-glycoprotein, several other
mutations could be identified in the N gene (S202N), ORF1a
(P286L, D2980G, P1000L), ORF3a (V50A), and ORF8(L84S)
(Fourati et al., 2021).

If the urgency of specific immunoglobulins and vaccine
development has prompted the international community to
look deeply for serum neutralisation studies and impact of new
variants (Chen et al., 2020; Weisblum et al., 2020), there is still
too little data on their infectivity and replication cycle. Such data
are indeed of importance to explain some of their pathogenic
aspects such as higher viral load or mortality (Challen
et al., 2021).

In this work, we sought to study the replicative capacity of a
historical B strain along with Alpha, Beta, Gamma, and A.27
variants currently circulating in France and worldwide. Our
experiments were conducted in the widely spread Vero E6 cell
line model and confirmed in human A549 lung cell line
expressing the ACE-2 receptor and TMPRSS2 coreceptor. We
observed several differences in replication and infectious viral
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
particle production rates, especially with the Alpha variant, that
should play a part in its higher viral loads and death rates.
MATERIALS AND METHODS

Cell Lines and Viral Lineages
The Vero E6 cell line was obtained from the American Type Culture
Collection (ATCC, reference R CRL-1586) (LGC standards SARL,
Illkirch, France) and cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco™) supplemented with 10% of heat-
inactivated foetal bovine serum (FBS, Gibco™) (Thermo Fisher
Scientific, Waltham, MA, 209 USA). The A549 enriched with
human ACE2 and TMPRSS-2 surface proteins was obtained from
In vivoGen© and cultured in the same medium than Vero E6 cell
line, added with puromycin and hygromycin B as recommended.
Both cell lines were incubated at 37°C in a humidified atmosphere
with 5% of CO2. The viral strains of human SARS-CoV-2 variant
were obtained from a positive nasopharyngeal PCR sample. The
viruses have been treated in biosafety level-3 laboratory (BSL-3).
The SARS-CoV-2 primo-culture stocks used as B (n = 1 viral strain)
(EPI_ISL_4537783), Alpha (n = 2) (EPI_ISL_4536454 and
EPI_ISL_4536996), Beta (n = 2) (EPI_ISL_4537125 and
EPI_ISL_4537284), Gamma (n = 1) (EPI_ISL_4536760), and A.27
(n = 1) (EPI_ISL_4537460) was produced in Vero E6 cells. The
supernatant were quantified with viral RNA levels and titrated by
lysis plaque assay (Gordon et al., 2020), aliquoted, and stored at
−80°C.

Kinetic and Viral Infection Assays
Vero E6 and A549 cells were seeded onto 12-well plates at a
density of 100,000 cells per well for Vero E6 cells or 200,000 cells
per well for A549. For all virus strains, 18 h postseeding, cells
were infected with multiplicity of infection (MOI) titres of 0.01.
Briefly, cells were washed once with a serum-free medium and
infected with 500 µl of a SARS-CoV-2 serum-free medium viral
suspension. After virus adsorption for 1 h at 37°C, the viral
inoculum was removed and the cells were washed with a FBS-
free medium. A total of 1 ml of DMEM supplemented with 2%
FBS was then added onto the infected cells. For each tested
condition, three corresponding wells were used to collect cells
and supernatants on a daily basis. After centrifugation, cells were
washed three times with PBS. Cells and supernatants were
immediately tested for viral SARS-CoV-2 RNA and albumin
cell DNA PCR, allowing quantifying viral copy genome number
per million cells. The remaining samples were stored at −80°C
before testing by N antigen titration and infectious titre
evaluation by lysis plaque assay as depicted below. Each assay
was performed with three replicates conducted independently for
each tested viral strain.

Nucleic Acid Extraction and
Quantitative PCR
Both cells and supernatants were extracted from 100 µl of each
supernatant or resuspended cells sample with the Total NA
Isolation kit - Large Volume assay on a MagNA Pure LC 2.0
December 2021 | Volume 11 | Article 792202
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analyser (Roche, Basel, Switzerland). All nucleic acids were
eluted in a 50-µl elution buffer. A quantitative PCR of the
albumin gene with a standard human DNA (0.2 µg/µl)
dilution, for quantifying cellular DNA, was performed as
previously described (Desire et al., 2001). The SARS-CoV-2
RNA was quantified from 10 µl of extracted samples with the
RealStar™ SARS-CoV-2 RT-PCR Kit 1.0 assay (Altona
Diagnostics GmbH, Hamburg, Germany) (Visseaux et al.,
2020). The viral quantification was performed using a
standardised RNA transcript control obtained from the
European Virus Archive Program and targeting E gene as
previously described (Visseaux et al., 2020). Moreover, an
internal control was used in all PCR assay to check the absence
of PCR inhibitors.

Viral Titration
SARS-CoV-2 was titrated by a lysis-plaque assay as previously
described (Gordon et al., 2020). Briefly, Vero E6 cells were
seeded onto a 12-well plate at a density of 100,000 in DMEM
with 10% FBS. The next day, cells were infected by 10 to 10 serial
viral dilutions with the same infection protocol than for our viral
infection assays. After the viral adsorption period of 1 h at 37°C,
500 µl of an agarose medium mix was added. After 3-day
incubation at 37°C with 5% of CO2, the supernatant was
removed and cells were fixed with 1 ml to 6% of formalin
solution for 30 min. The formalin solution was then removed,
and cells were coloured with a 10% crystal violet solution for 15
min. All wells were then washed with distilled water and dried on
bench-coat paper.

N-Antigen Level Assessment
N-antigenemia levels were determined with a being marketed
CE-IVD ELISA microplate assay, COV-Quanto® (AAZ,
Boulogne-Billancourt, France), according to manufacturer
recommendations (Le Hingrat et al., 2020). Briefly, in each
well of 96-well microplates, coated with anti-SARS-CoV-2
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
N-antibodies, 50 µl of a solution containing biotinylated anti-
SARS-CoV-2 N antibodies and 50 µl of cells or supernatants
were added. After incubation at 37°C for 60 min, 100 µl of a
solution containing HRP-conjugated streptavidin were added,
followed by a 30-min incubation at 37°C. After being washed, 50
µl of a solution containing the peroxide substrate and 50 µl of a
second substrate (3,3′,5,5′-tetramethylbenzidine (TMB)) were
then added. After 15 min at 37°C, the colorimetric reaction
was stopped by adding 50 µl of H2SO4. Absorbance values were
measured at 450 nm, with a reference set at 630 nm. Standards,
made of recombinant N antigens, were added to each microplate,
as recommended by the manufacturer, to allow N-antigenemia-
level determination.

Statistical Analysis
For each time point, potential differences were tested across all
lineage groups using the Kruskal-Wallis test. Differences between
two lineages were then tested using a Mann-Whitney U test. All
statistics were calculated using R 4.1.0.

Ethical Consideration
According to current French ethical laws and regulations, written
informed consents are not required for viral strain characterisation.
RESULTS

The Alpha variant presented an earlier production of infectious viral
particles than the other tested viral variants on both Vero E6 and
A549 cell lines (cf. Figure 1). Indeed, as early as 15 h after infection,
the infectious particle production was statistically different across
strains (p = 0.005). All non-Alpha strains presented similar viral
particles amounting up to 40 PFU/ml (p = 0.19), statistically lower
than the Alpha variant presenting at 600 to 900 PFU/ml (p = 0.005).
At 24 h, all non-Alpha strains produced similar detectable viral
particle amount comprising between 2 and 220 PFU/ml (p = 0.24).
A B

FIGURE 1 | Evaluation of infectious viral particle production kinetics for tested viral variants. The infectious titers, determined by plaque assay on (A) Vero E6 and (B)
A549 cell lines, are indicated on a logarithmic scale. The Alpha variant is indicated in green, the Beta in blue, the Gamma in purple, the A.27 in khaki and the B strain
in red. For Alpha and Beta, two strains were tested and are identified by the dot triangle or circle shapes. Each strain was tested by two independent replicates.
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However, the two Alpha strains produced from 18,000 to 21,000
PFU/ml across replicates, statistically higher than non-Alpha
variants (p = 0.02). Similar pattern was also observed at 24 and
48 h, with similar levels for all non-Alpha strains (p = 0.24 and p =
0.19, respectively) and statistically higher levels for Alpha strains (p
< 0.001 and p = 0.009, respectively). We observed similar infectious
titres for all strains at 72 h, plateauing around 107 PFU/ml. Those
observations were confirmed on A549 human pulmonary cells,
despite lower levels of infectious viral particle production, as Alpha
strain was able to produce significant amount of infectious viral
particles at 15 h, statistically higher than the very low amount of
non-Alpha strains (p = 0.001). Similar levels of infectious viral
particles were only observed for all strains at 96 h.

Assessment of SARS-CoV-2 viral production was also
performed by RNA and antigen N intracellular and
extracellular productions (cf. Figure 2). RNA in culture
supernatant provided earlier kinetics than supernatant
infectious titres or intracellular RNA. Moreover, the Alpha
variant produced around 10 times higher RNA loads than the
other strains, both in culture supernatant (Vero E6: p < 0.001;
A549: p < 0.001) and intracellular fraction (Vero E6: p < 0.001;
A549 p < 0.001). All non-Alpha viral strains produced similar
amounts of viral RNA at 15 h in both supernatant (Vero E6: p =
0.26; A549: p = 0.07) and intracellular RNA (Vero E6: p = 0.15;
A549: p = 0.06). Similar pattern was also observed at 24 and 48 h,
with similar levels for all non-Alpha strains (p = 0.08 and p =
0.07, respectively), despite slightly lower levels for the A.27
strain, and statistically higher levels for Alpha strains (p <
0.001 and p < 0.001, respectively) on Vero E6 cells. The same
profile has been confirmed on A549 cell line. Finally, all RNA
levels reached similar plateaus for all tested variants after 72 h of
infection. Production of N antigen in the culture supernatant
provided similar kinetics to infectious viral particle titres with
statistically earlier Alpha viral N-antigen production since 15 h
after infection up to a final plateau at 48 h postinfection while the
other strains reached similar plateaus but only at 72 h
postinfection. Intracellular N-antigen levels detected at 15 h
postinfection was also similar for all non-Alpha strains on
both cell lines (Vero E6: p = 0.11; A549: p = 0.57), but
statistically lower than for the two Alpha strains with levels
between 5.12 × 102 and 9.85 × 103 pg/105 cells (Vero E6: p <
0.001; A549: p < 0.001). This pattern was also observed in
supernatant N antigen at 24 and 48 h, as well as for
intracellular N-antigen levels.
DISCUSSION

The emergence of new SARS-CoV-2 variants, with several data
suggesting higher viral loads and/or better resistance to
seroneutralisation, is forcing the scientific community to
quickly react and provide new data for assessing and
understanding the new threats. In the current work, we
investigated the viral replication kinetics and production of
viral particles of four variants, Alpha, Beta, Gamma, and A.27,
in parallel to the historical strain B. We highlight here, a shorter
replication cycle and quicker production of infectious viral
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
particle with the Alpha (i.e., the UK variant) than with B strain
(a historical variant), Beta (i.e., the South-African variant),
Gamma (i.e., the Brazilian variant), or A.27 variant, a recent
variant under investigation observed in France.

Many efforts are focusing on the response of variants to
immunoglobulin and vaccines (Planas et al., 2021; Zhou et al.,
2021), a cornerstone question for public health policies.
However, the potential differences among variants on the
global viral fitness have not been characterised to date. This is
of importance, especially as the Alpha variant provides higher
viral loads and higher death rates than the historical strains
(Challen et al., 2021; Davies et al., 2021) and as we are lacking
such data on the other newly emerged variants. For the Alpha
variant, the higher viral loads seem associated with earlier
consultation since patients are consulting one day earlier since
symptoms onset than with historical variants (Challen et al.,
2021; Davies et al., 2021). It is unclear how these two facts
are related.

Our results confirm those epidemiological observations. The
almost 10 times higher in vitro production of viral RNA observed
with the Alpha strain between 15 and 48 h postinfection is in line
with the higher viral loads observed in the UK (Davies et al.,
2021; Challen et al., 2021). We also observed earlier production
of infectious viral particles with the Alpha strain, 1 day before the
other variants and even detectable since 15 h postinfection. This
shorter in vitro replication cycle is in line with the earlier
consultation observed in the UK (Challen et al., 2021; Davies
et al., 2021).

Our results have been confirmed on two cellular models, the
reference Vero E6 model and the A549 human pulmonary
immortalised cell line, as well as with different markers
including viral RNA or N-antigen production in the culture
supernatant and within the cells. Interestingly, in the culture
supernatant, the results observed with the N antigen were much
closer to the infectious titres than the viral RNA detection. This
could be explained by high levels of genomic and mRNA since
the earliest stage of cell infection which can be released by the
cells but do not reflect the presence of viable viral particles. When
studying the cellular layers, the N-antigen titres were remarkably
similar to intracellular RNA measurements, suggesting that they
adequately reflect viral accumulation within the infected cells.
Thus, N-antigen measurements appear to provide a quick, easy,
and highly informative tool for SARS-CoV-2 cellular culture
assessment. The detectable levels of intracellular N-antigen and
RNA immediately after cellular infection should also reflect the
viral entry during the infection steps. Thus, the higher levels
observed with the A549 cells than Vero E6 are in line with the
presence of the TMPRSS2 coreceptor expressed by those
former cells.

To date, only little preliminary data are available on
replicative advantage of the recent variants of concerns. A
study in a mice model depicts a lower lung viral load for B.1
and Alpha than Beta and Gamma (Montagutelli et al., 2021). In
another preprint study, conducted in hamster model, low Alpha
lung infectious particle titres were also identified but, on the
contrary, with higher Alpha nasal infectious titres than several
B.1 strains (HK-15, GH 405, and HK-95) (Mok et al., 2021).
December 2021 | Volume 11 | Article 792202
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FIGURE 2 | Viral replication assessment in culture supernatant and intracellular fraction. The Alpha variant is indicated in green (n=6), the Beta in blue (n=6), the
Gamma in purple (n=3), the A27 in khaki (n=3) and the B. strain in red (n=3). For Alpha and Beta, two strains were tested and are identified by the dot triangle or
circle shapes. With the exception of the N antigen in culture supernatant, all data were plotted on logarithmic scales.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org December 2021 | Volume 11 | Article 7922025

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Lebourgeois et al. Viral Replication of SARS-CoV-2 Variant
Using Vero and primary human airway epithelial cells, Brown
et al. did not evidence a replicative advantage of Alpha cells over
some other variants but did not tested historical B strains nor
Beta or Gamma (Brown et al., 2021). All these results will need
further confirmation. Our study provides complementary data
on two reference cell lines, Vero E6 and human airway A549-
ACE2-TMPRSS2 cell lines, using standardised viral inoculum
and several complementary replication measurement methods.
Our observation, of quicker high viral load and infectious titres
for Alpha, are also in line with the higher viral loads also
observed in France (Teyssou et al., 2021) and culture positivity
rates from clinical nasopharyngeal samples evidenced in a recent
larger German study (Jones et al., 2021). In our work, we also
tested the three more widely spread variants of concerns that do
not show quicker or stronger replication capabilities. This
reassuring observation is in line with a first study including
clinical viral load data for Beta, presenting lower viral loads than
for the Alpha variant (Teyssou et al., 2021), but will need to be
confirmed by other larger clinical studies.

The current study presents several limitations. Despite the use
of two different cell lines, including one immortalised human
respiratory cell line, those observations should be confirmed on
primary respiratory cells. As the viral variants studied present
numerous differential mutations over their whole genomes. If the
international research effort is mainly focusing on S-glycoprotein
mutations, for predicting viral adhesion to cellular receptors and
viral escape to neutralising antibodies, the mutations found in all
the other genes are expected to play major roles in viral fitness
differences. Further studies will be needed to correlate the
phenotypic differences observed with any mutation or
combination of those mutations. In our work, highlighting the
viral fitness of Alpha variant, we found only one additional
mutation compared with the archetypal Alpha strains for the first
tested strain: ORF1b P314L, which is not described in the
literature to our knowledge (GISAID: EPI_ISL_4536454). The
second tested Alpha strain depicts the same mutation, along with
ORF1a E1363G, ORF1b S2027L, and ORF3a W131C (GISAID:
EPI_ISL_4536996). Due to the absence of kinetic difference
between our two strains, we do not believe that they play any
role in the shorter Alpha replication rate. The individual role of
all mutations observed between the tested variants, and their
associations, still have to be described by further studies.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
In conclusion, we highlight in this work a shorter replication
cycle and a quicker production of infectious viral particle with
the Alpha than with several other variants currently circulating
or emerging in France and worldwide. This is expected to play a
role and explain a part of the higher viral loads, higher mortality
rates, and earlier consultations observed in the UK and Germany
with the Alpha. The comparable replication cycles observed for
all the other variants tested in this work is also reassuring
regarding their fitness and virulence, but will need to be
confirmed by large cohort studies as done in the UK.
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virales (ANRS).
ACKNOWLEDGMENTS

We wish to thank the team of the National Reference Center
(CNR) of Mycobacteria for their valuable help in this work.
REFERENCES
Brown, J. C., Goldhill, D. H., Zhou, J., Peacock, T. P., Frise, R., Goonawardane, N.,

et al. (2021). Increased Transmission of SARS-CoV-2 Lineage B.1.1.7 (VOC
2020212/01) Is not Accounted for by a Replicative Advantage in Primary
Airway Cells or Antibody Escape. bioRxiv, 2021.02.24.432576. doi: 10.1101/
2021.02.24.432576

Buss, L. F., Prete, C. A., Abrahim, C. M. M., Mendrone, A., Salomon, T., Almeida-
Neto, C., et al. (2021). Three-Quarters Attack Rate of SARS-CoV-2 in the
Brazilian Amazon During a Largely Unmitigated Epidemic. Science 371, 288 –
2292. doi: 10.1126/science.abe9728

Challen, R., Brooks-Pollock, E., Read, J. M., Dyson, L., Tsaneva-Atanasova, K., and
Danon, L. (2021). Risk of Mortality in Patients Infected with SARS-CoV-2
Variant of Concern 202012/1: Matched Cohort Study. BMJ 372, n579.
doi: 10.1136/bmj.n579
Chen, X., Li, R., Pan, Z., Qian, C., Yang, Y., You, R., et al. (2020). Human
Monoclonal Antibodies Block the Binding of SARS-CoV-2 spike Protein to
Angiotensin Converting Enzyme 2 Receptor. Cell. Mol. Immunol. 1, –3.
doi: 10.1038/s41423-020-0426-7

Davies, N. G., Jarvis, C. I.CMMID COVID-19 Working Group, , Edmunds, W. J.,
Jewell, N. P., Diaz-Ordaz, K., et al. (2021). Increased Mortality in Community-
Tested Cases of SARS-CoV-2 Lineage B.1.1.7. Nature. doi: 10.1038/s41586-
021-03426-1

Desire, N., Dehee, A., Schneider, V., Jacomet, C., Goujon, C., Girard, P.-M., et al.
(2001). Quantification of Human Immunodeficiency Virus Type 1 Proviral
Load by a TaqMan Real-Time PCR Assay. J. Clin. Microbiol. 39, 1303 –11310.
doi: 10.1128/JCM.39.4.1303-1310.2001

Duerr, R., Dimartino, D., Marier, C., Zappile, P., Wang, G., Lighter, J., et al. (2021).
Dominance of Alpha and Lota Variants in SARS-CoV-2 Vaccine Breakthrough
Infections in New York City. J. Clin. Invest. 131:152702. doi: 10.1172/JCI152702
December 2021 | Volume 11 | Article 792202

https://doi.org/10.1101/2021.02.24.432576
https://doi.org/10.1101/2021.02.24.432576
https://doi.org/10.1126/science.abe9728
https://doi.org/10.1136/bmj.n579
https://doi.org/10.1038/s41423-020-0426-7
https://doi.org/10.1038/s41586-021-03426-1
https://doi.org/10.1038/s41586-021-03426-1
https://doi.org/10.1128/JCM.39.4.1303-1310.2001
https://doi.org/10.1172/JCI152702
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Lebourgeois et al. Viral Replication of SARS-CoV-2 Variant
Fourati, S., Decousser, J.-W., Khouider, S., N'Debi, M., Demontant, V., Trawinski,
E., et al. Early Release - Novel SARS-CoV-2 Variant Derived from Clade 19B,
France - Volume 27, Number 5 –May 2021 - Emerging Infectious Diseases
journal - CDC. doi: 10.3201/eid2705.210324

Garcia-Beltran, W. F., Lam, E. C., St. Denis, K., Nitido, A. D., Garcia, Z. H.,
Hauser, B. M., et al. (2021). Multiple SARS-CoV-2 Variants Escape
Neutralization by Vaccine-induced Humoral Immunity. Cell 184, 2372–
2383.e9. doi: 10.1016/j.cell.2021.03.013

Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernie2r, K., White, K. M.,
et al. (2020). A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug
Repurposing. Nature 583, 459 –4468. doi: 10.1038/s41586-020-2286-9

Harrison, A. G., Lin, T., and Wang, P. (2020). Mechanisms of SARS-CoV-2
Transmission and Pathogenesis. Trends Immunol. 41, 1100 –11115.
doi: 10.1016/j.it.2020.10.004

Hodcroft, E. B., Zuber, M., Nadeau, S., Vaughan, T. G., Crawford, K. H. D.,
Althaus, C. L., et al. (2021). Emergence and Spread of a SARS-CoV-2 Variant
Through Europe in the Summer of 2020. MedRxiv Prepr. Serv. Health Sci.,
2020.10.25.20219063. doi: 10.1101/2020.10.25.20219063

Jones, T. C., Biele, G., Mühlemann, B., Veith, T., Schneider, J., Beheim-
Schwarzbach, J., et al. (2021). Estimating Infectiousness Throughout SARS-
CoV-2 Infection Course Science. doi: 10.1126/science.abi5273

Korber, B. , Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W.,
et al. (2020). Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G
Increases Infectivity of the COVID-19 Virus. Cell 182, 812–827.e19.
doi: 10.1016/j.cell.2020.06.043

Le Hingrat, Q. L., Visseaux, B., Laouenan, C., Tubiana, S., Bouadma, L.,
Yazdanpanah, Y., et al. (2020). Detection of SARS-CoV-2 N-Antigen in
Blood During Acute COVID-19 Provides a Sensitive New Marker and New
Testing Alternatives. Clin. Microbiol. Infect. Off. Publ. Eur. Soc Clin. Microbiol.
Infect. Dis. doi: 10.1016/j.cmi.2020.11.025

Mok, B. W.-Y., Liu, H., Lau, S.-Y., Deng, S., Liu, S., Tam, R. C.-Y., et al. (2021).
Low Dose Inocula of SARS-CoV-2 B.1.1.7 Variant Initiate More Robust
Infections in the Upper Respiratory Tract of Hamsters than Earlier D614G
Variants. bioRxiv, 2021.04.19.440414. doi: 10.1101/2021.04.19.440414

Montagutelli, X., Prot, M., Levillayer, L., Salazar, E. B., Jouvion, G., Conquet, L.,
et al. (2021). The B1.351 and P.1 Variants Extend SARS-CoV-2 Host Range to
Mice. bioRxiv, 2021.03.18.436013. doi: 10.1101/2021.03.18.436013

Planas, D., Bruel, T., Grzelak, L., Guivel-Benhassine, F., Staropoli, I., Porrot, F.,
et al. (2021). Sensitivity of Infectious SARS-CoV-2 B.1.1.7 and B.1.351 Variants
to Neutralizing Antibodies. Nat. Med. doi: 10.1038/s41591-021-01318-5

Sun, S., Gu, H., Cao, L., Chen, Q., Ye, Q., Yang, G., et al. (2021). Characterization
and Structural Basis of a Lethal Mouse-Adapted SARS-CoV-2. Nat. Commun.
12, 5654. doi: 10.1038/s41467-021-25903-x

Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari,
J., et al. (2020). Emergence and Rapid Spread of a New Severe Acute
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Lineage With
Multiple Spike Mutations in South Africa. doi: 10.1101/2020.12.21.20248640

Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari,
J., et al. (2021a). Detection of a SARS-CoV-2 Variant of Concern in South
Africa. Nature. doi: 10.1038/s41586-021-03402-9

Tegally, H., Wilkinson, E., Lessells, R. J., Giandhari, J., Pillay, S., Msomi, N., et al.
(2021b). Sixteen Novel Lineages of SARS-CoV-2 in South Africa. Nat. Med. 27,
440 –4446. doi: 10.1038/s41591-021-01255-3

Teyssou, E., Soulie, C., Visseaux, B., Lambert-Niclot, S., Ferre, V., Marot, S., et al.
(2021). The 501Y.V2 SARS-CoV-2 Variant has an Intermediate Viral Load
Between the 501Y.V1 and the Historical Variants in Nasopharyngeal Samples
from Newly Diagnosed COVID-19 Patients. J. Infect. doi: 10.1016/
j.jinf.2021.04.023

Visseaux, B., Le Hingrat, Q., Collin, G., Ferré, V., Storto, A., Ichou, H., et al. (2020).
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