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Objective: To develop and validate a prognostic model for in-hospital mortality after four
days based on age, fever at admission and five haematological parameters routinely
measured in hospitalized Covid-19 patients during the first four days after admission.

Methods: Haematological parameters measured during the first 4 days after admission
were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for
each parameter. A prediction model was built using logistic regression with variable
selection and shrinkage factor estimation supported by bootstrapping. Model
development was based on 481 survivors and 97 non-survivors, hospitalized before
the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The
model was temporally-externally validated in 299 survivors and 42 non-survivors
hospitalized when the Alpha variant (B.1.1.7) was prevalent.

Results: The final model included age, fever on admission as well as the slope or intercept
of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross
validation resulted in a mean area under the receiver operating characteristic curve
(AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At
temporal-external validation, application of the previously developed model showed an
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AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the
relative importance of the variables, the (apparent) variation in mortality explained by the
six variables deduced from the haematological parameters measured during the first four
days is higher (explained variation 0.295) than that of age (0.210).

Conclusions: The presented model requires only variables routinely acquired in
hospitals, which allows immediate and wide-spread use as a decision support for
earlier discharge of low-risk patients to reduce the burden on the health care system.

Clinical Trial Registration: Austrian Coronavirus Adaptive Clinical Trial (ACOVACT);
ClinicalTrials.gov, identifier NCT04351724.
Keywords: COVID-19, survival, prediction model, blood parameter, logistic regression, hospitalized patients
INTRODUCTION

Background
The Covid-19 pandemic evokes a complex global public health
crisis with clinical, organizational, and system-wide challenges.
Although vaccinations ease the situation, a substantial
proportion of the world’s population is still not immunized.
Recurrent Covid-19 waves challenge health care systems.
Although age is a relatively strong biomarker, additional
information on disease progression and patient outcome would
be beneficial given the intensive workload of health care
providers worldwide.

Although a plethora of prognostic models for Covid-19 were
quickly published at the beginning of the pandemic to support
medical decision making at a time when they were urgently
needed, a large consortium including clinical scientists,
epidemiologists, biologists, and statisticians, concluded that
‘almost all published prediction models are poorly reported,
and at high risk of bias such that their reported predictive
performance is probably optimistic’ (Wynants et al., 2020).
However, they identified one prognostic model (Knight et al.,
2020) that should soon be validated. The authors further
recommended building on previous literature and expert
opinion to select predictors, rather than selecting predictors in
a purely data driven way. Promising candidates include age, body
temperature, sex, blood pressure, creatinine, basophils,
neutrophils, lymphocytes, alanine transaminase, albumin,
platelets, eosinophils, calcium, bilirubin, creatinine, CRP, and
comorbidities, including hypertension, diabetes, cardiovascular
disease, and respiratory disease.

Besides the critically ill patients who need to be treated in
intensive care units, the multitude of patients being treated in
general wards binds substantial resources. Nevertheless, many of
these Covid-19 cases cannot be discharged since the critical
phase of Covid-19 frequently starts around 7-10 days after
onset of the initial symptoms. However, a large proportion of
patients will ultimately not require hospital care. Accordingly, a
tool predicting the likelihood of a severe or fatal disease could
support the decision for an earlier discharge. While such a
predictive tool should be available as early as possible for
hospitalized patients, the sole use of data available at time of
gy | www.frontiersin.org 2
hospital admission might not suffice in order to allow for a robust
predictive accuracy. Hence, the expense of a slightly later forecast
date might be relevant to exploit changes in biomarkers that may
contain prognostic information.

Objectives
The objective of this study was to develop a prognostic model
with predictors selected based on pathophysiological
considerations and literature. The model should also include
the time course of the variables within the first four days after
admission and only be applicable thereafter.
METHODS

Participants and Source of the Data
We conducted an observational cohort study to develop and
validate a prognostic model to predict in-hospital mortality of
patients with Covid-19. Only data collected in clinical routine
were used and data of all consecutive patients were accessed. The
model was developed and internally validated in a cohort of the
Clinic Favoriten in Vienna, Austria, hospitalized between 7
January 2020 and 8 December 2020, well before the
widespread dissemination of the new corona variants. The
cohort consisted of 679 patients, of which 578 including 98
deaths were used as they had at least two blood samples and
survived at least 4 days.

The model was temporarily and externally validated in a
mixed cohort consisting of additional patients from the Clinic
Favoriten (350 patients, 58 deaths) and in patients from the
Department of Pulmonology, Kepler University Hospital, Linz,
Austria (97 patients, 9 deaths). Of these 447 patients, 392 were
included in the analysis due to the above-mentioned reasons.
These patients were hospitalized between 24 December 2020 and
07 April 2021, when the B.1.1.7/Alpha variant was more
prevalent. SARS-CoV-2 positivity was determined from
nasopharyngeal or oropharyngeal swabs via real-time
polymerase chain reaction (qPCR) according to the Charité
protocol (Corman et al., 2020). All patients had available
outcome data at time of analysis. Recovery of data at the Clinic
Favoriten in Vienna is part of the ACOVACT study
January 2022 | Volume 11 | Article 795026
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(ClinicalTrials.gov NCT04351724) approved by the local
ethics committee (EK1315/2020). This study was further
approved by the ethics committee of the Kepler University
Clinics (1085/2020).

Outcome
The predicted outcome is death from any cause during the
hospital stay after day 4. There was no loss to follow up as
patients were either discharged or died.

Predictors
The aim was to build a prognostic model that has widespread
applicability. Thus, only the following routinely measured
variables were considered: Age, Fever (>38°C) on admission,
platelet count (PLT), C-reactive protein (CRP), lactate
dehydrogenase (LDH), Creatinine (CREA), Lymphocyte count
(LYM). Selection of possibly useful predictors considered
pathophysiological processes, the published literature
(Gansevoort and Hilbrands, 2020; Jiang et al., 2020; Manson
et al., 2020; Wang, 2020; Fouladseresht et al., 2021), and had a
special focus on the reported Covid-19-associated coagulopathy.
The graphical exploration suggested that although some
potential predictors are not out of range to a relevant extent at
the time of admission, their development is considerably
different between survivors and non-survivors during hospital
stay. Therefore, the time course of PLT, CRP, LDH, CREA and
LYM was included in the prognostic model. Since blood samples
were often taken only every two days from admission, and as
data from two days seemed too short potentially prognostic
changes over time, the pragmatic decision was made to use the
data from day 0 to 4 (i.e., 5 calendar days) after admission for
prognosis. As summary measures, slopes and intercept at day 2
for each of the five blood-based parameters were estimated by
linear mixed models.

Blinding
The individuals accessing the medical records to extract variables
were not blinded to the outcome.

Sample Size
Sample size calculation was performed according to Riley et al.
(2020). It was based on an anticipated proportion of deaths of
0.15, a desired margin of error in the overall outcome proportion
estimate of 0.05, a mean absolute prediction error of 0.05, a
shrinkage of 0.9, a Cox-Snell R squared statistic of 0.2 as
anticipated model performance (maximum possible value of
Cox-Snell R squared = 0.57), an expected optimism of 0.05
and 12 candidate predictors, i.e. age, fever on admission as well as
intercept and slope for each of the blood based parameters. These
assumptions resulted in a total sample size of 478 for
model development.

Missing Data
There were no missing data regarding outcome. For 101 of 679
patients only a single measurement of a blood parameter within
days 0 to 4 was available, and these had to be excluded as no slope
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
could be calculated. The model is thus only applicable to patients
with at least two measurements within days 0 to 4.

Statistical Analysis Methods
Estimation of Intercepts and Slopes by Linear
Mixed Models
The predictors containing the information regarding the intra-
individual level and change in the laboratory variables during the
first 4 days after admission were calculated using a linear mixed
model for each laboratory parameter as follows: First, time was
re-scaled to zero at day 2 such that an estimated intercept
represents a value in the middle (instead of the margin) of the
interval between day 0 and day 4. Then each parameter was
regressed on re-scaled time, using a fixed as well as a random
intercept and slope with unstructured variance-covariance
matrix. For these models, only patients with at least two
observations up to day 4 were included. The mixed model
approach deals with missing data due to varying measurement
patterns (such that “missingness at random” is plausible) and
shrinks slope estimates to the common mean obtained for the
fixed effects. For each patient the intercept and slope were
estimated as best linear unbiased predictors (BLUP) by the
Empirical Bayes method (Fitzmaurice et al., 2011).

For future patients as well as for patients from a test set or
validation cohort, intercept and slope were estimated using the
empirical BLUP formula restricted to the available measurements
after plugging in the parameter estimates obtained from the
original data or training set (Fitzmaurice et al., 2011).

Building of Logistic Regression Based
Prediction Model
The statistical approach is summarized in Figure 1. The first step
of model development (Figure 1 left) was to estimate intercepts
and slopes for hematological parameters using linear mixed
models as described below. Thereafter 1000 random bootstrap
samples were generated. In each bootstrap sample, a logistic
regression model was used to select predictors using backward
elimination based on repeated likelihood ratio tests at a
significance level of 0.1. For a predictor to be ultimately
selected, it had to remain in at least 50% of all bootstrap
samples. Hence, the final model was fit using the original
dataset and the selected predictors only. A linear shrinkage
factor for the regression coefficients was estimated as follows.
Using the regression coefficients estimated in each of the 1000
bootstrap samples and the characteristics of each patient in the
original sample, 1000 bootstrapped prognostic indices were
calculated for each patient. Corresponding to each bootstrap
sample we fit a logistic model to the original data with the
bootstrapped prognostic indices as the only covariable. The
mean regression coefficient of that covariable over the 1000
bootstrap repetitions was used as the linear shrinkage factor ‘s’
(Steyerberg et al., 2001). The logistic regression coefficients of the
final model were multiplied by s, and the intercept recalibrated.

Further, the apparent explained variation (EV) together with
degrees of necessity (DN) and of sufficiency (DS) were computed
(Gleiss and Schemper, 2019). These measures were derived on
January 2022 | Volume 11 | Article 795026
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the original data leading to considerable over-optimism but are
able to quantify the relative importance of predictors.

Validation (Figure 1 right) was first performed internally as
10-fold cross validation. First, the dataset including the raw
blood values was randomly split into 10 groups of equal size.
Next, 9 of these were used as training set, and the remaining one
as test set. Importantly, separate linear mixed models were fitted
in each training set to avoid data leakage between these sets.
Thereafter, the whole modelling process (i.e. including
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
bootstrapping and shrinkage) was repeated in the training set
as described above for the original data. The resulting model was
then validated in the training set. This procedure was repeated
with each of the 10 random groups serving as test set once. The
mean of the 10 resulting AUROCs on the respective test sets
estimates the expected AUROC in a new dataset from the same
target population. In addition to 10-fold cross validation, the
final model was tested in a new dataset from a later period. The
Brier score was computed by calculating the mean of the squared
FIGURE 1 | Model development and validation strategy.
January 2022 | Volume 11 | Article 795026
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differences between predicted death probabilities and outcome
(with death = 1 and survival = 0). Thus, it can take on a value
between 0 and 1, whereby 0 indicates perfect prediction.

Handling of Predictors
For all continuous potential predictors, a linear functional form
was assumed. Body temperature was only available as
dichotomous variable fever on admission, ‘Yes’ was coded as 1,
‘No’ as 0.

Differences Between Development and
Validation
The cohorts differ regarding the period in which patients were
hospitalized and the virus variants.

Machine Learning
In order to benchmark the model, in addition random forests
(Liaw and Wiener, 2002) were trained as they achieve good
performance in many machine learning benchmark studies
(Fernández-Delgado et al., 2014). As random forests are less
sensitive to hyperparameter tuning compared to other machine
learning algorithms (Szepannek, 2017; Probst et al., 2019), forests
were trained using the default parameterization (ntree = 500
 and mtry −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

# variables
p

). Details on random forests can be
found in the Online Supplement.
RESULTS

Participants
An overview of the cohorts including the number of survivors
and non-survivors is shown in Figure 1. Patient characteristics
are listed in Table 1.

Model Development
An exploratory analysis showed that platelet count increases over
time in survivors compared to non-survivors, while survivors
showed a decrease in CRP-levels and non-survivors an increase.
This observation motivated us to investigate intercepts and
slopes of variables as potential predictors of survival. Twelve
subject matter-based predictors were pre-selected to be narrowed
down by the described bootstrap approach. Sample size
estimation showed that the number of events sufficed for this
number of predictors. The predictors with a selection frequency
higher than 50% were selected for the final model (Figure 2), the
shrunk regression coefficients represent the final model.

The apparent variation in mortality explained by all variables
selected for the final model amounts to 0.493. Age is the most
important predictor with a marginal explained variation (EV) of
0.210 and a high degree of necessity (DN=0.734) and low
sufficiency (DS=0.274). All six predictors derived from
laboratory parameters together explain 0.295 of variation in
mortality with moderately high necessity (DN=0.658) and
moderate sufficiency (DS=0.395). Fever on admission is the
least important predictor (EV=0.007).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Validation
Tenfold cross validation resulted in a mean AUROC of 0.92, a
mean calibration slope of 1.0023 and a mean Brier score of 0.076.
In a subsequent cohort, partly from another hospital in Austria
and from a period in which the B.1.1.7/Alpha variant of SARS
CoV-2 was prevalent, application of the previously developed
model showed an AUROC of 0.88, a calibration slope of 0.95 and
a Brier score of 0.073 (Figure 3 and Table 2).

Benchmarking Using Machine Learning
Using random forests instead of logistic regression did not result
in an increased performance in samples used for 10-fold cross
validation. In the cohort used for temporal-external validation,
random forests showed a nearly identical performance with
strongly overlapping (bootstrap-)confidence intervals for the
AUROC (0.88, 95% CI 0.83 - 0.93) with the proposed
regression model. Furthermore, accumulated local effects plots
(Apley and Zhu, 2020) from the forest confirmed the predictors’
effects of our model (Online Supplement).
TABLE 1 | Patient characteristics development cohort.

Parameter Survivors
(N=559)

Non-survivors
(N=120)

% / Median (lQR) % / Median (IQR)

Sex
Female 40 36
Male 60 64

Age (years) 58 (44-72) 81 (77-89)
BMI 27 (24-31) 26 (25-32)
Comorbidities
Current smoker 8 10
Overweight (BMI > 25) 62 64
Diabetes type II 18 36
Hypertension 45 74
Coronary heart disease 12 30
Chronic heart failure 6 26
Atrial fibrillation 14 38
Peripheral arterial disease 5 14
Chronic obstructive pulmonary

disease
11 14

Asthma 4 6
Hypo- / Hyperthyroidism 8 10
Chronic renal insufficiency 10 44
Chronic liver disease 4 6
Malignancy 9 18

Symptoms at admission
Asymptomatic 12 2
Fatigue 57 67
Cough 61 51
Fever 52 60
Requirement of oxygen 35 70
Dyspnea 43 41
Diarrhea 16 6
Sore throat 14 0
Nausea or vomiting 7 0

Predictors upon admission
Platelet count (103/ µI) 195 (154-264) 178 (138-220)
CRP (mg/l) 49 (25-88) 60 (33-169)
Creatinine (mg/dl) 0.9 (0.8 - 1.1) 1.4 (1.1-1.8)
LDH (U/l) 283 (231-379) 326 (237-370)
January 2022 | Volum
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DISCUSSION

Herein we present a calculator that predicts the risk of death of
hospitalized patients with Covid-19 within the period of their
stay. It uses the data of the day of admission and the four
subsequent days and can therefore be used thereafter as
additional decision support regarding discharge of clinically
stable Covid-19 patients in case adequate therapy is also
available at home. The formula is based on predictors routinely
measured in hospitals or naturally available on admission,
namely patient age on admission, lactate dehydrogenase,
platelet count, C-reactive protein, presence of fever, and
creatinine, which allows immediate and widespread use. This is
also facilitated by a publicly available online calculator.

The selection of variables to be further narrowed down by
bootstrapping was based on pathophysiological considerations.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
The underlying pathogenesis of Covid-19 seems complex, yet
four main intertwined loops (the viral, the hyperinflammatory,
the non-canonical renin-angiotensin system (RAS) axis and the
hypercoagulatory loop) responsible for patient deterioration
have been identified. Three out of the four loops are
represented in the presented model. The pathology starts with
the viral loop and is rapidly followed by the second loop, the
hyperinflammatory loop, which is represented by CRP.
Lymphocyte counts have been suggested previously as
prognostic markers as well, constituting a major line of defense
against viruses (Fouladseresht et al., 2021). Further, LDH is
related to inflammation and cell damage and has been
suggested as a risk factor for severe Covid-19 (Chen et al.,
2020; Poggiali et al., 2020). In addition, the third loop, the
non-canonical renin-angiotensin system (RAS) axis loop was
described, which is in a broader sense represented by creatinine
FIGURE 2 | Model development. Candidate variables in bold were selected as they remained in the model after backward elimination in more than 50% of all
bootstrap samples. Coefficients were shrunk according to a linear shrinkage factor, which was 0.7974 (Steyerberg et al., 2001). The constant was recalibrated that
the mean estimated mortality probability corresponded to the mortality in the training sample. The boxplots show median, interquartile range as well as 10th and 90th

percentile of continuous candidate variables or percentages for fever on admission according to outcome.
January 2022 | Volume 11 | Article 795026
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in our model. Kidney involvement in Covid-19 is common and
associated with high mortality and was described to serve as an
independent risk factor for all-cause in-hospital mortality in
patients with Covid-19 (Ali et al., 2020). Renal viral tropism has
been reported, which is also associated with age and
comorbidities as well as decreased survival (Braun et al., 2020).
Data of more than 17 million people in the UK suggest that
patients with chronic kidney disease are at higher risk for adverse
events in Covid-19 than those with other known risk factors,
including chronic heart and lung disease (Gansevoort and
Hilbrands, 2020). The fact that the slope of creatinine seemed
to have less prognostic value than the intercept might reflect the
importance of chronic kidney disease. The fourth loop is the
hypercoagulatory loop, which is represented by platelet count in
this model. A meta-analysis of 7,613 Covid-19 patients revealed
that patients with severe disease had a lower platelet count than
those with non-severe disease (Jiang et al., 2020), which is in line
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
with our data. However, not all studies have found platelet
counts to be a predictor of Covid-19 mortality (Amgalan and
Othman, 2020). Undoubtedly the most important predictor of
severe Covid-19 is age. A meta-analysis of 88 articles (69,762
patients) shows that age along with CRP were strong risk-factors
for ICU admission and/or mortality (Katzenschlager et al., 2020).
Concerning fever, a recent meta-analysis reported that fever is a
predictor of adverse outcome in Covid-19 (Li et al., 2020). In line
with studies on other viral infectious diseases, a study found that
prolonged fever for 7 days from onset of illness is associated with
adverse outcomes from Covid-19, while saddleback fever is not
indicative of adverse outcome (Ng et al., 2020). In our model
fever at admission was incorporated in the prediction model. The
time course of body temperature would have been interesting to
include, however, available records only allowed inclusion as a
binary variable. As our data show, many differences between
survivors and non-survivors only develop over the course of a
TABLE 2 | Predictors in temporal-external validation.

Predictor Unit Survivors (N=299) Non-survivors (N=42)
% / Median (IQR) % / Median (IQR)

Patient age on admission Years 59.00 (49.00 - 73.81) 80.44 (73.00 - 88.92)
Lactate dehydrogenase, slope Units/L change/day -1.27 (-9.69 - 4.04) 3.78 (-3.78 - 10.73)
Platelet count, slope 103/mL change/day 16.21 (6.95 - 25.66) 11.88 (5.39 - 25.21)
C-reactive protein, slope mg/L change/day -2.66 (-10.46 - 0.31) -7.16 (-14.04-0.36)
Fever on admission 63.5 52.4
Lactate dehydrogenase, intercept Units/L 31 1.52 (253.39 - 400.49) 439.72 (326.59 - 513.26)
C-reactive protein, intercept mg/L 32.86 (13.92 - 61.43) 68.19 (53.97 - 94.61)
Creatinine, intercept mg/dL 0.85 (0.72 - 1.00) 1.02 (0.85 - 1.50)
January 2022 | Vo
FIGURE 3 | Model performance. Discrimination and calibration in another cohort admitted to hospital while the B.1.1.7/Alpha variant of SARS CoV-2 was widespread.
Fav., Clinic Favoriten; Kep., Kepler University Clinics.
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few days, and Mueller et al. (2020) showed that trends in
inflammatory biomarkers precede respiratory failure. Thus, we
sought to include the time courses of variables as predictors.

Regarding the relative importance of the variables included in
our final model, the (apparent) variation in mortality explained
by the six variables deduced from the laboratory parameters
measured during the first four days is slightly higher than that of
age. While our data confirm that high age is a principal risk
factor for dying from Covid-19, these laboratory variables are
able to add considerably to the sufficiency of age and, thus, to the
predictive importance of the model.

Concerning machine learning, the results of the benchmark
do not show a performance increase by using random forests
instead of logistic regression and thus confirm the conclusions
from Bücker et al. (2021) to carefully analyze the benefits of using
more complex models and to prefer simple models such as the
shrunk logistic regression model otherwise.

Limitations
Our prognostic model is far from being the first. Compared to
other well developed and validated models, e.g., the 4C mortality
Score (Knight et al., 2020), ours tends to distinguish patients who
die from those who survive better than many others, indicated by
an externally validated c index significantly above 0.8. However,
this good performance may be geographically limited, for
example due to differences in health care systems that lead to
varying periods between infection and admission and
consequently to different disease stages upon admission. As a
result, we can only recommend the use of the model in Austria
before the model has been validated in or updated for other
regions. Of note, the calibration plot indicates slight under-
estimation of death probabilities in the upper range of
death probabilities.

A major aspect that discriminates our model from others is
the use of the time course of biological parameters as predictors.
Many others included the values at admission exclusively, which
is reasonable, as information regarding prognosis should
generally be available as early as possible. Thus, it might be
viewed as a drawback of our model that decision making takes
until day 4 of hospitalization. However, we think that the time
course of variables after admission generally contains
information regarding future disease progression. Considering
that based on over 10,000 patients from Germany (Karagiannidis
et al., 2020), even the less critical non-ventilated patients have a
median stay of 9 days, it seems reasonable to improve prognostic
accuracy by delaying the prognosis time point by 4 days.

Further, it remains uncertain whether further mutations of
SARS CoV-2 might render the model unsuitable. However, this
is a general problem regarding prediction models for rapidly
developing diseases, and it may require frequent recalibration of
models. The currently dominating Delta-variant is not yet
considered by the model.

Implications
For the time being, the model is applicable to patients
hospitalized with verified Covid-19 and should support
decision making on earlier discharge. Validation of the model
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
in different regions is required to assess where it can be used in its
original form and where it needs to be recalibrated. The model
was developed for and its use should be restricted to this specific
clinical application, if not validated for other purposes. In case
the number of patients with Covid-19 in the general ward
exceeds numbers that can easily be handled and thus binds
resources that would be urgently needed elsewhere, the attending
physicians could decide to discharge those patients with the
lowest model-predicted death probabilities. It is vital that the
estimated probability is not the sole criterion for decision-
making and that the physician should always include a further
assessment of the situation. Furthermore, it should be
ascertained that discharge has no relevant impact on
treatments, i.e., only those patients should be discharged where
an adequate treatment can be implemented on an outpatient
basis or in quarantine. It is necessary to emphasize that high
estimated death probabilities should not be overinterpreted, as
their reliability is not as well determined as low death
probabilities, as visualized by the calibration plot. There is no
general recommendation for a cut-off value, below which an
earlier discharge would be justified. This cut-off depends on
current strain on the healthcare system. In case patients need to
be discharged, one could start with the ones with the lowest
death probabilities.
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