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Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes human monocytic
ehrlichiosis, an emerging, potentially fatal tick-borne infectious disease. The bacterium
enters human cells via the binding of its unique outer-membrane invasin EtpE to the
cognate receptor DNase X on the host-cell plasma membrane; this triggers actin
polymerization and filopodia formation at the site of E. chaffeensis binding, and blocks
activation of phagocyte NADPH oxidase that catalyzes the generation of microbicidal
reactive oxygen species. Subsequently, the bacterium replicates by hijacking/
dysregulating host-cell functions using Type IV secretion effectors. For example, the
Ehrlichia translocated factor (Etf)-1 enters mitochondria and inhibits mitochondria-
mediated apoptosis of host cells. Etf-1 also induces autophagy mediated by the small
GTPase RAB5, the result being the liberation of catabolites for proliferation inside host
cells. Moreover, Etf-2 competes with the RAB5 GTPase-activating protein, for binding to
RAB5-GTP on the surface of E. chaffeensis inclusions, which blocks GTP hydrolysis and
consequently prevents the fusion of inclusions with host-cell lysosomes. Etf-3 binds ferritin
light chain to induce ferritinophagy to obtain intracellular iron. To enable E. chaffeensis to
rapidly adapt to the host environment and proliferate, the bacterium must acquire host
membrane cholesterol and glycerophospholipids for the purpose of producing large
amounts of its ownmembrane. Future studies on the arsenal of unique Ehrlichiamolecules
and their interplay with host-cell components will undoubtedly advance our understanding
of the molecular mechanisms of obligatory intracellular infection and may identify hitherto
unrecognized signaling pathways of human hosts. Such data could be exploited for
development of treatment and control measures for ehrlichiosis as well as other ailments
that potentially could involve the same host-cell signaling pathways that are appropriated
by E. chaffeensis.
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1 INTRODUCTION

Ehrlichia chaffeensis is a tick-borne Gram-negative obligatory
intracellular bacterium of the family Anaplasmataceae in the
order Rickettsiales. Infection causes severe flu-like febrile disease
called human monocytic ehrlichiosis (HME), which is often
accompanied by hematologic abnormalities and signs similar
to those of hepatitis (Dawson et al., 1991; Paddock and Childs,
2003). Tick-borne diseases are on the rise (Biggs et al., 2016;
Madison-Antenucci et al., 2020; Alkishe et al., 2021). Discovered
in 1986 (Maeda et al., 1987), HME is currently among the most
prevalent life-threatening tick-borne zoonoses (Adams et al.,
2017). HME diagnosis is challenging, as early signs and
symptoms are indistinct or mimic other illnesses. No HME
vaccine exists, and the only effective therapy is the broad-
spectrum antibiotic doxycycline. However, treatment is often
delayed (or even not initiated) owing to misdiagnosis or
comorbidity with an unrelated underlying illness or injury,
stress, immunosuppression, and/or co-infection with other
tick-borne pathogens, which collectively can lead to severe
complications or death, with a mortality rate of 1–5% among
different populations (Paddock and Childs, 2003). Ehrlichia spp.
also can negatively impact livestock agroeconomics and working
and companion animals, as the various species and strains of
Ehrlichia can cause severe and potentially fatal diseases in
animals (Rikihisa, 1991).

Ehrlichia chaffeensis replicates within monocytes and
macrophages, which are primary immune cells that recognize
pathogen-associated molecular patterns (PAMPs) to unleash
potent innate antimicrobial defenses. As a survival strategy, E.
chaffeensis has lost genes encoding major PAMPs such as
lipopolysaccharide, peptidoglycan, flagella, and common pili
(Lin and Rikihisa, 2003). It has a single small (1.18 Mbp)
circular genome that lacks most genes for amino-acid
biosynthesis and intermediary metabolism (Dunning Hotopp
et al., 2006); consequently, the bacterium depends on host cells
for these molecules. Molecular and cellular research on E.
chaffeensis has revealed unique mechanisms that mediate its
parasitism. Foremost is the E. chaffeensis invasin EtpE (entry-
triggering protein of Ehrlichia), which binds its cognate host-cell
surface receptor DNase X, thereby inducing its internalization.
This occurs without eliciting host-derived signals that normally
would activate the phagocyte NADPH oxidase 2 (NOX2)
complex, that catalyzes the production of microbicidal reactive
oxygen species (ROS) from molecular oxygen (Mohan Kumar
et al., 2013; Teymournejad et al., 2017). Once internalized, the
bacterium replicates within a membrane-bound compartment
(inclusion); this is also secluded from components of the NOX2
complex (Lin and Rikihisa, 2007).

Ehrlichia chaffeensis inclusions rapidly fuse with host-cell
early endosomes, thereby acquiring early-endosome markers
including the small GTPase RAB5 and its effectors such as
early endosome antigen 1, VPS34, and Rabankyrin-5. This
facilitates subsequent fusion with other early endosomes that
contain transferrin receptor (TfR). Exogenous iron-loaded
transferrin (Tf) enters into inclusions through the TfR-Tf
endosome recycling pathway (Barnewall et al., 1997). Recent
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studies revealed that the inclusions have features of the early
amphisome, which is the vesicular compartment formed by
fusion of early endosomes with early autophagosomes, as
ATG5, but not LC3 or ATG14L, was also found in inclusions
(Lin et al., 2016). This review primarily focuses on recent
findings pertaining to invasin, Type IV secretion system
(T4SS) effectors, and host-cell membrane lipids that are
acquired by E. chaffeensis. Readers are referred to several
informative reviews for discussion of other aspects of E.
chaffeensis (Paddock and Childs, 2003; Rikihisa, 2010; McBride
and Walker, 2011; Rikihisa, 2011; Rikihisa, 2015; McClure et al.,
2017; Byerly et al., 2021).
2 MOLECULES UNIQUE TO E.
CHAFFEENSIS THAT FACILITATE ENTRY
INTO HOST CELLS AND SUBSEQUENT
INTRACELLULAR REPLICATION

2.1 Ehrlichia Entry Is Coupled With
Blockade of the Activation of the
NOX2 Complex
As an obligatory intracellular bacterium, E. chaffeensis cannot
survive without entry into permissive host cells. To enter host
monocytes and macrophages, E. chaffeensis uses the C-terminus
of its unique outer-membrane protein, EtpE-C, to directly bind
the host-cell DNase X (DNASE1like1), a cell-surface
glycosylphosphatidylinositol-anchored receptor that senses
extracellular DNA (Mohan Kumar et al., 2013) (Figure 1).
Actin polymerization is not required for E. chaffeensis binding
to host cells but is necessary for entry, and thus entry can be
inhibited by cytochalasin D (Mohan Kumar et al., 2015).

EtpE-C-induced actin polymerization is dependent on DNase
X as well as activation of the actin nucleation–promoting factor
neuronal Wiskott–Aldrich Syndrome protein(N-WASP)
(Mohan Kumar et al., 2015). The N-WASP inhibitor
wiskostatin or overexpression of the WA domain of N-WASP,
which exerts a dominant-negative effect on N-WASP, inhibits
actin polymerization and E. chaffeensis entry (Mohan Kumar
et al., 2015). How does EtpE-C binding to DNase X on the
macrophage surface activate cytoplasmic signaling? EtpE-C
binding to DNase X on the macrophage surface recruits three
factors, namely the type I transmembrane glycoprotein CD147
(basigin/extracellular matrix metalloproteinase inducer),
cytoplasmic heterogeneous nuclear ribonucleoprotein K
(hnRNP-K), and N-WASP, to facilitate actin polymerization at
the site of E. chaffeensis binding (Mohan Kumar et al., 2015)
(Figure 1). CD147 is the key molecule to relay signals started
with DNase X membrane receptor to the inside of the cell. Thus,
the extracellular bone marrow–derived macrophages from
CD147flox/flox-Lyz2-Cre mice, in which Cre expression (driven
by the Lyz2 promoter) is used for myeloid cell–specific CD147
knockout, are significantly less susceptible to E. chaffeensis
infection (Teymournejad and Rikihisa, 2020). hnRNP-K binds
N-WASP and activates the Arp2/3 complex to nucleate actin
January 2022 | Volume 11 | Article 830180
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polymerization in vitro (Yoo et al., 2006), and the intracellular
nanoantibody clone #47 (iAB-47), which binds and confines
hnRNP-K to the nucleus (Inoue et al., 2007), potently blocks
E. chaffeensis entry (Mohan Kumar et al., 2015). Entry requires
host-cell energy but not Ehrlichia energy, as demonstrated by
the fact that latex beads coated with recombinant EtpE-C could
bind DNase X and enter phagocytes as well as non-phagocytic
cells that are permissive to E. chaffeensis infection (Mohan
Kumar et al., 2013).

Phagocytes, such as monocytes and neutrophils, produce
powerful NADPH oxidase (NOX2 complex), a multicomponent
enzyme composed of a membrane-bound heterodimeric
cytochrome b558 component (gp91phox [NOX2] and p22phox),
three cytoplasmic subunits (p67phox, p47phox, and p40phox), and
the small GTPase Rac1 or Rac2 (Panday et al., 2015). In resting
phagocytes, these NOX2 components are dissociated and hence
the enzyme is inactive. Phagocyte-activating agents such as
phorbol myristate acetate (PMA), invading pathogens, or an N-
formyl peptide can induce rapid assembly of all NOX2
components into a holoenzyme that catalyzes the production of
superoxide anion (O−

2 ) from molecular oxygen (Debeurme et al.,
2010). O−

2 is secreted extracellularly and into the lumen of
phagosomes and serves as starting material for the production
of microbicidal reactive oxygen species (ROS), including hydrogen
peroxide (H2O2), oxidized halogens, hydroxyl radicals, and singlet
oxygen (Gabig and Babior, 1981). Paradoxically, E. chaffeensis
isolated from host cells is quite sensitive to ROS, and infectivity
decreases rapidly when bacteria are exposed to ROS (Lin and
Rikihisa, 2007). In fact, the E. chaffeensis genome lacks genes
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
encoding enzymes that facilitate ROS detoxification, free-radical
scavenging, repair of ROS-induced damage, and the oxidative
stress response (Dunning Hotopp et al., 2006; Lin and Rikihisa,
2007). How, then, does E. chaffeensis prevent or the overcome ROS
assault by host macrophages? Remarkably, unlike most other
bacteria, E. chaffeensis does not induce ROS production in
human monocytes and rapidly blocks O−

2 generation induced by
PMA (Lin and Rikihisa, 2007). This inhibition is specific to
monocytes, as E. chaffeensis cannot block ROS production by
PMA-stimulated neutrophils, and a host cell-surface protein is
required (Lin and Rikihisa, 2007). This surface protein was later
revealed to be DNase X, as inhibition of NOX2-complex activation
could be initiated by the binding of EtpE-C to DNase X
(Teymournejad et al., 2017) (Figure 1). Thus, DNase X–
mediated entry and ROS blockade are coupled to ensure E.
chaffeensis survival during entry. However, neutrophils do not
express DNase X (Teymournejad et al., 2017), which is likely the
primary reason why E. chaffeensis neither infects neutrophils nor
blocks activation of the NOX2 complex. The binding of E.
chaffeensis or of recombinant EtpE-C–coated beads to DNase X
can trigger activation of N-WASP (Mohan Kumar et al., 2015).
However, N-WASP activation is not involved in the blockade of
ROS production initiated by E. chaffeensis or EtpE-C binding to
DNase X (Teymournejad et al., 2017). Rac GTPases act as binary
switches for the activation of NOX2 (Seifert et al., 1986; Roberts
et al., 1999; Zhao et al., 2003; Bokoch and Zhao, 2006). Two Rac
isoforms exist, namely Rac1 and Rac2, and Rac2 is the
predominant isoform in human neutrophils, whereas Rac1
predominates in monocytes, the latter accounting for 90% of
FIGURE 1 | Ehrlichia entry is coupled with blockade of the activation of the phagocyte NADPH oxidase (NOX2) complex. Extracellular E. chaffeensis uses the C-
terminal region of its surface protein EtpE to bind DNase X on the host-cell surface. The consequent lateral redistribution of DNase X within dynamic lipid rafts brings
CD147 into association with the EtpE–DNase X complex (1). CD147 relays the signal to downregulate Vav1 GEF (guanine-nucleotide exchange factor; 2A) that
prevents Rac1 activation (3A) and consequently prevents activation of the NOX2 complex (4A). CD147 also recruits hnRNP-K to bind N-WASP, leading to activation
of N-WASP (conformational change) (2B and 3B). Activated N-WASP binds the Arp2/3 actin-nucleation complex (4B), leading to spatiotemporal actin polymerization
and filopodia formation to internalize E. chaffeensis into endosomes (5B). The drawing was modified from (Mohan Kumar et al., 2015), copyright 2015 ASM.
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cellular Rac (Zhao et al., 2003). For Rac activation, GTP-for-GDP
exchange is facilitated by a membrane-localized, Rac-specific
guanine-nucleotide exchange factor (GEF) (Bokoch et al., 1994),
and Rac becomes inactivated upon GTP hydrolysis catalyzed by a
GTPase-activating protein specific for Rac (Geiszt et al., 2001).
Vav1 is a hemopoiesis-specific Rho/Rac guanine-nucleotide
exchange factor that plays a prominent role in adhesion-
mediated suppression of ROS generation in phagocytes (Zhao
et al., 2003). Engagement of EtpE-C with DNase X triggers
CD147-dependent suppression of the PMA-induced activation
of Vav1 (Teymournejad and Rikihisa, 2020) (Figure 1).
Consequently, E. chaffeensis and EtpE-C, upon binding DNase
X, block Rac1 activation (Teymournejad and Rikihisa, 2020)
(Figure 1). Actin polymerization led by Rac/wave activation is a
well-known mechanism for the entry of several intracellular
bacteria including Listeria, Yersinia, Salmonella, and Chlamydia
into non-phagocytes (Alrutz et al., 2001; Carabeo et al., 2004;
Bosse et al., 2007; Humphreys et al., 2013). However, E. chaffeensis
does not utilize this mode of entry (Mohan Kumar et al., 2015) to
colonize phagocytes, as Rac-dependent actin polymerization and
entry would activate phagocyte NOX2 as well.

Immunization of mice and dogs with recombinant EtpE-C
significantly inhibits E. chaffeensis infection via intraperitoneal or
infected-tick challenge (Mohan Kumar et al., 2013; Budachetri
et al., 2020). Thus, EtpE-C could be included in a candidate
vaccine to counter tick-transmitted ehrlichiosis.

2.2 Functions of E. chaffeensis
T4SS Effectors
The T4SS can transfer bacterial proteins or nucleoprotein
complexes across the membrane of eukaryotic cells (Alvarez-
Martinez and Christie, 2009). The T4SS has several ancestral
lineages including the archetype virB/virD system of
Agrobacterium tumefaciens and the dot/icm system of
Legionella pneumophila, sometimes referred to as T4aSS and
T4bSS, respectively (Alvarez-Martinez and Christie, 2009). All
members of the order Rickettsiales, which includes E. chaffeensis,
have T4aSS (Gillespie et al., 2010). T4SS functions through its
effectors/substrates. To date, three T4SS effectors have been
experimentally demonstrated, namely Ehrlichia translocated
factor (Etf)-1, -2, and -3 (Liu et al., 2012; Lin et al., 2016; Yan
et al., 2018; Yan et al., 2021).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Etf-1, -2, and -3 directly bind the E. chaffeensis T4SS coupling
ATPase VirD4 and are then transferred from the bacterium into
the host-cell cytoplasm by crossing three membranes (inner and
outer Ehrlichia membranes, and inclusion membrane) (Liu
et al., 2012; Lin et al., 2016; Yan et al., 2018; Yan et al., 2021).
Each Etf is required for E. chaffeensis infection, as
downregulation of any Etf gene by electroporation of E.
chaffeensis with an individual Etf-specific antisense peptide
nucleic acid significantly reduces the expression of the
corresponding mRNA and hence the bacteria’s ability to infect
host cells (Sharma et al., 2017; Yan et al., 2018; Yan et al., 2021).
This type of inhibition could be trans-complemented by ectopic
expression of the corresponding GFP-coupled Etf in host cells,
underscoring the critical roles of the three T4SS effectors in E.
chaffeensis replication (Sharma et al., 2017; Yan et al., 2018; Yan
et al., 2021). Characteristics of the three T4SS effectors of E.
chaffeensis is listed in Table 1.

2.2.1 Etf-1 Inhibits Host-Cell Apoptosis
E. chaffeensis inhibits host-cell apoptosis to maximize bacterial
proliferation inside host cells (Liu et al., 2011; Liu et al., 2012).
Etf-1 is highly upregulated during early exponential growth of E.
chaffeensis in human monocytes (Liu et al., 2012). In Etf-1–
transfected mammalian cells, Etf-1 was found to localize to
mitochondria and inhibit apoptosis induced by the treatment
with etoposide (Liu et al., 2012) (Figure 2). Moreover, in similar
experiments with yeast, Etf-1 also localized to mitochondria and
inhibited apoptosis induced by heterologous expression of
human Bax (Liu et al., 2012). The N-terminal 24 amino-acid
residues of Etf-1, especially residue K23, play a critical role in
mitochondrial targeting of Etf-1, as deletion mutation of this
residue significantly decreased Etf-1 localization to mitochondria
(Zhang et al., 2021). The mitochondrial matrix protein
manganese superoxide dismutase (MnSOD) maintains a basal
level of ROS in cells by scavenging O−

2 and is essential for
maintaining aerobic life (Holley et al., 2012). The MnSOD
level was found to increase in E. chaffeensis–infected cells or
Etf-1–transfected cells, and the amount of ROS in infected or Etf-
1-transfected cells was significantly lower than that in uninfected
or control plasmid–transfected cells (Liu et al., 2012; Yan et al.,
2021). These data suggest that, by upregulating mitochondrial
MnSOD, Etf-1 serves as an antioxidant to prevent ROS-induced
TABLE 1 | Characteristics of Type IV secretion effectors from E. chaffeensis.

Effector Amino
acid

residues

C-terminal residues
(basic residues
underlined)

Protein motifs Subcellular localization/functions

Etf-1 380 KHFSNPGKVHAR Near N-terminal mitochondria localization signal Mitochondria, bacterial inclusions/
Inhibits mitochondria-mediated apoptosis
Upregulates MnSOD
Binds Beclin 1 and induces autophagy

Etf-2 264 HARQACGRFFRR An Arg finger and a Gln finger of Tre2-Bub2-Cdc16
domain

Early endosomes and bacterial inclusions/
Binds RAB5-GTP and blocks RABGAP5 engagement with
RAB5-GTP

Etf-3 621 RLSEIFSALTRTIAR * Ferritinophagolysosomes/
Binds ferritin light chain and induces ferritinophagy
*Research concerning this motif is ongoing.
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cellular damage and apoptosis to allow intracellular infection
(Liu et al., 2012).

To verify the functions of intracellular Etf-1 and investigate
the possibility that Etf-1 could be used as a therapeutic target,
Etf-1−specific nanobodies were developed by immunizing a
llama (Zhang et al., 2021). One particular nanobody could
form a stable complex with Etf-1 and thereby block the
mitochondrial localization of Etf-1 (Zhang et al., 2021).
Intracellular expression of this anti−Etf-1 nanobody inhibited
three activities of Etf-1 and E. chaffeensis: upregulation of
mitochondrial MnSOD, reduction of intracellular ROS, and
inhibition of apoptosis (Zhang et al., 2021). Conjugation of
this nanobody to cyclized cell-permeable peptide 12 facilitated
effective entrance into mammalian cells, where it abrogated the
blockade of apoptosis caused by E. chaffeensis and inhibited
infection by E. chaffeensis in cultured cells and in a mouse model
of severe combined immunodeficiency (Zhang et al., 2021).
Thus, in principle, intracellular nanobodies that interfere with
T4SS effector functions could be developed as research tools as
well as therapeutic agents.
2.2.2 Etf-1 Induces RAB5-Regulated Autophagy
Autophagy is the process by which eukaryotic cells routinely
degrade cellular components to ensure homeostasis and is
considered a part of the innate immune response that clears a
variety of intracellular pathogens (Levine et al., 2011; Deretic,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
2012). However, intracellular replication of E. chaffeensis is
enhanced by the autophagy inducer rapamycin and inhibited
by the autophagy inhibitor 3-methyl adenine (Lin et al., 2016).
Use of Spautin-1 (a cell-permeable inhibitor of the autophagy
regulator Beclin 1), Beclin 1 small interfering RNA, or mouse
bone marrow–derived macrophages from atg5flox/flox-Lyz2-Cre
mice (in which Lyz2 promoter–driven Cre expression is used for
myeloid cell–specific Atg5 knockout) demonstrated that
autophagy not only enhances ehrlichial infection but also is
required for E. chaffeensis replication (Lin et al., 2016). In fact, E.
chaffeensis induces a unique type of cellular autophagy to recycle
host-cell catabolites for use during its replication (Lin et al.,
2016). E. chaffeensis–induced autophagy is independent of the
general cellular ubiquitination pathways as well as the canonical
autophagy pathway involving MTOR, ULK1, and AMPK (Lin
et al., 2016). Etf-1 binds Beclin 1 and VPS34 and activates the
class III PtdIns3K (phosphatidylinositol 3-kinase) complex,
which is an essential component and master regulator of
autophagy initiation (Figure 2), but this Etf-1 complex does
not recruit the endoplasmic reticulum resident ATG14L, unlike
Ats-1 of Anaplasma phagocytophilum, that also binds Beclin 1
and VPS34 and induces autophagy (Niu et al., 2010). Rather, the
Etf-1-Beclin 1 complex recruits RAB5-GTP (Lin et al., 2016)
(Figure 2). This type of autophagy is referred to as “RAB5-
regulated autophagy” (Ravikumar et al., 2008), as constitutively
active RAB5 induces autophagy by binding to the RAB5 effector
VPS34, which binds Beclin 1 and hence the class III PtdIns3K
FIGURE 2 | Ehrlichia chaffeensis Etf-1 localizes to mitochondria to block apoptosis of host cells. Alternatively, Etf-1 binds to the Belin 1–VPS34–RAB5-GTP
complex and induces RAB5-regulated autophagy. (Right) Etf-1 is depicted in blue with the putative T4SS signal depicted in dark blue. Etf-1 has a mitochondria-
targeting presequence and localizes to mitochondria. Mitochondria-localized Etf-1 blocks apoptosis of eukaryotic host cells by preventing loss of mitochondrial
membrane potential. TOM: transporter outer membrane complex; TIM: transporter inner membrane complex. (Left) Etf-1 binds the Beclin 1–VPS34–RAB5-GTP
complex and induces RAB5-regualted autophagy. Etf-1 autophagosomes are recruited to E. chaffeensis inclusions and deliver captured host cytoplasmic
contents. If not recruited to inclusions, Etf-1 autophagosomes mature to autolysosomes, in which captured substrates are degraded and catabolites are
released to the cytoplasmic to promote bacterial proliferation. The drawing was modified from (Rikihisa, 2019), copyright 2017 Taylor & Francis, and from
(Rikihisa, 2017), copyright 2017 Springer.
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complex. Expansion of a polyglutamine tract within the Huntingtin
protein due to the mutation causes its accumulation and
aggregation in the cytoplasm, leading to the neurodegenerative
genetic disorder Huntington’s disease (Raspe et al., 2009). The
mutant Huntingtin protein, is poorly degraded in proteasomes but
can be degraded via RAB5-regulated autophagy (Ravikumar et al.,
2008). Etf-1–induced RAB5-regulated autophagy was found to clear
an aggregation-prone mutant Huntingtin protein in a class III
PtdIns3K–dependent manner (Lin et al., 2016).

During the exponential growth stage of E. chaffeensis, the
concentrations of free/cytoplasmic L-glutamine and L-glutamate
in infected human monocytes increase substantially, making
them available for ehrlichial growth (Lin et al., 2016). Indeed,
host cell–preincorporated radioactive L-glutamine could be
readily taken up by E. chaffeensis in an autophagy-dependent
manner, and the human cytoplasmic autophagy cargo protein
GAPDH could be delivered into E. chaffeensis inclusions as well
(Lin et al., 2016). In addition to several early-endosome markers,
Etf-1 and the early autophagosome marker ATG5 (but not LC3)
are present on the membrane of E. chaffeensis inclusions
(Barnewall et al., 1997; Mott et al., 1999; Lin et al., 2016)
(Figure 2), and thus the inclusions can be considered as large
amphisomes formed by fusion of early endosomes and early
autophagosomes. Etf-1–induced autophagy releases host-cell
small-molecule catabolites into the host cytoplasm to provide
nutrients (e.g., amino acids) to E. chaffeensis. Furthermore, Etf-
1–induced autophagy creates a host cytoplasmic space for E.
chaffeensis to grow without lysing host cells.

How are the two competing functions of Etf-1 distributed
within E. chaffeensis–infected cells? The translocase of the outer
membrane of mitochondria (TOM) complex is the main pore for
the import of nuclear-encoded proteins into mitochondria, and
mitochondrial membrane potential is required for import
(Pfanner and Truscott, 2002). The majority of Etf-1 targets
mitochondria during the early stage of infection when
mitochondrial membrane potential is maximal. As infection
progresses, Etf-1 is diverted to autophagosomes as mitochondria
begin to lose membrane potential (Wurm et al., 2011). This
suggests that host-cell physiologic conditions during infection
influence the distribution of Etf-1 between mitochondria and
autophagosomes, consequently affecting E. chaffeensis growth.

Although Etf-1 interacts with RAB5-GTP via Beclin 1 and
localizes to E. chaffeensis inclusions, inhibition of lysosome
fusion with inclusions by keeping RAB5 on inclusions, requires
another T4SS effector, Etf-2, because Etf-1-GFP vesicles mature
to autolysosomes (Lin et al., 2016).
2.2.3 Etf-2 Prevents Lysosomal Fusion of
E. chaffeensis Inclusions
Ehrlichia chaffeensis sequesters the regulator of endosomal traffic,
RAB5, on its membrane-bound inclusions to avoid being routed to
host-cell phagolysosomes (Barnewall et al., 1997; Mott et al., 1999).
How is RAB5 sequestered on the ehrlichial inclusion membrane?
The answer is via its association with Etf-2. Etf-2 directly binds
RAB5-GTP on the membrane of early endosomes and of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
E. chaffeensis–containing inclusions (Yan et al., 2018) (Figure 3).
A yeast two-hybrid assay and a microscale thermophoresis assay
revealed that Etf-2 binds tightly to RAB5-GTP but not RAB5-GDP
(Yan et al., 2018). This is because Etf-2 contains two conserved
motifs of RAB GAP Tre2-Bub2-Cdc16 domain, namely an Arg
finger and a Gln finger, although it lacks RAB5-specific GAP
activity (Yan et al., 2018). Thus, Etf-2 binding to RAB5-GTP
blocks RAB5-GTP engagement with RABGAP5 (Figure 3), and
consequently RAB5-GTP hydrolysis is delayed on E. chaffeensis
inclusions (Yan et al., 2018).

2.2.4 Etf-3 Induces Ferritinophagy
Ehrlichia is an obligate aerobe that requires the electron
transport chain, thus iron, because its glycolytic pathway is
incomplete and it lacks ATP-ADP translocase, unlike Rickettsia
and Chlamydia (Dunning Hotopp et al., 2006). Ehrlichia
chaffeensis lacks the siderophore biosynthesis pathway and Fe3+

uptake regulator (Dunning Hotopp et al., 2006). Instead,
Ehrlichia acquires iron from the host-cell labile cellular iron
pool, and pretreating human monocytes with deferoxamine, a
membrane-permeable chelator of this iron pool, blocks E.
chaffeensis infection (Barnewall and Rikihisa, 1994). Ehrlichia
enhances host-cell iron uptake via upregulating TfR mRNA
(Barnewall et al., 1999) and acquires iron from holoTf, as E.
chaffeensis endosomes intersect with TfR-recycling endosomes
and are slightly acidic—enough to release iron from holoTf
(Barnewall et al., 1997). In fact, treatment of macrophages with
interferon-g downregulates TfR mRNA and almost completely
inhibits Ehrlichia infection, and addition of holoTf abrogates this
inhibition (Barnewall and Rikihisa, 1994). However, TfR mRNA
levels return to basal level after 24 h post-infection, when
bacterial exponential growth begins (Barnewall et al., 1999); at
that time, treatment with interferon-g can no longer inhibit
infection (Barnewall and Rikihisa, 1994). How, then, does
exponentially growing Ehrlichia acquire iron from host
cells? The answer is Etf-3, which binds directly and tightly to
ferritin (the primary eukaryotic cytoplasmic iron storage
protein) and thereby induces ferritinophagy, a selective form of
autophagy by recruiting NCOA4 (nuclear receptor coactivator
4), a cargo receptor that mediates ferritinophagy, and LC3, an
autophagosome biogenesis protein (Yan et al., 2021) (Figure 4).
Etf-3–induced ferritinophagy causes ferritin degradation and
significantly increases the labile cellular iron pool, which can
feed E. chaffeensis (Figure 4). Indeed, an increase in cellular
ferritin by adding ferric ammonium citrate to the culture
medium, or overexpression of Etf-3 or NCOA4, enhances E.
chaffeensis proliferation, whereas knockdown of Etf-3 in
Ehrlichia via transfection with a plasmid encoding an Etf-3
antisense peptide nucleic acid inhibits Ehrlichia proliferation
(Yan et al., 2021).

Excessive ferritinophagy induces the generation of toxic ROS,
which could presumably kill both Ehrlichia and host cells. During
Ehrlichia proliferation, however, there is concomitant upregulation
of Ehrlichia Fe-superoxide dismutase, the gene that is co-regulated
with the Ehrlichia T4SS operon, and increase in mitochondrial
MnSOD in response to the co-secreted Etf-1 (Yan et al., 2021).
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Consequently, despite enhanced ferritinophagy, cellular ROS levels
are reduced in Ehrlichia-infected cells compared with uninfected
cells (Yan et al., 2021). Thus, Ehrlichia robs host-cell iron
sequestered in ferritin without killing the host cell.
3 HIJACKING HOST MEMBRANE
LIPIDS (CHOLESTEROL AND
GLYCEROPHOSPHOLIPID) BY
E. CHAFFEENSIS

The E. chaffeensis cell membrane is cholesterol-rich (Lin and
Rikihisa, 2003), but the bacterium cannot synthesize cholesterol
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and partially lacks genes for glycerophospholipid biosynthesis
(Lin et al., 2020). As small Gram-negative bacteria, Ehrlichia
spp. require abundant membrane lipids for rapid intracellular
proliferation. Thus, E. chaffeensismust acquire these membrane
lipids from host cells. Furthermore, by incorporating
eukaryotic lipids such as phosphatidylcholine and cholesterol,
E. chaffeensis mimics the eukaryotic plasma membrane and, by
doing so, adapts to the cellular environment of the host. Indeed,
exogenous 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-
phosphatidylcholine, Bodipy-phosphatidylethanolamine, and
Bodipy (TopFluor)-cholesterol are rapidly trafficked to
ehrlichia inclusions in infected cells (Figure 5). DiI (3,3’-
dioctadecylindocarbocyanine)-prelabeled host-cell membranes
are unidirectionally trafficked to Ehrlichia inclusions and the
FIGURE 3 | Ehrlichia chaffeensis Etf-2 binds RAB5-GTP and blocks RABGAP5 from acting on RAB5. RAB5-GTP hydrolysis by the RAB5-specific GAP is required
for endosome maturation and lysosomal fusion (left). Etf-2 is responsible for blocking lysosomal fusion with E. chaffeensis inclusions by localizing to E. chaffeensis
inclusions via binding to RAB5-GTP and competitively blocking RABGAP5 from acting on RAB5 on the inclusion surface (right). The drawing is from (Yan et al.,
2018), copyright 2018 PNAS.
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bacterial membrane (Figure 5), but DiI-prelabeled Ehrlichia
membranes are not reversibly trafficked to host-cell
membranes (Lin et al., 2020). The trafficking of host-
cell membranes to Ehrlichia inclusions is dependent on both
the host endocytic and autophagic pathways as well as bacterial
protein synthesis, as the respective inhibitors block the
trafficking of DiI-labeled host membranes to Ehrlichia as well
as infection (Lin et al., 2020). Cryosections of infected cells
show numerous membranous vesicles inside Ehrlichia
inclusions as well as multivesicular bodies docked on the
inclusion surface, both of which can be labeled by GFP-
tagged 2×FYVE protein that binds to phosphatidylinositol 3-
phosphate, a product of PtdIns3K activity (Lin et al., 2020).
Focused ion-beam scanning electron microscopy of infected cells
has validated the existence of numerous membranous structures
inside bacterial inclusions (Lin et al., 2020). These results support
the notion that Ehrlichia inclusions are amphisomes formed
through fusion of early endosomes, multivesicular bodies, and
early autophagosomes induced by Etf-1, and they provide the
host-cell membrane glycerophospholipids and cholesterol
necessary for bacterial proliferation.
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4 FUTURE DIRECTIONS

Ehrlichia species propagate via perpetual transmission
between ticks and mammalian hosts and can proliferate in
each of these two distinct environments. Owing to multiple
technical limitations, little is known about the bacterial
components that enable Ehrlichia to thrive throughout this
lifecycle. Recently, Himer1 transposon mutagenesis was
successfully applied to E. chaffeensis as well as other
Ehrlichia species, and functional knockout mutants have
been cloned (Cheng et al., 2013; Bekebrede et al., 2020).
Moreover, the application of targeted mutagenesis techniques
to Rickettsia and Ehrlichia species is on the horizon (McClure
et al., 2017). Combined with advanced analysis of functional
genes in ticks along with molecular and cellular techniques to
manipulate ticks, it is expected that Ehrlichia Himer1
transposon insertional mutant libraries will facilitate this line
of investigation. Further experimental discoveries of bacterial
factors and their functions during the natural life cycle of
Ehrlichia—in which humans are merely accidental hosts—are
expected to reveal the remarkable molecular evolution of these
FIGURE 4 | Ehrlichia chaffeensis Etf-3 binds ferritin light chain to induce ferritinophagy to increase the labile-iron pool for acquisition of iron by E. chaffeensis. Iron
homeostasis is tightly regulated in host cells to maintain the labile cellular iron pool (left). Etf-3 directly binds ferritin via ferritin light chain and induces ferritinophagy to
increase the labile cellular iron pool, thereby providing Fe2+ for E. chaffeensis proliferation. Etf-1–induced autophagy synergizes with Etf-3 to deliver extra Fe2+ to
Ehrlichia inclusions (right). Tf: transferrin, which binds Fe3+ and transports it into cells. TfR: transferrin receptor, which binds and delivers iron-saturated transferrin via
endocytosis. STEAP2: Six-transmembrane epithelial antigen of prostate-2, a metalloreductase that reduces Fe3+ to Fe2+. DMT1: Divalent metal transporter 1 that
transports Fe2+ from endosomes to the cytoplasm. NCOA4: Nuclear receptor coactivator 4, a cargo receptor that mediates ferritinophagy. The drawing is from (Yan
et al., 2021), copyright 2021 PNAS.
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tick-borne pathogens and inform the development of effective
therapeutic strategies and preventative measures for diseases
caused by Ehrlichia species.
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