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Regional pattern and signatures
of gut microbiota in rural
residents with coronary heart
disease: A metagenomic analysis

Wenlong Li1,2, Huijun Li1, Shaolan Wang1, Keyang Han1,
Yuan Liu1, Zhen An1, Hui Wu1, Juan Li1, Jie Song1

and Weidong Wu1*

1School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China, 2Institute of
Infectious Disease Prevention and Control, Zhengzhou Center for Disease Control and Prevention,
Zhengzhou, Henan, China
Coronary heart disease (CHD) is tightly associated with gut microbiota, but

microbiota heterogeneity limits the application of microbial biomarkers and

personalized interventions demand regional-specific features. The purpose of

this study was to comprehensively characterize the regional pattern of gut

microbiota in rural residents with CHD and assess the predictive value and

clinical correlations of local microbial signatures. We profiled the gut

microbiota by shotgun metagenomic sequencing from 19 CHD and 19

healthy residents in rural Xinxiang, China, and tested the physiological

parameters. The results indicated that microbial diversity, as well as KEGG

orthology (KO) and carbohydrate-active enzymes (CAZymes) functions,

deserved no significant disparities between CHD and healthy residents. The

relative abundance of Bacteroidetes phylum was significantly lower and

unclassified Lachnospiraceae genus, and Eubacterium rectale species were

markedly higher in CHD residents compared with the healthy control. Co-

occurrence network revealed a more diverse and scattered ecology in CHD

residents. LEfSe identified 39 potential biomarkers and butanoate metabolism

and glycosyltransferases families were the enhanced KO and CAZymes in CHD

residents, respectively. Twenty key signatures were determined by the random

forest algorithm and most of them belonged to the Clostridium cluster. These

key signatures harbored a superior accuracy of 83.9% to distinguish CHD and

healthy residents and, fasting serum insulin, diastolic blood pressure, and body

mass index were the top three clinical parameters influencing the gut bacterial

community. Furthermore, we also found that low-density lipoprotein and waist

circumference had significantly positive correlations with the members of the

Clostridium cluster. These findings expand our knowledge in the regional-

specific pattern of gut microbiota for rural CHD residents and highlight the

non-invasive diagnostic value and clinical correlations of microbial signatures.
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Introduction

Coronary heart disease (CHD), one of the major

cardiovascular diseases, characterized by coronary artery

stenosis and myocardial hypoxia, has become a worldwide

public health challenge (Zhang et al., 2008; Zhou et al., 2019).

Patients with CHD are generally represented by nontypical

clinical symptoms, recurrent episodes of chest pain, or sudden

heart attack, ultimately increasing potential health hazards and

heavy social-economic burden. Despite substantial therapeutic

interventions implemented to alleviate CHD risks, it remains the

leading cause of morbidity and mortality globally (Bansilal

et al., 2015).

Recently, substantial studies suggested that CHD patients

existed gut dysbiosis, accompanied by structure, composition, or

functional alterations of intestinal microbiota (Karlsson et al.,

2012; Jie et al., 2017). Meanwhile, the metabolisms of gut

microbiota such as short-chain fatty acids (SCFAs), secondary

bile acids, and trimethylamine-N-oxide (TMAO), are also

implicated in intestinal homeostasis and affect the

atherosclerotic processes by mediating cholesterol metabolism,

uric acid metabolism, oxidative stress, or inflammatory reactions

(Trøseid et al., 2020). Gut microbiota had been regarded as a

non-invasive diagnostic biomarker and conferred a potential

target for preventing and treating CHD (He et al., 2018).

However, as the key metabolic filter, gut microbiota always

harbored a high dynamic ecology system and bore various

environmental stress, thus causing disparities for the same

disease phenotype. Moreover, microbiota heterogeneity largely

limited applications of the healthy gut microbiome reference

range and disease prediction models, thereby decreasing the

accuracy of disease prediction (He et al., 2018). Geography

variations were reported as the strongest factor affecting gut

microbiota, beyond environmental elements and dietary

patterns (He et al., 2018). Generally, geographical location, to

some extent, constrained the entire variations of local

environments, dietary habits, and lifestyles. Vangay et al.

found that geographical migration was associated with

immediate loss of gut microbiome diversity and function in

which post-migration strains and functions displaced previous

strains and functions (Vangay et al., 2018). Moreover, the gut

microbiome was also in response to the geographical latitude,

followed by a positive correlation between Firmicutes and a

negative association for Bacteroidetes (Suzuki and Worobey,

2014). These evidence emphasis the influences of geography and

demand personalized interventions for the human microbiome.

In China, with the development of industrialization and

urbanization, the burden of CHD in rural areas is rising and has

surpassed the urban districts (Ma et al., 2020). Ayeni et al.

revealed that pristine fiber degraders and the low inter-

individual variation were progressively lost with urbanization,

thereby highlighting the disparities between rural and urban
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areas (Ayeni et al., 2018). Meanwhile, evidence had revealed that

industrialization and urbanization decreased microbial exposure

and contributed to the increased prevalence of non-

communicable diseases (Selway et al., 2020), implying the

unique features in rural areas. Therefore, we hypothesize that

the regional pattern of gut microbiota deserves local-specific

traits and harbors superior performance for disease prediction

and precise prevention. Henan Province is located in central

China and has a population of over 109 million in 2019, which is

also the largest agricultural province, and nearly half of the

population lives in rural areas. So, it is critical to decipher the

regional specific traits and provide references for disease

intervention by targeting microbiota. This study aimed to

reveal the regional pattern of gut microbiota in rural residents

with CHD, and assessed the value of local microbial signatures

for CHD prediction.
Material and methods

Study participants

According to the urban-rural division codes of the

national bureau of statistics of China, 19 rural residents with

CHD alone and 19 healthy controls in Qiliying and

Langgongmiao, Xinxiang county were recruited for this

study. The inclusion criteria of CHD were as follows: (1)

aged 45 to 79 years; (2) diagnosed with CHD by physicians in a

secondary hospital; (3) written informed consent and

willingness to participate in this study. Except for CHD, the

subjects who had any other diseases (e.g., cerebrovascular

diseases, metabolism diseases, gastrointestinal diseases,

respiratory diseases, immunity diseases, cancers, or disease-

related complications), who took antibiotic therapy or

probiotics within three months, or who had cognitive

impairment and cannot cooperate, were excluded. Moreover,

the healthy controls had no history of chronic diseases, taking

any medication, or severe lifestyle that might disrupt gut

microbiota. Characteristics of all the participants including

age, gender, health status, education level, marital status,

occupations, monthly income, smoking, and drinking

condition were collected by questionnaires. This study was

approved by the Ethics Committee of Xinxiang Medical

University for Human Studies (protocol number: XYLL-

2016242) and all subjects gave written informed consent.
Sample collection, physician examination
and laboratory tests

Fresh fecal and blood serum samples were collected and

extracted after fasting for at least eight hours and immediately
frontiersin.or
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frozen at -80°C. Height, weight, waist circumference (WC), hip

circumference (HC), systolic blood pressure (SBP), diastolic

blood pressure (DBP), and pulse rate (PR) were measured at

least twice and the means were defined as final values, while red

blood cells (RBC), white blood cells (WBC), Hemoglobin (Hb),

platelet counts, alanine aminotransferase (ALT), aspartate

aminotransferase (AST), Uric acid (UA), creatinine (Cre),

fasting serum insulin (FSI), fasting blood glucose (FBG),

glycosylated hemoglobin (HbA1c), total cholesterol (TC),

triglyceride (TG), high-density lipoprotein (HDL), and low-

density lipoprotein (LDL) were also tested. Body mass index

(BMI) was calculated as weight in kilograms divided by height in

meters squared.
DNA extraction, quality control, library
preparation and shotgun metagenomic
sequencing

Bacterial DNA was extracted at Beijing Novogene

Bioinformat ics Technology Co. , China , us ing the

Cetyltrimethyl Ammonium Bromide/Sodium Dodecyl

Sulfonate method. The purity and integrity of DNA were

detected by agarose gel electrophoresis, and the concentration

of DNA was quantified by Qubit fluorometry. Qualified DNA

was fragmented by ultrasonic wave and prepared library using

the NEBNext® Ultra™ DNA kit. Then, Agilent 2100

Bioanalyzer was used to detect the fragments size and a

quantitative polymerase chain reaction (qPCR) was performed

to quantify the library concentration. Finally, eligible DNA

libraries were sequenced on the Illumina HiSeq platform and

raw data was obtained.
Bioinformatics analysis

Raw fastq reads were quality-checked by Trim Galore and

adapter, and low-quality reads and chimera sequences were

removed. BMTagger (Rotmistrovsky and Agarwala, 2011) was

used to remove the host genomic sequences against the human

genome reference (hg38) and Fastqc qualified the clean data

finally. Microbial diversity analysis was performed on QIIME

platform (Caporaso et al., 2010) and the Kaiju program

(Menzel et al., 2016) was used to assign taxonomic

classification against NCBI RefSeq database. Genome

assembled by the MEGAHIT tool (Li et al., 2015) and

Prodial program (Hyatt et al., 2010) was used to predict open

reading frame (ORF). For functional prediction, Diamond was

utilized to align to KEGG orthology (KO) (Kanehisa et al.,

2017) and carbohydrate-active enzymes (CAZymes) database

(Lombard et al., 2014) and Salmon tool (Patro et al., 2017) was

used to estimate the abundance of genes.
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Statistical analysis

For baseline characteristics of participants, categorical

variables were represented by frequency and proportion,

utilizing chi-square tests to compare their variations.

Continuous variables were represented by the mean and

standard deviation (SD) or median (M) and interquartile

range (IQR) as appropriate. Wilcoxon rank-sum test was used

to compare the differences of a-diversity between groups,

whereas permutational multivariate analysis of variance

(Adonis test) was applied for dimensionality reduction of two

communities. Principal coordinate analysis (PCoA), based on

Bray-Curtis distance metrics, was performed with the R vegan

package to assess the b-diversity and functional alterations.

Venn diagrams were used to demonstrate the differences in

microbial composition and co-occurrence networks were

established with Gephi software (Bastian et al., 2009) to

decipher the ecologic pattern between groups. To reduce

network complexity, those average relative abundances >

0.02% in each group could be selected to construct co-

occurrence networks. Spearman’s correlation coefficient

between two species was considered robust if the absolute r

value > 0.8 with a corresponding ‘holm’ adjusted p-value <0.001.

Linear discriminant analysis (LDA) effect size (LEfSe) (Segata

et al., 2011) was performed to disclose the different microbiota

and functions. Random forest models were utilized with the R

Random Forest package (Breiman, 2001) to screen the signatures

that distinguish CHD patients and healthy controls. Canonical

correspondence analysis (CCA) was used to analyze the

relationships between the bacterial community and altered

physiological indicators. All analyses were completed using the

R software, and a p-value < 0.05 in a two-tailed test was

considered statistically significant.
Results

Characteristics of participants

Baseline characteristics of 38 subjects were shown in Table 1.

Compared to the control group, the level of LDL, WC, HC, SBP,

DBP, and BMI were significantly higher in CHD group, while

the distribution of FSI, ALT, AST, and TG between groups were

markedly different (p-value < 0.05).
Diversity and taxonomic profiles of the
gut microbiota

After rarefying to a specific sequencing depth, a- and b-
diversity were calculated. a-diversity encompassing the chao1,

equitability, shannon, and simpson indices, was displayed in
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Figure 1A and demonstrated no significant difference between

groups (p-value > 0.05). For b-diversity, estimated by Jaccard

and Bray-Curtis distance, PCoA showed that the gut microbiota

in CHD group relatively clustered together, whereas those in the

control group were relatively scattered (Figure 1B). The

contribution of PCoA1 and PCoA2 was 15.03% and 12.01%

for Jaccard metrics, while Bray-Curtis metrics demonstrated by

23.57% and 16.3%, respectively. Adonis test indicated that gut

microbiota displayed no significant differences between groups

(Jaccard: R2 = 0.034, p-value = 0.167; Bray-Curtis: R2 = 0.039, p-

value = 0.138).

Aligning to the non-redundant protein database (NCBI

RefSeq), 21 bacterial phyla, 42 classes, 304 genera, and 655

species were identified. The top 10 phyla, classes, genera and

species were shown in Figure 1C. Firmicutes (CHD vs. Control:

54.91% vs. 44.72%), Bacteroidetes (CHD vs. Control: 28.35% vs.
Frontiers in Cellular and Infection Microbiology 04
43.61%), Actinobacteria (CHD vs. Control: 7.13% vs. 7.21%),

and Proteobacteria (CHD vs. Control: 8.27% vs. 3.55%) were the

top four dominant taxa at the phylum level. The top three

bacterial classes were Clostridia (CHD vs. Control: 45.62% vs.

39.45%), Bacteroidia (CHD vs. Control: 28.07% vs. 42.86%), and

Gammaproteobacteria (CHD vs. Control: 8.13% vs. 3.11%). The

top three bacterial genera were Bacteroides (CHD vs. Control:

17.22% vs. 24.68%), unclassified Lachnospiraceae (CHD vs.

Control: 10.56% vs. 6.15%) and Faecalibacterium (CHD vs.

Control: 5.63% vs. 8.70%), while the top three species were

Faecalibacterium prausnitzii (CHD vs. Control: 5.63% vs. 8.70%,

p-value = 0.052), Eubacterium rectale (CHD vs. Control: 7.77%

vs. 3.44%), and Escherichia coli (CHD vs. Control: 6.08% vs.

2.22%, p-value = 0.298). The mean relative abundance

of Bacteroidetes phylum (p-value = 0.048) was lower in CHD

group, whereas unclassified Lachnospiraceae genus (p-value =
TABLE 1 Baseline characteristics of the control and CHD groups.

Variables Control (n = 19) CHD (n = 19)

Age (years) 57.74 ± 9.48 62.63 ± 7.08

Gender (male/female) 9/10 8/11

Education (≤primary school/≥ middle school) 6/13 12/7

Marital status (married/divorce or widow) 16/3 18/1

Occupation (farmer/worker/other) 8/5/6 4/4/11

Monthly income (<500/500~1000/≥1000) 8/5/6 3/10/6

Smoking (yes/no) 5/14 6/13

Drinking (yes/no) 3/16 5/14

WC (cm) 78.52 ± 5.95 92.91 ± 7.60***

HC (cm) 94.62 ± 4.63 100.55 ± 4.69***

BMI (kg/m2) 22.91 ± 2.13 27.19 ± 3.03***

SBP (mmHg) 115.26 ± 9.20 132.28 ± 12.59***

DBP (mmHg) 73.11 ± 6.19 80.04 ± 8.37**

PR (bpm) 72.16 ± 7.94 74.58 ± 10.93

WBC, 109/L 5.29 ± 1.40 5.44 ± 0.85

RBC, 1012/L 4.69 ± 0.45 4.72 ± 0.40

Platelet, 109/L 248.00 ± 69.82 217.21 ± 49.25

Hb (g/L) 136.53 ± 14.76 143.58 ± 12.65

UA (mmol/L) 273.95 ± 63.23 314.69 ± 98.89

TC (mmol/L) 4.76 ± 0.64 5.25 ± 1.19

LDL (mmol/L) 2.64 ± 0.51 3.09 ± 0.71*

HDL (mmol/L) 1.35 ± 0.26 1.28 ± 0.25

FBG (mmol/L) 5.27 ± 0.45 5.57 ± 0.71

HbA1c (%) 5.28 ± 0.48 5.54 ± 0.54

Cre (mmol/L), M (IQR) 64 (12.5) 60 (13)

FSI (mmol/L), M (IQR) 4.4 (1.7) 7.3 (4.95) **

ALT (U/L), M (IQR) 18 (6.5) 23.46 (9) *

AST (U/L), M (IQR) 21 (3) 24 (7.84) *

TG (mmol/L), M (IQR) 0.94 (0.345) 1.38 (1.25) *
Values are presented as mean ± SD or median and interquartile range (IQR). All p-values are from the Welch’s t test or the Wilcoxon rank sum test, except for gender, education, marital
status, occupation, monthly income, smoking, and drinking history (c2 tests or Fisher’s exact test). *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001 vs. Control. WC, waist
circumference; HC, hip circumference;BMI, body mass index; SBP,systolic blood pressure, DBP, diastolic blood pressure; PR, pulse rate; RBC, red blood cells; WBC, white blood cells; Hb,
Hemoglobin; UA, Uric acid; TC,total cholesterol;LDL, low-density lipoprotein; HDL, high-density lipoprotein; FBG, fasting blood glucose; HbA1c, glycosylated hemoglobin; Cre, creatinine;
FSI, fasting serum insulin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TG, triglyceride.
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0.017), and E. rectale species (p-value = 0.006) displayed higher

relative abundances.
Functional profiles of the gut microbiota

KO and CAZymes database were aligned to explore the

functional characteristics of gut microbiota. Genetic information

processing, cellular community (prokaryotes), membrane

transport, translation, drug resistance (antimicrobial),

carbohydrate metabolism, unclassified metabolism, and
Frontiers in Cellular and Infection Microbiology 05
immune system were the most abundant functions at level 2

of each KO hierarchy (Figure 2A), respectively. Glycoside

hydrolases (GHs) and glycosyl transferases (GTs) were the

enriched CAZymes and the relative abundance was more than

90% (Figure 2B). The dimensionality reduction PCoA, both KO

and CAZymes, showed that the gut microbiota in the control

group clustered together, whereas those in the CHD group were

relatively scattered. The contribution of PCoA1 and PCoA2 was

32.09% and 22.35% for KO, while demonstrated by 43.87% and

16.12% for CAZymes, respectively. Adonis test showed that KO

and CAZymes of gut microbiota between CHD and control
B

C

A

FIGURE 1

Diversity and taxonomic composition of gut microbiota in CHD and control groups. (A) a-diversity including Chao1, equitability, shannon and
simpson index. (B) b-diversity and PCoA based on Jaccard and Bray-Curtis distance metrics. (C) Taxonomic composition of gut microbiota at
phylum, class, genus, and species levels between CHD and control groups. ns, no significant.
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groups were no significant differences (Adonis test p-value

>0.05, Figures 2C, D).
Species variations and co-occurrence
network analysis of gut microbiota

To identify the species variations and co-occurrence pattern

of gut microbiota, Venn diagrams (Figure 3A) were illustrated

and co-occurrence networks (Figure 3B) were established. At the

phylum level, 15 phyla were shared in both two groups, with 3

and 2 independent phyla in CHD and control, respectively. At

the class level, there were 33 common genera, with 5 and 3

independent genera in CHD and control, respectively. At the

genus level, there were 234 common genera, with 41 and 26

independent genera in CHD and control, respectively. At the

species level, there were 480 common species, with 109 and 54

independent species in CHD and control, respectively. The co-

occurrent network in CHD group consisted of 299 nodes and

1635 edges, while the network in control group harbored 299

nodes and 3727 edges. The control group had a more complex
Frontiers in Cellular and Infection Microbiology 06
connected network: the average path length, clustering

coefficient, and modularity index were followed by 4.201, 0.71,

and 0.355, while in CHD group demonstrated 2.819, 0.659, and

0.546, respectively.
Gut microbiota Alterations and
identification of microbial signatures

To probe the alterations of gut microbiota between CHD

and control groups, LEfSe with default parameters (p-value <

0.05 and LDA scores > 2.0) identified 39 taxa as potential

biomarkers (Figures 4A, B) and 9 KOs (Figure 4C), as well as

7 CAZymes (Figure 4D), were detected as differential functions.

These differential taxa are mainly enriched in Lactobacillaceae

and Persicobacteraceae families, and the Clostridium cluster.

DNA replication proteins, starch and sucrose metabolism,

mismatch repair, and protein kinases were enhanced functions

in control group, while amino acid metabolism, butanoate

metabolism, protein processing, and transcription factors were

increased in CHD group. For CAZymes functions, glycoside
B C D

A

FIGURE 2

Function profiles of gut microbiota. (A) KEGG orthology (KO) relative abundance of gut microbiota. (B) carbohydrate-active enzymes (CAZymes)
relative abundance of gut microbiota. (C, D) Dimensionality reduction PCoA and Adonis test of KO and CAZymes based on Bray-Curtis distance
metrics between CHD and control groups.
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hydrolases (GH) 57, GH1, and glycosyltransferases (GT) 75

families such as b-glucosidase, a-amylase, and self-

glucosylating b-glucosyltransferase were enhanced in control

group, while auxiliary activities (AA) 10, carbohydrate-binding

modules (CBM) 73, GT28, and GT1 families such as copper-

dependent lytic polysaccharide monooxygenases, chitin-

associated modules of residues, 1,2-diacylglycerol 3-b-
galactosyltransferase, and glucuronosyltransferase were

elevated in CHD group.

To explore the key species distinguishing the CHD and control

groups, a random forest algorithm was further performed to

determine the key microbial signatures. By applying 10-fold

cross-validation on the random forest model, twenty microbial

species were selected based on the lowest mean error rate

(Figure 5A). Thus, we selected the top twenty candidates based

on the mean decrease accuracy as the key signatures (Figure 5B).

The relative abundance of these key signatures was displayed by the

heatmap in Figure 5C. These key signatures demonstrated higher

relative abundance in the CHD group, except for Lactobacillus

salivarius, Bacteroides zoogleoformans, Clostridiales bacterium

CCNA10, Selenomonas ruminantium, and Bifidobacterium

thermophilum.
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Microbial prediction value and
clinical associations

To determine the predictive capability of key signatures, we

performed the receiver operating characteristic (ROC) curve and

calculated the area under the ROC curve (AUC), as illustrated in

Figure 6A. The sensitivity was 73.7%, and the specificity was

84.2%, with an AUC of 83.9% (95% confidence interval: 0.711-

0.967). CCA showed that, with the gradient of clinical indicators,

CCA1 and CCA2 explained 38.40% and 14.97% variations of gut

microbiota between groups, respectively (Figure 6B). FSI, DBP,

and BMI were the top three clinical parameters influencing the

gut bacterial community, thereby implicated in the microbial

alterations between groups.

Furthermore, the associations among key signatures, altered

clinical parameters, differential KOs, and CAZymes functions

were assessed. LDL was positively associated with Clostridium

clusters including Clostridium chauvoei, Clostridium septicum,

Clostridium perfringens, Clostridium beijerinckii, Clostridium

isatidis, and Clostridium saccharobutylicum, while WC was

also positively correlated with C.perfringens (Figure 6C). These

altered clinical parameters had no significant correlations with
B

A

FIGURE 3

Species variations and co-occurrence networks between CHD and control groups. (A) Venn diagrams of species variations at phylum, class,
genus, and species level. (B) Co-occurrent networks in CHD and control groups. Links denote significant (‘holm’ adjust p-value < 0.001 and
Spearman’s absolute r > 0.8) correlations with ‘holm’ adjust and weight by each correlation. The nodes in network are colored according to
phylum and weight by the node degree of each species.
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those changed KOs and CAZymes (Figures 6D, E). Accordingly,

key signatures also had no significant correlations with altered

KOs and CAZymes (Figures 6F, G).
Discussion

Gut microbiota is a complex, evolution-molded, and high

dynamic ecological system, which plays important

physiological roles in the human intestine and greatly

extends the tolerance and regulation of the intestine to

external stimulation and exposure (Santoro et al., 2018).

Although the relationships between gut microbiota and CHD

have been identified by substantial studies, alterations of

microbial communities remain discord. These microbiota

heterogeneities are largely attributed to geography variations,

and local traits of gut microbiota could specifically affect the

progress of CHD, thus modeling the regional microbial pattern

(Fontana et al., 2019). Herein, we utilized the metagenomic

sequencing method to comprehensively characterize the

regional pattern of gut microbiota and evaluate the predictive

value for CHD diagnosis.
Frontiers in Cellular and Infection Microbiology 08
The diversity of gut microbiota reflected the species richness

in certain ecology and their disparities or space distance in

different ecological niches. Numerous studies reported that gut

dysbiosis was associated with alterations of microbial diversity,

even though these results demonstrated inconsistency. Cui et al.

found that a-diversity in CHD patients was significantly higher

than that of the healthy controls (Cui et al., 2017), but the results

of Zhu et al. and Toya et al. demonstrated the richness of gut

microbiota was markedly decreased in CHD group (Zhu et al.,

2018; Toya et al., 2020). However, Liu et al. assessed gut

microbiota changes among CHD subgroups and indicated that

the severity of CHD was associated with microbial diversity,

including a- and b-diversity (Liu et al., 2019). For details, the

evidence showed that no significant differences were found

between healthy subjects and stable CHD, whereas the

unstable angina group exhibited higher microbial diversity

than the healthy control group. In our present study, we found

that no disparities existed in microbial diversity between CHD

and control groups. Although PCoA displayed rather closer

distances within CHD samples, the similarity between CHD

and control groups remained higher, reflecting the insignificant

diversity of gut microbiota as well. Furthermore, Venn diagrams
B

C D

A

FIGURE 4

Differential taxa, KOs, and CAZymes between CHD and control groups identified by linear discriminant analysis (LDA) effect size (LEfSe) with
default parameters (p-value < 0.05 and LDA scores > 2.0). (A) Differential taxa identified by LDA score. (B) Cladogram of differential taxa
between CHD and control groups. (C) Differential KOs at level 3 identified by LEfSe. (D) Differential CAZymes identified by LEfSe.
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captured more microbial species in CHD group from the

phylum to species level and the co-occurrence network in

CHD demonstrated a higher modularity index, which implied

that gut microbiota structure altered and tended to diverse and

scattered modularity.

In accordance with previous studies (Cui et al., 2017; Toya

et al., 2020), at the microbial taxonomic level, we found

Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria

were the dominant taxa. The ratio of Firmicutes/Bacteroidetes

(F/B) was elevated in CHD subjects, followed by 1.9 in CHD and

0.9 in healthy controls. The abundance of Bacteroidetes phylum

was significantly decreased, whereas unclassified Lachnospiraceae

genus and E. rectale species, belonging to the Firmicutes phylum,

were markedly increased. The altered abundance of Firmicutes

and Bacteroidetes implied the imbalance of competition stability

and resulting potential function changes. Some researchers

proposed that the change in F/B ratio could represent the

dysbiosis of gut microbiota, but due to the methodological

differences, poor characterization of the study population, and
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insufficient consideration of lifestyle-associated factors, it

remained difficult to determine the F/B ratio as the marker for

the dysbiosis of gut microbiota (Magne et al., 2020). The

Lachnospiraceae family belonged to the Clostridial cluster XIVa

of the phylum Firmicutes, and some members displayed strong

hydrolyzing activities and short-chain fatty acids (SCFAs)-

producing abilities (Vacca et al., 2020). Reversely, the increase

of Lachnospiraceae was also associated with metabolic diseases

such as chronic kidney diseases and diabetes, representing the

potential of inflammation promotion (Qin et al., 2012; Vaziri

et al., 2013). E. rectale was the butyrate-producing species and

represented anti-inflammation properties by mediating the

immunity of regulatory T cells (Furusawa et al., 2013; Fu et al.,

2019). Previous studies found that E. rectalewas depletion in CHD

and heart failure patients (Kamo et al., 2017; Zhu et al., 2018), but

we observed an increased relative abundance in CHD subjects. We

inferred that the subjects in our study were tended to stable CHD

patients and the depletion of E. rectale could be the final result of

atherosclerosis or the individuals with severe CHD. Besides, the
B

C

A

FIGURE 5

Identification of key signatures between CHD and control groups. (A) 10-fold cross-validation by random forest method identifies twenty key
signatures. (B) Mean decrease accuracy of species in the random forest model. (C) Relative abundance of twenty key signatures illustrated by
heatmap.
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elevated relative abundance of E. rectale could also be the regional

microbial feature in rural Xinxiang county.

Dispersal, local diversification, environmental selection,

ecological drift, and co-evolution were regarded as the

fundamental processes of community formation by ecological

theory (Costello et al., 2012). The human gut microbiome could

rapidly adapt to external environmental stress and intestinal

microenvironment alterations through recombination via

horizontal gene transfer (Smillie et al., 2011). Previous studies

indicated that transport of simple sugars (phosphotransferase

systems), amino acids, propanoate metabolism, lipopolysaccharide

biosynthesis proteins, and tryptophan metabolism were enhanced

in CHD patients, while virulence factors were also increased and the

potential for synthesis of butyrate was decreased (Jie et al., 2017;

Zhu et al., 2018). Our study found that the KO hierarchy of
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environmental information processing, human diseases,

metabolism, and the organismal system was enriched in

membrane transport, antimicrobial drug resistance, carbohydrate

metabolism, and immune system at level 2 of KO. At level 3 of KO,

we found the differential functions were mainly enhanced in amino

acid and butanoate metabolism in CHD group, whereas starch and

sucrose metabolism and genetic information processing were

elevated in healthy controls. We considered that the enhanced

butanoate metabolism in CHD subjects could be the response to gut

dysbiosis and was demanded its anti-inflammation properties. In

addition, gut microbiota encoded substantial CAZymes and played

an essential role in the degradation of dietary glycans, thus

providing biological energy for the human body (El Kaoutari

et al., 2013). Our results demonstrated that GHs and GTs were

the dominant CAZymes in rural Xinxiang and, GHs and GTs were
B

C D E

F G

A

FIGURE 6

Microbial prediction value and clinical associations of key signatures. (A) The receiver operating characteristic (ROC) curve of the key signatures
for CHD prediction. (B) Canonical correspondence analysis (CCA) between the bacterial community and altered physiological indicators. (C-E)
Correlations among altered physiological parameters, key signatures, differential KOs and CAZymes. (F, G) Correlations among key signatures,
differential KOs and CAZymes. * ‘holm’ adjust p-value < 0.05. WC, waist circumference; HC, hip circumference;BMI, body mass index; SBP,
systolic blood pressure, DBP, diastolic blood pressure; LDL, low-density lipoprotein; FSI, fasting serum insulin; ALT, alanine aminotransferase;
AST, aspartate aminotransferase; TG, triglyceride; AUC, the area under the ROC curve.
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enriched in healthy controls and CHD subjects, respectively. GHs

cleaved glycosidic bonds by the insertion of a water molecule

(hydrolysis) and the function of GTs was catalyzing glycosylation

reactions by mediating glycosidic bond formations between sugar

moieties and important biomolecules (Lombard et al., 2010;

Koropatkin et al., 2012). These disparities reflected that the

capability of degrading dietary polysaccharides was decreased and

biosynthesis of large or small molecules was enhanced in CHD

patients, probably affected by the different dietary patterns.

Although PCoA and Adonis test displayed no significant

differences for KO and CAZymes functions in both CHD and

control groups, alterations could not be neglected.

LEfSe identified 39 differential taxa as potential biomarkers

and most of them were enriched in species level between CHD

patients and healthy controls, of which E. rectale and L.salivarius

were the most significant species in CHD and control groups,

respectively. We further identified twenty key signatures between

groups with 10-fold cross-validation, based on the mean decrease

accuracy of the random forest algorithm. We found that twelve of

the twenty key signatures belonged to the Clostridia class,

including E. rectale, C. perfringens, C. isatidis, C. chauvoei, C.

septicum, C. beijerinckii, C. saccharobutylicum, Clostridium

botulinum, Clostridium bornimense, Ruthenibacterium

lactatiformans, C. bacterium CCNA10, and Syntrophobotulus

glycolicus. Except for C. bacterium CCNA10, all of these

Clostridia cluster species deserved higher relative abundances in

CHD patients. Among them, E. rectale, C. saccharobutylicum, and

C. bornimense were reported as butyrate-producing bacteria with

beneficial effects (Tomazetto et al., 2016; Fu et al., 2019), whereas

C. perfringens, C. chauvoei, C. septicum, C. botulinum were

regarded as pathogenic bacteria (Ohtani and Shimizu, 2016;

Rychener et al., 2017; Aldape et al., 2018; Pernu et al., 2020).

Furthermore, C. beijerinckii, and R. lactatiformans plausibly had

the potential to produce butyrate and lactate (Shkoporov et al.,

2016; Seo et al., 2017), while the evidence about C. isatidis,

C.bacterium CCNA10, and S. glycolicus remained less known.

These findings were partly different from previous studies (Kamo

et al., 2017; Kummen et al., 2018; Zhu et al., 2018), in which we

showed that butyrate-producing bacteria displayed higher relative

abundances than healthy population instead of representing lower

richness or depletion. We considered that it could be explained by

the followings: firstly, as we mentioned before, the severity of

CHD in different pathological conditions would represent by

differently gut ecology and the depletion of butyrate-producing

bacteria was a gradual process; secondly, these identified key

signatures in our study also consisted of pathogenic and

beneficial Clostridium and the competition of them could result

in rescue effects to the atherosclerotic phenotype; thirdly, the

increased relative abundance of butyrate-producing bacteria could

associate with the regulation of immunity in the intestine, in

which gut dysbiosis reversely promoted the increase of butyrate-

producing bacteria and mediated release of anti-inflammatory

cytokines. Therefore, we still believed that, in the gut of CHD
Frontiers in Cellular and Infection Microbiology 11
residents, these microbiota alterations tended to be negative effects

rather than beneficial value.

Coronary angiography was the gold standard for CHD

diagnosis, generally accompanied by invasive physical pain

and heavy psychological burden, urgently demanding new

non-invasive methods to conquer these disadvantages and

microbial signatures were emerging. In this study, we also

evaluated the diagnosis value of key signatures and the

relationships between gut microbiota and clinical indicators.

Our results demonstrated that these key signatures harbored

superior discrimination and predictive value with a high AUC of

83.9%, exceeding the accuracy of 67.71% in the study of Zhu

et al. with the subjects recruited in a Shanghai hospital and

approaching the results of Jie et al. in a metagenome-wide

association study (Jie et al., 2017; Zhu et al., 2018). With the

constraint of altered clinical indices, most of the clinical indices

departed from the healthy samples and possessed positive

correlations with CHD samples, indicating gut microbiota in

different groups was altered by these physiological parameters.

Nevertheless, we also assessed the associations among altered

clinical indices, key signatures, differential KO, and CAZymes.

With the ‘holm’ adjust method, we only found a strong positive

correlation among Clostridia cluster species, LDL, and WC,

validating the essential role of the Clostridia cluster and

emphasizing its alteration in the regional microbial pattern.

Although no disparities were observed among key signatures,

KOs, and CAZymes in our study, Liu et al. found that fecal and

serum lipopolysaccharide had negative correlations with

metabolic pathways (Liu et al., 2020), indicating that the level

of lipopolysaccharide could be a sensitive indicator for

functional changes, and new functional-associated biomarkers

still need excavation and discovery. The mechanisms of host-

microbiota interaction and the methods for CHD prevention by

targeting gut microbiota remain to be explored.

However, there also exist some limitations. Firstly, the

diagnosis of CHD was dependent on the medical history and

the severity of CHD, as well as local dietary pattern, could not be

evaluated, plausibly leading to information bias. Secondly,

although we utilized metagenomic sequencing to explore the

features of gut microbiota, the sample size remained small.

Finally, the CHD predictive model was not assessed in an

external cohort to further verify its general applicability.

Therefore, future studies should further identify the application

value of the regional microbiota predictive model and explore

internal mechanisms and clinical translation of gut microbiota.
Conclusion

In this study, we comprehensively characterized the regional

pattern of gut microbiota in the rural population of Xinxiang

county, China, and assessed the prediction value, as well as

clinical associations. This evidence expands our knowledge in
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the regional-specific pattern of gut microbiota for rural CHD

residents and highlights the potentiality of Clostridium cluster in

non-invasive diagnosis and microbiota-targeting intervention.
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