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Biochemical characteristics of
patients with imported malaria

Dewu Bi1,2, Jianyan Lin1,2, Xiaolu Luo1,2, Lü Lin1,2, Xike Tang1,2,
Xiaocheng Luo1,2, Yuexi Lu1,2 and Xiaodong Huang1,2*

1Department of Clinical Laboratory, Fourth People’s Hospital of Nanning, Nanning, Guangxi, China,
2Affiliated Infectious Disease Hospital of Nanning, Guangxi Medical University, Nanning, Guangxi, China
Objectives: This study aimed to investigate the clinical and biochemical profiles

of patients with importedmalaria infection between 1 January 2011 and 30 April

2022 and admitted to the Fourth People’s Hospital of Nanning.

Methods: This cohort study enrolled 170 patients with conformed imported

malaria infection. The clinical and biochemical profiles of these participants

were analyzed with malaria parasite clearance, and signs and symptoms related

to malaria disappearance were defined as the primary outcome. A multivariable

logistic regression model was used to evaluate the odds ratios (ORs) with 95%

confidence intervals (CIs) for cerebral malaria. The Cox model was used to

estimate the hazard ratios (HRs) with 95% CIs for parasite clearance.

Results: Adenosine deaminase and parasitemia were found to be independent

risk factors for severe malaria in patients with imported malaria (OR = 1.0088,

95% CI: 1.0010–1.0167, p = 0.0272 and OR = 2.0700, 95% CI: 1.2584–3.4050,

p = 0.0042, respectively). A 0.5–standard deviation (SD) increase of variation

for urea (HR = 0.6714, 95% CI: 0.4911–0.9180), a 0.5-SD increase of variation

for creatinine (HR = 0.4566, 95% CI: 0.2762–0.7548), a 0.25-SD increase of

variation for albumin (HR = 0.4947, 95% CI: 0.3197–0.7653), a 0.25-SD increase

of variation for hydroxybutyrate dehydrogenase (HR = 0.6129, 95% CI: 0.3995–

0.9402), and a 1.0-SD increase of variation for ferritin (HR = 0.5887, 95% CI:

0.3799–0.9125) were associated with a higher risk for increased parasite

clearance duration than a low-level change.

Conclusions: Aspartate aminotransferase, urea, creatinine, albumin,

hydroxybutyrate dehydrogenase, and ferritin are useful biochemical indicators

in routine clinical practice to evaluate prognosis for imported malaria.
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Introduction

Malaria, caused by Plasmodium and transmitted by

mosquitoes (Phillips et al., 2017; Walter and John, 2022), is an

epidemic infectious disease that predominantly occurs in

tropical and subtropical regions (Chaves et al., 2020; van Dorp

et al., 2020; Zhou et al., 2020). Globally, there are over 4.72

billion confirmed cases with approximately 11 million deaths

over the past two decades, as reported by the World Health

Organization (WHO, 2021). China has succeeded in controlling

indigenous malaria, and no autochthonous cases have been

reported since 2017 (Burki, 2021; Zhou, 2021). However, with

the increasing globalization and interconnectedness, an

increasing number of people travel to and from malaria-

endemic regions. Therefore, the incidence of imported malaria

has been gradually increasing and has become a major public

health challenge (Feng et al., 2014; Wang et al., 2018; Feng et al.,

2020; Li et al., 2021; Liu et al., 2021).

Human malaria, one of the most lethal infectious diseases

responsible for high morbidity and mortality (Dos-Santos et al.,

2014; Phillips et al., 2017; Ashley et al., 2018; Chaves et al., 2020),

is characterized by circulatory inflammatory events and

impairment of the microvascular endothelium (Burté et al.,

2013; Morrell, 2014; O’Sullivan and O’Donnell, 2018; Erice

and Kain, 2019; Knackstedt et al., 2019; Yeo et al., 2019; Mita

Mendoza et al., 2020; Neida, 2020; Vasquez et al., 2021). The

pathogenesis of malaria is multifactorial and driven

predominantly by parasite biomass and modulation by host

innate and adaptive immune responses (Yeo et al., 2008; Barber

et al., 2015; Barber et al., 2017; Kho et al., 2018; Cao and Vickers,

2021; Dassah et al., 2022). During infection, red blood cells are

invaded by merozoites, which grow and develop by schizogony,

generating more merozoites during the intraerythrocytic

developmental cycle. These merozoites undergo multiple

successive rounds of cell division and are released into the

blood stream with their metabolites. This triggers the host

complex immune response and disrupts the intracellular

environment. Immune cell activation triggers host defense,

which limits pathogen spread at the site of infection (Vaid,

2010; Miller et al., 2013; Morrell et al., 2014; Niang et al., 2014;

Phillips et al., 2017; Mather and Ke, 2018). Host defense to

malaria includes a cascade of pathways that are modulated by

hundreds of immune modulatory molecules (Miller et al., 2013;

Niang et al., 2014; Gramaglia et al., 2017; Phillips et al., 2017).

Many of these molecules promote vasculature occlusion for

inducing inflammation and endothelial cell activation and

induce acute-phase responses to prevent the spread of malaria.

Routine laboratory results indicate liver and kidney dysfunction

(Nieman et al., 2009; Nantakomol et al., 2011; Mita-Mendoza

et al., 2013; Mangal et al., 2017; Cheaveau et al., 2019; Dinkar

et al., 2020; Khrapunov et al., 2021; Tona Lutete et al., 2021;
Frontiers in Cellular and Infection Microbiology 02
Megabiaw et al., 2022), and in some cases, abnormal myocardial

enzyme is reported (Herr et al., 2011; Dinkar et al., 2020; Kaiser

et al., 2020).

This study aimed to investigate the biochemical characteristics

of 170patientswith importedmalaria treatedwithcurative intent in

the Fourth People’s Hospital of Nanning using a population-based

retrospective cohort.

Materials and methods

Study design and participants

In this retrospective study, data were collected and analyzed

prospectively from patients with confirmed malaria infection and

admitted to the Fourth People’s Hospital of Nanning between 1

January 2011 and 31 May 2022. Only patients with imported

malaria were enrolled in this study. Inclusion criteria were as

follows: (і) patients with diagnosis of imported malaria, (ii)

patients admitted to the hospital within 3 h of onset, and (iii)

patients hospitalized with up to three consecutive blood smears

being negative with each measurement spaced 24 h, or the

disappearance of all clinical evidence of malaria for a minimum

of 3 days with no persisting clinical signs and symptoms related to

thedisease. Importedmalaria casesweredefinedas follows: patients

received a diagnosis of malaria, patients had a travel history to a

malaria-endemic area, and the onset of symptoms in patients is less

than 1 month after returning to China.

Blood samples for microscopic examination and clinical

chemistry measurements were collected at the same time, and

each collection for microscope examination and clinical chemistry

measurementwas spaced 24–48 h. Blood samples were centrifuged

before routine biochemical tests; biochemical assays were

performed using an automatic biochemical analyzer (Roche

Modular PPE and Hitachi LABOSPECT 008 AS). Laboratory

diagnosis of malaria infection was based on the microscopic

examination of Giemsa-stained thin and thick blood smears with

confirmed malaria parasites. Additionally, the species of the

infecting parasite was confirmed using nested PCR assays.

This study was conducted in accordance with the guidelines

of the Declaration of Helsinki and approved by the ethics

committee of the Fourth People’s Hospital of Nanning (Nos.

[2019]39, [2020]24, and [2021]23).

Data collection

Patient information, including demographics, epidemiological

data, comorbidities, symptoms, laboratory results, and treatment

measures, was collected from their electronic medical records. A

power analysis was conducted that revealed that a cohort of 170

patients was necessary to achieve more than 80% power based on

the primary outcome measure with minimum reference interval.
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Statistical analysis

Normally distributed continuous variables are presented as

means and standard deviations (SDs), and non-normally

distributed variables are presented as medians and interquartile

ranges. Categorical variables are presented as counts (%). The

means of continuous variables were compared using independent-

samples t-tests for normally distributed data, and for other

variables, the Mann–Whitney U-test was used. Survival analysis

was performed using the Kaplan–Meier survival and Cox model

analyses. Statistical analyses were conducted using GraphPad

Prism software (version 8.0) and MedCalc statistical software

(version 15.8). For all statistical tests, p< 0.05 was considered to

indicate statistical significance.
Results

Baseline clinical characteristics

Figure 1 presents a flow diagram of the inclusion and

exclusion criteria of this study. Demographic, comorbidity,

prior malaria history, and treatment variables for patients with

imported malaria are summarize in Table 1. During the study

period, 170 patients with confirmed imported malaria were

tested for all indices of serum biochemistry (Table 2). Of the

participants, 95% were male individuals, and 56 participants

(33%) were diagnosed with severe malaria. The criteria for

severe malaria are presented in Table 3. The results of the

analysis of epidemiological data showed that more than 90%

cases had recent history of working in an endemic area,

primarily in Africa such as Ethiopia, Ghana, and Angola, and
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more than 70% cases had history of malaria. However, more

than 98% cases had history of consuming prophylactic

medication with antimalarials.
Laboratory findings

The results of this study suggest that the majority of

biochemical outcomes were within the reference range.

Moreover, the levels of lactate dehydrogenase, ferritin,

adenosine deaminase, and hydroxybutyrate dehydrogenase were

observed to be higher than the reference ranges, whereas a slight

decrease in the serum calcium ion concentration was observed.

Furthermore, ferritin, a unique biochemical parameter, was

elevated in all patients with imported malaria (Table 2).
Factors associated with severe malaria in
patients with imported malaria

As compared with patients with uncomplicated malaria, the

patients with severe malaria had significantly different levels of

adenosine deaminase (odds ratio [OR] = 1.0088, 95% CI: 1.0010–

1.0167, p = 0.0272), creatine kinase isotype MB (OR = 1.0393, 95%

CI: 0.9993–1.0809, p = 0.0500), direct bilirubin (OR = 1.0278, 95%

CI: 1.0028–1.0535, p = 0.0293), a-hydroxybutyrate dehydrogenase
(OR = 1.0039, 95% CI: 1.0009–1.0069, p = 0.0104), lactate

dehydrogenase (OR = 1.0035, 95% CI: 1.0012–1.0058, p =

0.0029), urea (OR = 1.1121, 95% CI: 1.0002–1.2366, p = 0.0495),

albumin (OR = 0.9379, 95% CI: 0.8887–0.9897, p = 0.01954), and

blood calcium (OR = 0.0697, 95% CI: 0.0074–0.6563, p = 0.01999).

A multivariable logistic regression model identified adenosine
FIGURE 1

Flow diagram of the patients included in this study.
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deaminase (OR = 1.0115, 95% CI: 1.0030–1.0201, p = 0.0080) and

parasitemia (OR = 2.0700, 95% CI: 1.2584–3.4050, p = 0.0042) as

factors associated with severe malaria. The fitting equation is

expressed as Equation 1 below:

P = 1= 1 + Exp½ − ( − 2:8858 + 0:0114� ADA + 0:7275� Parasitemia)f �g

p = 0:0007, DdfF = 2, Cox  Snell R2 = 0:1866 (Equation 1)

where ADA is blood adenosine deaminase (U/L),

Parasitemia is blood parasitemia (/μl), and df is the degrees

of freedom.
Factors associated with duration of
parasite clearance

Analysis of parasite clearance risk was performed by using the

Coxproportional hazardsmodel (Figure 2). Patientswith ahigh level

of urea needed longer duration for parasite clearance than thosewith

a normal level of urea (median duration: 8 days, 95% CI: 6–14 vs. 6

days, 95%CI: 5–8; p< 0.0001). Thus, urea levels were associated with

risk for longer parasite clearance duration (hazard ratio [HR] =

0.5108, 95% CI: 0.3533–0.7386). Patients with a high level of

creatinine needed a longer duration for parasite clearance (median

duration: 7days, 95%CI: 5–8 vs. 6 days, 95%CI: 4–7;p=0.0063) than

that of patientswhohad anormal level of creatinine. Thus, creatinine
Frontiers in Cellular and Infection Microbiology 04
levels were associated with the risk of a longer length of parasite

clearance (HR = 0.6930, 95% CI: 0.4943–0.9718). As compared with

patients with normal levels of creatine kinase isoenzyme-MB,

patients with higher levels of creatine kinase isoenzyme-MB had a

longer duration of parasite clearance (median duration: 8 days, 95%

CI: 5–9 vs. 6 days, 95% CI: 5–8; p = 0.0185). Thus, creatine kinase

levels were associated with the risk of a longer length of parasite

clearance (HR = 0.6639, 95% CI: 0.4543–0.9702). Patients with a

higher ratio of aspartate aminotransferase to alanine

aminotransferase had a longer duration of parasite clearance

(median duration: 8 days, 95% CI: 6–9 vs. 7 days, 95% CI: 5–8; p =

0.0050) than that of patients with imported malaria with a normal

level of the ratio of aspartate aminotransferase to alanine

aminotransferase. Thus, the ratio of aspartate aminotransferase to

alanine aminotransferase was associated with the risk of a longer

length of parasite clearance (HR = 0.6016, 95% CI: 0.4055–0.8925).

However, patients with a low level of albumin had a longer length of

parasite clearance (median duration: 7 days, 95% CI: 5–9 vs. 6 days,

95% CI: 5–8; p = 0.0053) than those with a normal level of albumin.

Thus, albumin levelswere linkedwith ahigher riskof longerduration

ofparasite clearance (HR=0.6850, 95%CI: 0.4985–0.9314).Basedon

the Cox proportional model, patients with high parasitemia were

more likely to have a longer length of parasite clearance (median

duration: 7days, 95%CI: 7–8 vs. 4 days, 95%CI: 4–5;p=0.0430) than

those with low parasitemia. Thus, parasitemia was associated with a

higher risk of longer duration of parasite clearance (HR= 1.364, 95%

CI: 0.9557–1.947).

More analyses using variation of biochemical indices had been

conducted to examine the relationships of blood chemistrywith the

parasite’s clearance (Figure 3). Cox proportional hazard multiple

regression analysis suggested that patients with a high level of

variation for urea had a longer duration of parasite clearance than

thosewitha low level of variation for urea (medianduration: 7 days,

95% CI: 5–9 vs. 6 days, 95% CI: 5–8; p = 0.0182), and variation for

urea was associated with a higher risk of a longer length of parasite

clearance (HR = 0.6714, 95% CI: 0.4911–0.9180). Patients with a

high level of variation for creatinine had a longer duration of

parasite clearance (median duration: 8 days, 95% CI: 5–12 vs. 7

days, 95% CI: 5–8; p = 0.0444) than patients with a low level of

variation for creatinine, and variation for creatinine was associated

with a higher risk of a longer length of parasite clearance (HR =

0.4566, 95% CI: 0.2762–0.7548). As compared with patients with a

low-level variation of albumin, patients with a high-level variation

of albumin had a longer duration of parasite clearance (median

duration: 7 days, 95% CI: 5–9 vs. 6 days, 95% CI: 5–8; p = 0.0285),

and albumin levels were associated with a higher risk of a longer

length of parasite clearance (HR = 0.4947, 95%CI: 0.3197–0.7653).

Patients with a high-level variation of a-hydroxybutyrate
dehydrogenase had a longer duration of parasite clearance

(median duration: 7 days, 95% CI: 5–8 vs. 6 days, 95% CI: 5–7; p

= 0.0357) than patients with imported malaria with a low level of
frontiersin.or
TABLE 1 Demographics and baseline characteristics of patients with
imported malaria.

Parameter Uncomplicated
malaria(n = 114)

Severe malaria
(n = 56)

p-
value

Sex

Women 4 3 0.6853

Men 110 53

Age (years) 38 (30–45) 40 (33–46) 0.4421

Occupation

Worker 105 55 0.1682

Visitor 4 1 0.2177

Traveler 4 0 >0.9999

Student 1 0 >0.9999

Comorbidities

Hepatitis B
virus

2 0 >0.9999

COVID-19 1 0 >0.9999

Diabetes 2 0 >0.9999

History of
malaria

77 38 >0.9999

History of
treatment

111 47 >0.9999
Age is in median (IQR), the rest are n. p-value was calculated using Fisher’s exact test.
g
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variation for a-hydroxybutyrate dehydrogenase, and variation for

a-hydroxybutyrate dehydrogenase levels was associated with a

higher risk of a longer length of parasite clearance (HR = 0.6129,

95% CI: 0.3995–0.9402). Patients with a high level of variation for

ferritin had a longer length of parasite clearance (median duration:
Frontiers in Cellular and Infection Microbiology 05
7 days, 95%CI: 6–8 vs. 6 days, 95%CI: 4–8;p=0.0211) as compared

with thosewhohad a low level of variation for ferritin, and variation

for the ferritin level was associated with a higher risk of longer

duration of parasite clearance (HR = 0.5887, 95% CI: 0.3799–

0.9125). A multivariable model based on the variation and the
TABLE 3 Predefined criteria for severe malaria.

Criteria

1: Cerebral malaria Symptoms included coma, headache, convulsions

2: Shock Systolic blood pressure of less than 70 mm Hg

3: Acute renal failure 24-h urine volume of less than 400 ml or serum creatinine concentration of less than 265 μmol/L

4: Hemoglobinuria Positive urine occult blood

5: Pulmonary edema or
acute respiratory distress
syndrome

Tachypnea, dyspnea, water-bubbling sound

6: Jaundice and liver
dysfunction

Direct bilirubin increased significantly

7: Severe anemia Hematocrit of less than 15% or hemoglobin of less than 50 g/L

8: Disseminated
intravascular coagulation

Platelets of less than 100×109/L, fibrinogen of less than 1.5 g/L, fibrin/fibrinogen degradation products of less than 20 mg/L or D-dimer
increased, prothrombin time lengthening and shortening of more than 3 s, or activated partial thromboplastin time lengthening of more
than 10 s

9: Severe hypoglycemia Blood glucose of less than 2.2 mmol/L

10: High parasitemia Erythrocytes infected by parasites of more than 5%, or Giemsa-stained blood smears of P. falciparum schizont stage parasites were
observed
Patients with malaria suffering from one or more of the following characteristics were defined as severe malaria.
TABLE 2 The biochemical results of patients with imported malaria.

Parameter Results Reference limits Ratio of abnormalities

Urea (mmol/L) 5.3 (4.5–6.5) 3.1–8.0 17%

Creatinine (μmol/L) 86.2 (76.3–98.6) 57.0–111.0 20%

Uric acid (μmol/L) 307.5 (243.3–372.3) 208.0–428.0 23%

Bicarbonate (mmol/L) 24.7 (22.3–26.5) 22.0–32.0 25%

Glucose (mmol/L) 6.1 (5.3–7.8) 3.89–6.11 37%

Creatine kinase isoenzyme-MB (U/L) 15.0 (12.0–20.0) 0.0–25.1 16%

Creatine kinase (U/L) 89.2 (49.7–183.0) 50.0–310.0 36%

Lactate dehydrogenase (U/L) 283.0 (221.5–363.0) 120.0–250.0 61%

Aspartate aminotransferase (U/L) 25.0 (19.0–38.2) 0.0–40.0 22%

Alanine aminotransferase (U/L) 25.0 (18.4–44.0) 0.0–40.0 29%

Total bilirubin (μmol/L) 21.0 (14.4–33.9) 0.0–26.0 38%

Direct bilirubin (μmol/L) 7.4 (4.9–14.1) 0.0–8.0 43%

Globin (g/L) 26.1 (22.4–29.9) 20.0–40.0 2%

Albumin (g/L) 38.9 (33.9–42.8) 35.0–52.0 31%

Ferritin (ng/ml) 800.5 (576.3–1158.0) 20.0–300.0 100%

Adenosine deaminase (U/L) 17.0 (13.0–27.2) 0.0–10.0 87%

Hydroxybutyrate dehydrogenase (U/L) 225.0 (179.0–297.0) 72.0–182.0 74%

Ca2+ (mmol/L) 2.1 (2.0–2.2) 2.11–2.52 42%

Blood amylase (U/L) 45.8 (28.5–63.1) 35.0–135.0 29%

Glucose-6-phosphate dehydrogenase (U/L) 1858.0 (1529.0–2198.0) 1300.0–3000.0 20%
Data are median (IQR).
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fitting equation was expressed as Equation 2 below:

H tð Þ = H0(t)�

e−0:0225�DALB−0:0045�DCREA−0:0004�DFERR+0:0002�DGHB+0:0873�Par−0:1246�DUREA

p = 0:0212, chi − square = 13:241 (Equation 2)

where DALB is the variation of albumin (g/L), DCREA is the

variation of creatinine (μmol/L), DFERR is the variation of ferritin
Frontiers in Cellular and Infection Microbiology 06
(ng/ml),DGHBis thevariationofa-hydroxybutyratedehydrogenase
(U/L), Par is parasitemia (μl), and DUREA is the variation of urea

(mmol/L).
Discussion

In this study, biochemical parameters in imported malaria

cases were evaluated, and most of these indicators were found to
B

C D

E F

A

FIGURE 2

Comparison of survival curves using the log-rank test. (A) Serum higher levels of UREA versus within the normal reference range. (B) of CREA
versus within the normal reference range. (C) Serum higher levels of CK-MB versus within the normal reference range. (D) Serum lower levels of
ALB versus within the normal reference range. (E) Serum higher levels of AST/ALT versus within the normal reference range. (F) Higher
parasitemia versus lower parasitemia. Blue lines show patients with a shorter duration of parasite clearance; red lines show patients with a
longer duration of parasite clearance. Duration is indicated in days. CREA, creatinine; CK-MB, creatine kinase isoenzyme-MB; ALB, albumin; AST/
ALT, aspartate aminotransferase-to-alanine aminotransferase ratio.
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be associated with the severity of the malaria infection.

Consistent with previous studies of different biochemical

indicators, we found that most parameters in imported

malaria are of high abundance, although the opposite is true

for a few measurements, and these measures are associated with

parasite clearance. Some biochemical parameters were not

associated with parasite clearance; however, a high-level

variation of these indices is significantly correlated with a
Frontiers in Cellular and Infection Microbiology 07
longer duration of parasite clearance. Furthermore, a 0.25–1.0

SD increase or decrease of these indicators is associated with a

higher risk of a longer length of parasite clearance.

Ferritin, an acute-phase protein in inflammatory responses

of various kinds (Damron et al., 2016; Leligdowicz et al., 2021), is

the main intracellular iron storage protein in mammals (Li et al.,

2012; Truman-Rosentsvit et al., 2018; Fang et al., 2021), plants

(Li et al., 2012; Truman-Rosentsvit et al., 2018), and bacteria (Li
B

C D

E F

A

FIGURE 3

Comparison of survival curves using the log-rank test. (A) The variation for UREA ≥ 0.5 SD versus< 0.5 SD. (B) The change for CREA ≥ 0.5 SD versus<
0.5 SD. (C) The change for ALB ≥ 0.25 SD versus< 0.25 SD. (D) The change for GHB ≥ 0.25 SD versus< 0.25 SD. (E) The change for FERR ≥ 1.0 SD
versus< 1.0 SD. (F) The variation for GLO ≥ 0.5 SD versus< 0.5 SD. Blue lines show patients with a shorter duration of parasite clearance; red lines show
patients with a longer duration of parasite clearance. Duration is indicated in days. SD, standard deviation; GHB, g-hydroxybutyrate dehydrogenase;
FERR, ferritin; GLO, globin.
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et al., 2012; Bauckman and Mysorekar, 2016; Truman-

Rosentsvit et al., 2018). Moreover, the serum levels of ferritin

are strongly associated with infective and non-infective

inflammatory conditions (Gabay, 1999; Burté et al., 2013).

This study indicated that serum ferritin concentrations did not

correlate significantly with parasite clearance, although they

were elevated in all patients. Conventionally, serum ferritin

has been used as the key iron marker as it reflects the total

body iron storage. However, ferritin is also an acute phase

protein, so in an acute inflammatory situation, such as during

malaria, serum ferritin levels may not accurately reflect body

iron stores only. However, a 1-SD increase of variation for serum

ferritin levels was associated with a higher risk of duration for

parasite clearance, a 1-SD variation of which associates very

strongly with malaria parasitemia. Our observations for ferritin

are consistent with the findings of previous studies that

positively correlated elevated ferritin with the increased risk of

malaria parasitemia (Wessells et al., 2017).

In contrast to an increase in the liver enzyme that was

observed in previous studies, we observed no elevation of liver

enzyme in this study (Viriyavejakul et al., 2014; Rocha et al.,

2015; Dinkar et al., 2020; Megabiaw et al., 2022); however,

abnormalities in the ratio of aspartate aminotransferase to

alanine aminotransferase were observed in 43% of the patients,

and higher ratios of aspartate aminotransferase to alanine

aminotransferase were significantly associated with malaria

parasitemia. The liver enzyme profiles are distinct from prior

studies (Viriyavejakul et al., 2014; Dinkar et al., 2020; Megabiaw

et al., 2022). Based on the findings on the clinical history of prior

prophylactic administration, we speculate that adherence to

prophylactic treatment with antimalarial medications before

and after infection has a hepatoprotective role. Furthermore,

serum albumin values and a 0.25-SD increase of albumin were

associated with a significant increased risk of malaria

parasitemia. Thus, serum albumin could be a better prognostic

risk factor or biomarker for imported malaria than liver enzyme,

as abnormal liver function impaired synthesis and acute kidney

injury, resulting in an increased albuminuria (Viriyavejakul

et al., 2014; Doltario et al., 2016; Leopold et al., 2019; Dinkar

et al., 2020).

Multiple studies have shown that malaria is closely associated

with hemolysis-induced endothelial activation, resulting in acute

kidney injury (Sriboonvorakul et al., 2018; Brown et al., 2020; Kaur

et al., 2020; Ouma et al., 2020; Katsoulis et al., 2021). Consistent

with previous studies, an increase in the level of creatinine and urea

in serum was observed in the case of malaria (Sriboonvorakul et al.,

2018; Brown et al., 2020; Kaur et al., 2020; Ouma et al., 2020;

Katsoulis et al., 2021). Here, we have described that the plasma

levels of renal injury biomarkers correlated with the duration of

parasite clearance. Furthermore, in agreement with previous studies

of myocardial injury in malaria patients (Dinkar et al., 2020; Watts
Frontiers in Cellular and Infection Microbiology 08
et al., 2020), we found that most cardiac enzymes in human normal

and lactate dehydrogenase increased in malarial infection, with no

significant association between lactate dehydrogenase and the

duration of parasite clearance. However, the serum levels of

creatine kinase isoenzyme-MB, but not creatine kinase isoenzyme,

showed a significant association with the duration of parasite

clearance. Furthermore, this study provides the first description of

a statistically significant association between hydroxybutyrate

dehydrogenase and the duration of parasite clearance.
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