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Drug resistance in Plasmodium falciparum compromises the effectiveness of

antimalarial therapy. This study aimed to evaluate the extent of drug resistance

in parasites obtained from international travelers returning fromGhana to guide

the management of malaria cases. Eighty-two clinical parasite isolates were

obtained from patients returning from Ghana in 2016–2018, of which 29 were

adapted to continuous in vitro culture. Their geometric mean IC50 values to a

panel of 11 antimalarial drugs, assessed using the standard SYBR Green-I drug

sensitivity assay, were 2.1, 3.8, 1.0, 2.7, 17.2, 4.6, 8.3, 8.3, 19.6, 55.1, and 11,555

nM for artemether, artesunate, dihydroartemisinin, lumefantrine, mefloquine,

piperaquine, naphthoquine, pyronaridine, chloroquine, quinine, and

pyrimethamine, respectively. Except for chloroquine and pyrimethamine, the

IC50 values for other tested drugs were below the resistance threshold. The

mean ring-stage survival assay value was 0.8%, with four isolates exceeding 1%.

The mean piperaquine survival assay value was 2.1%, all below 10%. Mutations

associated with chloroquine resistance (pfcrt K76T and pfmdr1 N86Y) were

scarce, consistent with the discontinuation of chloroquine a decade ago.

Instead, the pfmdr1 86N-184F-1246D haplotype was predominant,

suggesting selection by the extensive use of artemether-lumefantrine. No

mutations in the pfk13 propeller domain were detected. The pfdhfr/pfdhps

quadruple mutant IRNGK associated with resistance to sulfadoxine-
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pyrimethamine reached an 82% prevalence. In addition, five isolates had pfgch1

gene amplification but, intriguingly, increased susceptibil it ies to

pyrimethamine. This study showed that parasites originating from Ghana

were susceptible to artemisinins and the partner drugs of artemisinin-based

combination therapies. Genotyping drug resistance genes identified the

signature of selection by artemether-lumefantrine. Parasites showed

substantial levels of resistance to the antifolate drugs. Continuous resistance

surveillance is necessary to guide timely changes in drug policy.
KEYWORDS

malaria parasite, in vitro assay, ring survival assay, West Africa, genetic polymorphism,
drug resistance
Introduction

According to the World Malaria Report 2021, there were 241

million malaria cases in 2020, resulting in ~627,000 deaths, a 12%

increase compared with 2019 (WHO, 2021). Antimalarial therapy

is one of the most important pillars of malaria control (WHO,

2015). The widespread resistance to chloroquine (CQ) and later to

the antifolate drugs sulfadoxine-pyrimethamine (SP) led to the

worldwide adoption of artemisinin (ART)-based combination

treatments (ACTs) as the first-line treatment of uncomplicated P.

falciparum malaria in the early 2000s (Ashley and White, 2005).

However, ART resistance emerged a decade ago in the Greater

Mekong Subregion of Southeast Asia (Noedl et al., 2008; Dondorp

et al., 2009;Amaratungaet al., 2012;Ashley et al., 2014) and recently

in East Africa (Uwimana et al., 2020; Balikagala et al., 2021;

Uwimana et al., 2021; Straimer et al., 2022) is of significant

concern. In Southeast Asia, the development of resistance to the

ACT partner drugs mefloquine and piperaquine (PPQ) resulted in

high failure rates of twofirst-lineACTs (Saunders et al., 2014; Leang

et al., 2015; Spring et al., 2015; Amaratunga et al., 2016). With the

increasing drug selection pressure due to the widespread use of

ACTs, resistancemonitoring is paramount to safeguard the efficacy

of our last-line defense against drug-resistant P. falciparum.

Antimalarial drug resistance is typically monitored by

determining the in vivo therapeutic efficacy, in vitro/ex vivo drug

sensitivity, and molecular markers of resistance (Conrad and

Rosenthal, 2019). In vitro drug assays are not influenced by host

factors such as immunity and allow the detection of reduced

susceptibility of P. falciparum to antimalarial drugs, which may

be the harbinger of clinical resistance (Ataide et al., 2017).

Understanding resistance mechanisms for some antimalarials

provides resistance markers for molecular surveillance (Cui et al.,

2015; Siddiqui et al., 2021). The P. falciparum CQ resistance

transporter (pfcrt) K76T mutation is the key determinant of CQ

resistance (Fidock et al., 2000; Sidhu et al., 2002). Pfcrt mutations

also confer resistance to other 4-aminoquinolines such as
02
amodiaquine (AQ) and PPQ (Duru et al., 2015; Agrawal et al.,

2017; Ross et al., 2018; Wicht et al., 2020). Pfmdr1 point mutations

or gene amplification alter the parasite’s sensitivity to multiple

drugs (Koenderink et al., 2010). The common N86Y and D1246Y

mutations in Africa are linked to resistance to CQ and AQ, but

increased sensitivity to lumefantrine (LMF),mefloquine, andARTs

(Duraisingh et al., 2000a;Duraisingh et al., 2000b; Reed et al., 2000).

Pointmutations in the dihydrofolate reductase gene (dhfr) (S108N,

N51I, and C59R) and the dihydropteroate synthetase gene (dhps)

(S436A, A437G, K540E, A581G, and S436F) are associated with

resistance to pyrimethamine and sulfadoxine, respectively

(Gregson and Plowe, 2005). In addition, the increased copy

number of the GTP cyclohydrolase 1 (gch1), encoding the first

and rate-limiting enzyme in the folate biosynthesis pathway, has

been linked to SP resistance in Southeast Asia (Nair et al., 2008).

Clinical ART resistance is manifested as delayed parasite clearance

(Amaratungaet al., 2012;Phyoet al., 2012;Ashley et al., 2014) and is

causally linked to mutations in the propeller domain of the Kelch

protein PfK13 (Ariey et al., 2014). Due to divergent antimalarial

drug histories and epidemiology, drug resistance in parasite

populations from different continents varies significantly. Even in

theAfricanheartland ofmalaria transmission, drug resistance has a

high degree of heterogeneity across different geographical locations

(Conrad and Rosenthal, 2019). Hard evidence documenting the

intercontinental introduction and spread of drug-resistant

parasites reminds us of the significance of continued surveillance

for antimalarial drug resistance in sentinel sites of Africa (Wootton

et al., 2002; Roper et al., 2004).

With about five million malaria cases in 2020, Ghana

ranked among the top 11 highest-burden countries (WHO,

2021). In 2005, CQ use in Ghana was discontinued, and

artesunate-amodiaquine (AS-AQ) was introduced as the first-

line treatment, followed by the introduction of AL and

dihydroartemisinin-piperaquine (DHA-PPQ) in 2008 (Abuaku

et al., 2012). Even though longitudinal follow-ups of the clinical

efficacy of ACTs showed that all remain highly efficacious in
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Ghana (Abuaku et al., 2016; Abuaku et al., 2017; Abuaku et al.,

2019), molecular surveillance in Ghana showed the emergence of

pfk13 mutations, some of which have been validated to drive

ART resistance in vitro (WHO, 2019a). In recent years, Ghana

has been a major source of imported malaria cases in China,

accounting for 99.7% and 58% of imported malaria cases in

Shanglin County, Guangxi, in 2013 and 2016-2017, respectively

(Li et al., 2015; Liu et al., 2021). Thus, resistance monitoring is

critical to ensure high treatment efficacy and prevent local

transmission in the recently declared malaria-free region.

In this study, we established long-term in vitro cultures of

parasites obtained from travelers returning from Ghana. We

profiled the in vitro susceptibilities of the parasite isolates to a

panel of 11 antimalarial drugs.We also genotyped genes associated

withdrug resistance inorder toobtain complementary information

about the situation of drug resistance in the study parasite

population, which will guide the local drug policy.
Material and methods

Ethical statement

This study was approved by the Institutional Review Board

of Shanglin Hospital. Written informed consent was obtained

from all volunteers.
Parasite isolates

Patients with malaria symptoms attending the Guangxi

Shanglin Hospital from 2016 to 2018, who were Chinese

migrant workers that had returned from Ghana, were

subjected to malaria diagnosis by microscopy using Giemsa-

stained thick and thin blood smears. Patients with

uncomplicated P. falciparum malaria were invited to donate 2-

3 mL of venous blood. Those with complex travel histories to

other countries besides Ghana and those who used antimalarial

drugs in the previous month were excluded from the study. The

blood samples in tubes with sodium citrate as the anticoagulant

were transported at 4°C to the laboratory for culture adaptation.
Culturing clinical P. falciparum isolates

The blood samples were centrifuged briefly to remove the

plasma, and cell pellets were washed three times with incomplete

RPMI 1640 medium buffered with 25 mM of HEPES (5.95 g/L),

followed by centrifugation at 2000 rpm for 5 min to remove

white blood cells. The pellet was resuspended in 10 mL of

complete medium containing RPMI 1640, 2% normal human

serum, 24 mM NaHCO3, 0.1 mM hypoxanthine, and 0.5%

AlbuMAX II to produce a hematocrit of 5%, and transferred
Frontiers in Cellular and Infection Microbiology 03
into T25 culture flasks. Parasites were cultured at 37°C in a gas

mixture of 5.5% CO2, 2% O2, and 92.5% N2 (Trager and Jensen,

1976; Maier and Rug, 2013). Culture media were changed every

other day, and the parasite cultures were examined by

microscopy daily to observe P. falciparum growth. On average,

parasites were cultured for four-six weeks before drug assays

were performed.
In vitro drug assays

The antimalarial drugs used in this study included DHA,

artemether (AM), AS, mefloquine, LMF, PPQ, pyronaridine,

naphthoquine, pyrimethamine, and quinine. Mefloquine,

pyronaridine, quinine, pyrimethamine and CQ were obtained

from Sigma (St. Louis, USA); PPQ was obtained from Kangle

Pharmaceutical Co., Ltd (Chongqing, China); DHA, AM, AS and

naphthoquine were obtained from Kunming Pharmaceutical

(Kunming, China), while LMF was obtained from Shanghai

Macklin Biochemical Co., Ltd (Shanghai, China). To prepare

stock drug solutions, DHA, AM, AS, LMF, mefloquine, and

quinine were dissolved in absolute ethanol, and CQ,

naphthoquine, and pyronaridine were dissolved in water.

Pyrimethamine was dissolved in 1% acetic acid, while PPQ was

prepared in 0.5% lactic acid and further diluted in water to achieve a

stock solution of 320 µM. All stock solutions were stored as aliquots

at -80°C. Parasites were synchronized with 5% D-sorbitol (Lambros

and Vanderberg, 1979), and drug susceptibility was determined

using the standard 72 h SYBR Green I-based method (Smilkstein

et al., 2004). Drug stocks were first diluted in the complete medium

and added to 96-well plates at the starting concentration of 100 nM

for DHA, AM, and AS, 64 nM for LMF, PPQ, and naphthoquine,

640 nM for quinine, 256 nM for mefloquine, 7.5 mM for CQ, 160

nM for pyronaridine, and 750 mM for pyrimethamine, which were

serially diluted. Drug assays were conducted with synchronized

ring-stage parasites 2% hematocrit and 0.5% parasitemia at 37°C for

72 h. Then the plates were placed in a -80°C freezer for 30 min and

thawed at room temperature. After adding 100 µL lysis solution

containing 0.02% SYBR Green I (0.2 µL/mL) into each well, the

plates were incubated at 37°C in the dark for 45–60 min. The plates

were read with a microplate reader with excitation and emission

wavelengths set at 485 and 530 nm, respectively. The half-maximal

inhibitory concentration (IC50) of each drug was estimated using a

non-linear regression model implemented in GraphPad Prism 6.

Ring survival assay (RSA) was performed using an

established method (Witkowski et al., 2013; Wang et al., 2018).

Briefly, tightly synchronized early ring-stage parasites (0-3 h)

were treated with 700 nM of DHA or the same concentration of

solvent (ethanol) for 6 h. After the drug was washed off with

RPMI 1640, the parasites were cultured under standard culture

conditions for 66 h. Then the surviving parasites were counted

by microscopy of Giemsa-stained thin smears, with 10000 RBCs

counted on each slide. The ring-stage parasite survival rates were
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determined by comparing surviving parasites in DHA-treated

with those in vehicle-treated wells.

In addition to the standard 72 h drug assay, susceptibility of

the parasites to PPQ was also measured using the PPQ survival

assay (PSA) (Duru et al., 2015). Briefly, synchronized early rings

(0-3 h) were adjusted to 0.5% parasitemia and exposed to 200

nM PPQ or a drug-free medium for 48 h. Then PPQ was washed

off, and the parasites were cultured for an additional 24 h.

Parasite survival rates were calculated by microscopically

examining Giemsa-stained thin smears, with 20000 RBCs

counted for each group (Witkowski et al., 2017).

The laboratory strain 3D7 was included as an internal

reference for all the drug assays mentioned above. Three

biological replicates and three technical replicates were

performed for each parasite isolate.
DNA extraction and sequencing of genes
associated with drug resistance

DNA was extracted from the cultured parasites using QIAmp

96 DNA kit (QIAGEN, Valencia, CA, USA). Parasites were first

genotyped at themerozoite surface protein 1 (msp1) andmsp2 genes

to determine whether the isolates were monoclonal infections

(Yuan et al., 2013). Parasite DNA was used to amplify two

fragments of the pfmdr1 gene covering codons 86, 89, 184, 1226,

and 1246, a pfdhfr fragment covering codons 51, 59, 108, and 164, a

pfcrt fragment covering codons 72-76, and full-length pfk13 gene

(Zhao et al., 2021). Primers used are shown in Table S1. PCR

products were purified using the EZNAGel Extraction Kit (Omega

Bio-Tek, USA) and sequenced for all strands using the Sanger

sequencingmethod by SangonBiotechCo. Ltd. (Kunming, China).

Sequence alignments and analysis were carried out using BioEdit

software 7.0. The sequences were aligned with the 3D7 sequence

retrieved from PlasmoDB as the reference.
Quantification of gch1 gene
copy number

The copy number of the pfgch1 gene was determined using a

SYBR Green I-based real-time PCR method using the pfgch1

primers (Table S1) and cycling conditions described previously

(Osei et al., 2018). Reference samples (Dd2 and 3D7) with known

pfgch1 copy numbers and non-template negative controls were

included in each run. The DDCt formula (2-DDCt) was used to

estimate the relative copy numbers (Livak and Schmittgen, 2001).
Statistical analysis

For normally distributed IC50 data, geometric mean and

standard deviation (SD) were calculated, whereas median and
Frontiers in Cellular and Infection Microbiology 04
interquartile range (IQR) were determined for not normally

distributed data. We used t-test and Mann-Whitney U test to

compare data between two groups. A P value of less than 0.05 was

considered statistically significant. Correlations between the IC50s

of drugs were determined using Spearman’s test in the R package.
Results

In vitro drug susceptibility

We collected 82 clinical samples frommalaria patients with a

recent travel history to Ghana and successfully adapted 29

isolates to long-term in vitro culture. Genotyping at the msp1

and msp2 loci showed that all 29 isolates were monoclonal

infections. Using the SYBR Green I assay, we profiled their in

vitro sensitivities to 11 antimalarial drugs (Table 1). To make our

study comparable to other in vitro drug susceptibility studies, we

included the laboratory reference strain 3D7, the most widely

used internal standard in the drug assays. In this study, the IC50

values of the 3D7 strain to the 11 test drugs were similar to those

reported in other studies (Hao et al., 2013; Zhang et al., 2019;

Wang et al., 2020). While ACTs were introduced as the first-line

treatment over ten years ago, parasites were susceptible to the

ART derivatives, with geometric mean IC50 values of 3.8, 2.1,

and 1.0 nM for AS, AM, and DHA, respectively. The scatter plot

also showed a relatively narrow distribution of the IC50 values of

the field isolates to ART drugs (Figure 1). Compared to the

reference strain 3D7, the clinical isolates only showed a

significantly higher IC50 value for DHA (P = 0.0045). We also

measured the sensitivity of the parasite isolates to DHA using

RSA, with resistance defined as the RSA value exceeding 1%

(Witkowski et al., 2013). While the field parasites were overall

sensitive with a mean RSA value of 0.8%, four isolates had RSA

values marginally higher than 1% (Figure 1).

Five drugs tested are ACT partner drugs; AL and DHA-PPQ

have been deployed in Ghana. The field isolates were relatively

susceptible to these drugs, with IC50 values of 2.7, 4.6, 17.2, 8.3, and

8.3 nM for LMF, PPQ, mefloquine, naphthoquine, and

pyronaridine, respectively (Table 1). The scatter plot showed that

IC50 values for these drugs were all clustered in a relatively narrow

range, with the least andmost susceptible parasite isolates differing

by less than seven-folds (when one outlier for LMF was excluded).

Formefloquine, none of the isolates had IC50 values higher than the

30 nM cutoff used to definemefloquine resistance (Ringwald et al.,

1996). For other drugs, the thresholds for resistance were not

available. We also analyzed PPQ susceptibility using PSA, which

uses 10% as the threshold for definingPPQ resistance. Our analysis

indicated that all parasite isolateswere sensitive toPPQ(Duru et al.,

2015), with PSA ranging between 1.3 and 3.8% (Table 1, Figure 1).

Several antimalarials, including CQ, quinine, and

antifolates, were previously heavily deployed in Ghana.

Antifolates are still used for intermittent preventive treatment
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in pregnancy (IPTp) and seasonal malaria chemoprevention

(SMC) in children. For CQ, 90% (26/29) of the isolates were

considered susceptible, with IC50 values below 25 nM. Only one

isolate was highly resistant (IC50 ≥ 100 nM), while two isolates

were modestly resistant (25 nM ≤ IC50 < 100 nM) (Table 1,

Figure 1). The geometric mean for quinine was 55.1 nM,

significantly lower than that for the 3D7 strain and far below

the 600 nM arbitrarily-defined threshold for resistance

(Ringwald et al., 1996). For the antifolate drug pyrimethamine,

two phenotypically divergent groups of isolates were identified.

One group consisting of five isolates had IC50 values (39.1-62.2
Frontiers in Cellular and Infection Microbiology 05
nM) clustering near the IC50 value for 3D7 (55.4 nM), whereas

the rest of the isolates all were highly resistant to pyrimethamine,

with IC50 values ranging from 908 to 31,407 nM (Figure 1).
Correlations between drugs

Positive correlations between in vitro susceptibilities to two

individual drugs imply cross resistance, suggesting a similar

mode of action and shared resistance mechanisms. To

determine the correlations between susceptibilities to
TABLE 1 In vitro susceptibilities (IC50 in nM) of culture-adapted field isolates from Ghana to 11 antimalarial drugs.

Drug 3D7 (Mean ± SD) Field isolates (n=29) P-value¶

Mean ± SD Range

Artemether 1.5 ± 0.2 1.6 (1.4-2.9)a 0.9-4.6 0.1208b

Artesunate 4.6 ± 0.5 3.8 ± 1.5 1.0-7.7 0.1853c

Dihydroartemisinin 0.6 ± 0.1 1.0 ± 0.4 0.4-2.1 0.0045c**

RSA(%)# 0.6 ± 0.1 0.8 ± 0.2 0.2-1.2 0.2395c

Lumefantrine 2.2 ± 0.3 2.7 ± 1.0 0.2-4.6 0.1923c

Mefloquine 22.0 ± 2.4 17.2 ± 4.4 6.9-25.2 0.0057c**

Piperaquine 5.8 ± 1.5 4.6 ± 1.2 2.1-7.2 0.2947c

PSA(%)# 1.2 ± 0.4 1.9 (1.6-2.4)a 1.3-3.8 0.0046b**

Naphthoquine 5.9 ± 0.7 7.6 (5.5-10.2)a 3.4-21.4 0.1532b

Pyronaridine 8.6 ± 1.7 8.3 ± 2.6 3.7-13.1 0.8109c

Chloroquine 15.2 ± 1.8 14.8 (13.3-18.1)a 9.4-115.9 0.8095b

Quinine 74.9 ± 4.5 55.1 ± 24.5 8.6-96.7 0.0313c*

Pyrimethamine 55.4 ± 5.0 7292 (1955-22814)a 39.1-31407 0.0015b**
fron
aData are not normally distributed and shown as median (IQR).
¶Statistical comparison between the field isolates and 3D7 was performed using Mann-Whitney U test (b) or t-test (c) * and ** indicate significance at P < 0.05 and P < 0.01, respectively.
#RSA and PSA values are percentages (%).
A B

FIGURE 1

In vitro susceptibility of P. falciparum isolates to antimalarial drugs. (A) IC50 values. Each point represents the results for a single isolate. Mean
IC50 values and SD are shown by the red horizontal bars. The red symbol represents the value of the laboratory strain 3D7. DHA,
dihydroartemisinin; AM, artemether; AS, artesunate; LMF, lumefantrine; MFQ, mefloquine; QN, quinine; PPQ, piperaquine; NQ, naphthoquine;
PND, pyronaridine; CQ, chloroquine; PY, pyrimethamine. (B) Piperaquine survival assay (PSA) and ring-stage survival assay (RSA).
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individual drugs, we made a pairwise comparison of the IC50

values (Figure 2). For the ART drugs, positive correlations were

identified for AM vs. DHA (r = 0.48, P < 0.01), AM vs. AS (r =

0.37, P < 0.05), DHA vs. LMF (r =0.46, P < 0.05), DHA vs.

pyronaridine (r =0.46, P < 0.05), and AS vs. pyronaridine (r =

0.43, P < 0.05). There were also positive correlations between

aminoalcohol drugs: LMF vs. quinine (r = 0.55, P < 0.01), and

quinine vs. mefloquine (r = 0.5, P < 0.01). In addition, CQ IC50s

were strongly correlated with the quinine IC50s (r = 0.59, P <

0.001) and weakly correlated with mefloquine IC50s (r = 0.38, P <

0.05). The two aminoquinoline drugs, naphthoquine and

pyronaridine, were also moderately correlated (r = 0.5, P < 0.01).
Polymorphisms in drug resistance genes

We determined key mutations in pfcrt, pfmdr1, pfk13, pfdhfr,

and pfdhps genes (Table 2). Only one parasite isolate had the

mutant haplotype CVIET at positions 74-76, consistent with the

rapid decline of the pfcrtmutant allele after the discontinuation of

CQ.Forpfmdr1, theN86YandD1246Ymutationswere at6.9%and

3.4%, respectively, whereas the Y184F mutation was highly

prevalent at 72.4%. The predominant 86/184/1246 haplotype is

NFD (69.1%), followed by the wild type (24.1%) (Table 3).

Sequencing of the two antifolate resistance genes showed

that the N51I, C59R, and S108N mutations in pfdhfr
Frontiers in Cellular and Infection Microbiology 06
approached fixation (93-100%), result ing in a high

prevalence of the triple mutation haplotype IRN (90%). The

A437G mutation in pfdhps was also prevalent (89.7%), while

S436A, A581G, and A613S/T were identified in the samples at

various levels. In contrast, no 164L and 540E mutations were

observed. The most predominant haplotypes SGAA and

AGAA at positions 436/437/581/613 were present at 41.4 and

37.9%, respectively (Table 3). The most prevalent combined

dhfr/dhps haplotypes are IRN-SGAA and IRN-AGAA,

occurring at 37.9 and 34.5%, respectively. The quintuple

dhfr/dhps mutation haplotype IRNGE at pfdhfr 51/59/108

and pfdhps 437/540 were not observed, given the lack of the

540E mutation in the study samples. Instead, the quadruple

mutation haplotype IRNG (51/59/108/437) reached a 37.9%

prevalence. Real-time PCR analysis of the pfgch1 gene copy

number detected five parasites (17.3%) with pfgch1

amplification, each having three copies of gch1 (Table S2).

Our analysis identified that 3D7 had 3.22 copies of the pfgch1

gene, similar to early reports (Nair et al., 2008; Heinberg et al.,

2013). All parasites with pfgch1 amplification carried the pfdhfr

IRN triple mutations and the pfdhps S436A mutation, while 4/5

parasites also had the pfdhps A437G mutation. One also had

the pfdhps A581G/A613S mutations.

Sequencing of the full-length pfk13 gene did not reveal any

mutations in the propeller domain. In contrast, the K189T/N

mutation reached a prevalence of 79.3%.
FIGURE 2

Correlation of in vitro susceptibility (IC50 values) of 29 parasite isolates to 11 antimalarial drugs analyzed by Spearman’s test. The magnitude and
direction of associations between IC50 values are indicated by color and values. The coefficients are shown below the diagonal, while statistical
significance is marked above the diagonal with *, **, and *** indicating significance at P < 0.05, < 0.01, and < 0.001, respectively. Drug
abbreviations are the same as in Figure 1.
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Association of polymorphisms with
altered drug susceptibilities

We compared mutations in the genes analyzed with altered

in vitro susceptibilities to the drugs tested. No differences were

observed in IC50 values of all tested drugs and the pfmdr1 184Y
Frontiers in Cellular and Infection Microbiology 07
and 184F alleles (P > 0.05) (Table S3). In addition, the K189T/N

mutations were not associated with IC50 changes to the three

ART derivatives or changes in the RSA value (Table S4).

We also compared the gch1 gene copy number with

susceptibility to pyrimethamine. Surprisingly, all five isolates

with multicopy gch1 were sensitive to pyrimethamine with IC50s

of 39.1-62.2 nM, which were not different from that for 3D7

(55.4 nM), but significantly lower than the mean pyrimethamine

IC50 value (13,951 nM) for isolates with a single pfgch1

copy (Figure 3).
Discussion

In vitro evaluation of susceptibility of malaria parasites to

antimalarial drugs and molecular surveillance of drug resistance

genes are complementary measures of in vivo therapeutic efficacy

studies. Not affected by host factors, these methods may help

identify earlier signs of resistance development before clinical

resistance emerges. Here we established 29 long-term cultures of

clinical isolates of P. falciparum originating from Ghana and

comprehensively assessed their in vitro susceptibilities to a panel

of 11 antimalarial drugs and genotyped five genes associated with

drug resistance.Our data indicate that the parasites fromGhana are

susceptible to ART drugs and most ACT partner drugs but highly

resistant to antifolate drugs.
TABLE 2 The prevalence of mutations (%) in genes associated with
drug resistance.

Gene Mutation N (%)

Pfcrt M74I 1 (3.4)

N75E 1 (3.4)

K76T 1 (3.4)

Pfmdr1 N86Y 2 (6.9)

Y184F 21 (72.4)

D1246Y 1 (3.4)

Pfdhfr N51I 27 (93.1)

C59R 28 (96.6)

S108N 29 (100)

Pfdhps I431V 1 (3.4)

S436A/F 17 (58.6)

A437G 26 (89.7)

A581G 1 (3.4)

A613S/T 3 (10.3)

Pfk13 K189T/N 23 (79.3)
TABLE 3 The prevalence of haplotypes of drug resistance genes.

Gene (codon positions) Haplotypes N (%)

Pfcrt (72-76) CVMNK 28 (96.6)

CVIET 1 (3.4)

pfmdr1(86/184/1246) NYD 7 (24.1)

NFD 20 (69.1)

YFD 1 (3.4)

YYY 1 (3.4)

Pfdhfr(51/59/108) NRN 2 (6.9)

IRN 26 (89.7)

ICN 1 (3.4)

Pfdhps(436/437/581/613) AGAA 11 (37.9)

AAAA 3 (10.3)

SGAA 12 (41.4)

AGAS 2 (6.9)

AGGS 1 (3.4)

Pfdhfr/Pfdhps NRN-AAAA 1 (3.4)

NRN-SGAA 1 (3.4)

IRN-AGAA 10 (34.5)

IRN-AAAA 2 (6.9)

IRN-SGAA 11 (37.9)

IRN-AGAS 2 (6.9)

IRN-AGGS 1 (3.4)

ICN-AGAA 1 (3.4)
FIGURE 3

Comparison of in vitro susceptibilities (IC50 values) to
pyrimethamine between parasites with a single copy and
multiple copies of pfgch1 gene.
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WHO reported high efficacy rates (>95%) of AL, AS-AQ,

and DHA-PPQ for P. falciparum between 2010-2018 (WHO,

2019b). However, partial ART resistance recently detected in

Uganda and Rwanda is a global public health emergency

(Uwimana et al., 2020; Asua et al., 2021; Balikagala et al.,

2021). Ghana adopted ACTs as the frontline treatment of

uncomplicated falciparum malaria in 2005. Subsequent efficacy

studies conducted in many sentinel sites of Ghana showed high

efficacies of AL and AS-AQ with 28-day PCR-corrected cure

rates above 90% (Abuaku et al., 2012; Abuaku et al., 2016;

Abuaku et al., 2017; Abuaku et al., 2019; Abuaku et al., 2021). In

addition, the imported falciparum cases among the Chinese

workers returning from Ghana also responded well to the

DHA-PPQ treatment with a 100% 28-day cure rate (not

shown). Consistently, the in vitro assay showed high

susceptibility of the parasite isolates to all ART family drugs,

with IC50 values clustering in a relatively narrow range. This is

drastically different from the parasites collected from Southeast

Asia with wide ranges of IC50s to ART drugs (Zhang et al., 2019),

where clinical ART resistance is evident. The results for AS from

this study were in general agreement with earlier ex vivo studies

(Quashie et al., 2007; Quashie et al., 2013; Ofori et al., 2021).

However, the geometric mean IC50 value for DHA was much

lower than that from a recent ex vivo analysis (Ofori et al., 2021).

Although the difference may be due to the use of in vitro and ex

vivo methods, which may not be comparable, the wide ranges of

IC50 data for both AS and DHA from the ex vivo study suggested

the presence of parasites with reduced susceptibility to the ART

drugs. Furthermore, despite the parasites showing a mean RSA

value of <1% indicating susceptibility to ART, there were four

parasite isolates showing RSA values slightly higher than 1%,

also demanding continuous resistance surveillance, especially in

the context of the emergence of ART resistance in East Africa.

This study did not detect pfk13 propeller domain mutations in

the 29 parasite isolates. Since most pfk13 mutations detected

earlier in Ghana appeared as low-frequency mutations (Matrevi

et al., 2019; Matrevi et al., 2022), molecular surveillance of pfk13

mutations may require more extensive sampling efforts.

Our in vitro drug profiling work showed the overall

susceptibility of parasite isolates from Ghana to the ACT

partner drugs tested, including LMF, mefloquine, PPQ,

naphthoquine, and pyronaridine. For the partner drugs such

as mefloquine, LMF, and PPQ, the IC50 values were similar to

those determined for parasites from other regions in West Africa

during the same period (Tinto et al., 2014; Traore et al., 2020).

Moreover, these recent clinical isolates showed IC50 values

within similar ranges of the 3D7 reference strain, and none

showed IC50 values exceeding cutoff values used to define

resistance. Results from the molecular studies further

supported the findings from the in vitro analysis. The two

most widely used ACTs in Ghana, AL and AS-AQ, supposedly

exert opposite selection on pfmdr1 (Okell et al., 2018), with AS-

AQ selecting for 86Y and 1246Y (Conrad et al., 2014;
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Tumwebaze et al., 2015), but AL selecting for the N86 and

D1246 wild-type alleles (Sisowath et al., 2005; Humphreys et al.,

2007; Zongo et al., 2007; Happi et al., 2009; Some et al., 2010;

Baliraine and Rosenthal, 2011; Conrad et al., 2014). The

predominant pfmdr1 86N/184F/1246D (NFD) haplotype at a

prevalence of 69.1% is predicted to confer reduced sensitivity to

AL. Nevertheless, our in vitro data showed that parasites

remained highly sensitive to LMF with IC50s ranging from 0.2

to 4.6 nM. It is predicted that simultaneous deployment of

multiple first-line ACTs, like the situation in Ghana, may slow

down resistance development (Boni et al., 2008).

The in vitro drug assay and molecular genotyping results

reflected the antimalarial drug policy changes. After the

withdrawal of CQ, the pfcrt K76T mutation, the major

determinant of CQ resistance, and the pfmdr1 N86Y mutation,

which is linked to resistance to CQ and other 4-aminoquinoline

drugs such as AQ, have continuously declined in Ghana and

other regions of Africa (Duah et al., 2013; Abugri et al., 2018;

Okell et al., 2018; Mensah et al., 2020; Tuedom et al., 2021).

Consistently, we found that most parasite isolates became CQ-

sensitive, whereas only one had IC50 higher than the 100 nM

resistance threshold (Figure 1). Although SP was also

discontinued as the frontline treatment of malaria, it has been

used for IPTp since 2004, while SP-AQ has been used as SMC in

children (Mensah et al., 2020). Our in vitro assay confirmed that

83% (24/29) of the isolates were highly resistant to

pyrimethamine, with IC50 values above 900 nM. Genotyping

results of the pfdhfr and pfdhps genes showed the predominant

haplotype as the quadruple mutant IRNGK, consistent with

other studies conducted in Ghana (Duah et al., 2013; Abugri

et al., 2018; Mensah et al., 2020). Although the quintuple mutant

IRNGE responsible for high SP failure rates elsewhere in Africa

was not detected in this study, the detection of additional

mutations in pfdhps at positions 436, 581, and 613 warrants

further investigation.

As the rate-limiting enzyme of the folate biosynthesis

pathway, pfgch1 gene amplification has been linked to the

pfdhfr 164L and pfdhps K540E mutations in Thailand (Nair

et al., 2008; Sugaram et al., 2020; Turkiewicz et al., 2020).

Genomic analysis of the world P. falciparum populations

indicated that pfgch1 gene and promoter amplifications were

more likely present in parasites with more pfdhfr/dhpsmutations

(Turkiewicz et al., 2020), suggesting that pfgch1 amplification

might compensate for the potential fitness cost associated with

the pfdhfr/dhps mutations (Heinberg et al., 2013). In our study,

all isolates with pfgch1 amplification carried the pfdhfr IRN and

pfdhps S436A mutations, while one also had three additional

pfdhps mutations (A437G/A581G/A613S). In some countries

such as Malawi and Kenya, there is an indication of increased

prevalence of the pfgch1 promoter amplification after the

introduction of SP (Turkiewicz et al., 2020). Consistently,

compared to an earlier survey in Ghana that detected double-

copy pfgch1 at a 6.3% prevalence (Osei et al., 2018), our current
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data showed an increased pfgch1 gene amplification to 17.3%,

albeit the sample number was low. While earlier studies have

associated pfgch1 amplification with greater accumulation of

pfdhfr/dhps mutat ions without direct ly measuring

susceptibilities to SP, our finding of increased susceptibilities

of isolates with pfgch1 amplification to in vitro pyrimethamine is

intriguing. This finding is consistent with confirmation of the

detrimental effects of high-level pfgch1 expression (Heinberg

et al., 2013), suggesting a complicated relationship between

genetic polymorphisms in the folate synthesis pathway for

mediating antifolate resistance.

We have observed positive correlations between drugs of

the same chemical groups, such as the ART derivatives, the

three aminoalcohols (quinine, LMF, and mefloquine), and two

4-aminoquinolines (naphthoquine and pyronaridine).

Intriguingly, we also observed modest correlations between

ART drugs (DHA and AS) with LMF and pyronaridine. It is

noteworthy that Spearman’s rank-order correlation coefficients

for eight comparison pairs exceeded 0.4, suggestive of strong

correlations (Tumwebaze et al., 2021). In particular, quinine

showed strong correlations (r ≥ 0.5) with LMF, mefloquine,

and CQ (Figure 2). The mutations in drug resistance genes

such as pfmdr1 may underlie these correlations. For example,

the pfmdr1 N86Y and D1246Y mutations found in Africa are

linked to increased sensitivity to LMF, mefloquine, and ART

(Duraisingh et al., 2000a; Duraisingh et al., 2000b; Reed et al.,

2000; Mwai et al., 2009; Tumwebaze et al., 2015). Pfmdr1

amplification, besides mediating mefloquine resistance, also

leads to decreased sensitivity to quinine, LMF, and ART (Price

et al., 2004; Sidhu et al., 2006). Thus, the extensive use of

multiple antimalarial drugs in Ghana and potential cross-

resistance among drug components demand continuous drug

resistance monitoring.

One limitation of this study is the small sample size, which

may not accurately reflect the drug resistance situation in Ghana.

Furthermore, the exact origins of the parasite isolates were

unknown, complicating the explanation of the results. Earlier

clinical, ex vivo, and molecular studies have detected substantial

variations in drug efficacy (Abuaku et al., 2012; Abuaku et al.,

2019), ex vivo drug susceptibility (Quashie et al., 2013; Ofori

et al., 2021), and prevalence of resistance markers (Matrevi et al.,

2019; Mensah et al., 2020) among the three ecological zones of

malaria transmission. Future studies with increased sample size

and targeted procurement of parasites from the three ecological

zones are needed to present a more accurate picture of drug

resistance in Ghana. In addition, most mutations studied in pfcrt

and pfmdr1 (mediating resistance to 4-aminoquinoline drugs)

and pfdhfr (mediating resistance to pyrimethamine) either

decreased to very low prevalence or approached fixation,

preventing us from performing robust phenotype-genotype

association analyses. Nevertheless, establishing continuous

cultures of Ghananian parasite isolates provides valuable
Frontiers in Cellular and Infection Microbiology 09
reference parasite strains for longitudinal monitoring of drug

resistance and parasite populations from Ghana and

West Africa.

In summary, we established long-term cultures of clinical

parasite isolates originating from Ghana. In vitro profiling of

susceptibility to 11 antimalarials showed that overall the parasite

isolates were susceptible to ARTs and ACT partner drugs. A

continuously declining prevalence of molecular markers

associated with CQ resistance was observed, accompanied by

an increased prevalence of mutations suggestive of selection by

AL. With the widespread use of ACTs and the emergence of

ART resistance in East Africa, drug resistance monitoring efforts

need to be reinforced to ensure the effectiveness of the frontline

antimalarial drugs.
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