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Nosema ceranae is a honey bee gut parasite that has recently spilled to another

honey bee host through trading. The impact of infection on the native host is

minor, which is substantial in the novel host. In this study, artificial inoculation

simulated the parasite transmission from the native to the novel host. We found

that the parasite initiated proliferation earlier in the novel host than in the native

host. Additionally, parasite gene expression was significantly higher when

infecting the novel host compared with the native host, leading to a

significantly higher number of spores. Allele frequencies were similar for

spores of parasites infecting both native and novel hosts. This suggests that

the high number of spores found in the novel host was not caused by a subset

of more fit spores from native hosts. Native hosts also showed a higher number

of up-regulated genes in response to infection when compared with novel

hosts. Our data further showed that native hosts suppressed parasite gene

expression and arguably sacrificed cells to limit the parasite. The results provide

novel insights into host defenses and gene selection during a parasite

spillover event.

KEYWORDS
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Introduction

Host-parasite evolution involves reciprocal genetic changes between the interacting

species (Brockhurst et al., 2014). When the parasite infects a novel host, high virulence is

usually observed. The parasite spillover has been substantially facilitated by international

trading. The honey bee is the most important commercial pollinator. The bee wax and

fruit trading have led to the global spread of the bee parasite, causing substantial damage

to the apicultural industry (Idrissou et al., 2019; Liu et al., 2021). Nosema ceranae is an
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obligate intracellular parasite that infects the epithelial cells of

honey bee midgut (Higes et al., 2007). N. ceranae is a native

parasite of the Asian honey bee Apis cerana and has successfully

established infection in the novel honey bee species, Apis

mellifera (Fries et al., 1996; Higes et al., 2006). Using a set of

genetic markers, a high level of genetic diversity was found in N.

ceranae (Gómez-Moracho et al., 2014; Pelin et al., 2015).

However, minor variance was found among various

geographically distinct regions, suggesting human-mediated

gene flow. The infection exhibits high levels of virulence in the

novel honey bee host, leading to impaired flying ability, reduced

life span, and suppressed immune responses (Antunez et al.,

2009; Dussaubat et al., 2013; Goblirsch et al., 2013; Gage et al.,

2018). However, the impact of infection was minor in the native

host. As the two honey bee species share habitats in Asia and

Australia, it provides an ideal opportunity to use A. mellifera, A.

cerana, and N. ceranae as model organisms to study the

parasite spillover.

N. ceranae was recently proposed within Vairimorpha

(Tokarev et al., 2020). To be consistent with previous
Frontiers in Cellular and Infection Microbiology 02
literatures, we kept N. ceranae. This study aims to reveal the

mechanism under the reported high virulence after the parasite

spillover to the novel host. Accordingly, we quantified host and

parasite gene expression, covering the entire proliferation cycle.

Additionally, we investigated whether a subset of parasite

genotype was favored leading to the high virulence.
Results

The native host showed high mortality
following infection

Parasite spores were not found in the uninfected group.

Among the experimental groups, uninfected novel host showed

the highest survival (> 98%), which was not significantly

different from the uninfected native host (Log Rank, adjusted

P > 0.05). Comparatively, the infected native host showed the

lowest survival (87%), which was significantly lower than the

other three groups (Log Rank, adjusted P < 0.001) (Figure 1B).
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FIGURE 1

(A) The experimental design of this study. The spores were purified from the native host. Then the spores were inoculated to newly emerged honey
bees from the native and novel host, respectively, to harvest produced spores. The gene expression (RNA-seq) of the infected bees was quantified from
1 to 5 dpi, covering a complete proliferation cycle of the parasite. Additionally, the SNVs along the parasite genome were quantified and compared
between the parental and produced spores at 14 dpi. (B) The cumulative survival of honey bees. The native host infected by the parasite (F1_native)
showed the highest mortality (Log Rank, adjusted P < 0.001). (C) The parasite spore load in the infected native and novel hosts. A significantly higher
number of produced spores were found in the novel host compared with the native host (Kruskal Wallis test, P < 0.05). The y-axis represents the spore
load which was log-transformed with base 2. (D) Venn diagram of SNVs identified in parental and produced spores in the native host. (E) Venn diagram
of SNVs identified in the parental and produced spores in the novel host. Irrespective of the host species, at least 90% of parental SNVs were maintained
in the produced spores. Additionally, over 50% of novel SNVs in produced spores were shared between the replicates in each host species, suggesting
the mutation may not be random (Fisher’s exact test, P < 0.001).
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At 14 days post-infection (dpi), 5.1 million spores were found in

the novel host, which was significantly higher than those found

in the native host (Kruskal Wallis test, P < 0.05) (Figure 1C).
Parasites initiated proliferation earlier in
the novel than the native host

During parasite proliferation, 762 genes were significantly

over-expressed in parasites infecting the novel host, which is

substantially higher than the 26 genes over-expressed in the

native host (Fisher’s Exact test, P < 0.001) (Figure 2A).

Significantly regulated genes were enriched in genetic

information processing (Figure 2B). Parasite gene expression

was detected as early as one dpi in the novel host. Comparatively,
Frontiers in Cellular and Infection Microbiology 03
the infection was not detected until three dpi in the native host

(Figure 2A). Additionally, 11 genes were over expressed at three

time points when the parasite proliferated in the novel host,

including a polar-tube protein (G9O61_00g021150). Using the

genome as background, genes related to nuclear chromatin were

significantly enriched in the parasite infecting the novel host

(GO:0000790, adjusted P < 0.01).
The native host showed more robust
responses to parasite infection than the
novel host

In the novel host, the number of suppressed genes was two-

fold higher than over-expressed genes from one to five dpi
frontiersin.org
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FIGURE 2

Functional analysis of regulated genes. (A) parasite gene expression profile in two hosts. The parasite showed higher gene expression levels in
the novel than the native host (Fisher’s Exact Test, P < 0.001). (B) Putative function of significantly regulated parasite genes. (C) Number of
significantly regulated genes of the novel host. The number of suppressed genes in the novel host was significantly higher than in over-
expressed ones (Paired t-test, P < 0.01). (D) Putative function of the significantly regulated novel host genes. (E) Number of significantly
regulated genes of the native host. The genes showed a suppressed expression pattern. (F) Putative function of the significantly regulated native
host genes. In (B, D, E) the color of the functional category was used in global pathway maps and genome maps of KEGG. The functional
category on the right was indicated in the pie chart in clockwise order.
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(Figure 2C, Paired t-test, P < 0.01), which were enriched in

genetic information processing (Figure 2D). In the native host,

the number of suppressed genes was slightly higher than over-

expressed ones but not statistically significant during the entire

experimental period (Figure 2E, Paired t-test, P = 0.057). The

significantly regulated genes were enriched in environmental

information processing (Figure 2F). In honey bees, the number

of genes significantly regulated after infection was significantly

higher in the native host (719 genes) than in the novel host (342

genes; Fisher’s exact test, P < 0.001). Using the genome as the

background, genes related to the cell cycle (GO:0000082,

adjusted P < 0.001) were enriched in the novel host and those

related to the regulation of transcription (GO:0006357, adjusted

P < 0.001) were enriched in the native host.
Minor impact of host species on the
parasite genome selection

On average, 74,002,415 reads (150bps paired reads, over

1,000 times genome coverage) were aligned to the N. ceranae

genome in a library, which accounted for 97.4% of total

sequenced reads. In F0 spores, 99,999 Single Nucleotide

Variants (SNVs) were identified. In the F1_native group,

105,768 (F1_native_1), 100,983 (F1_native_2) and 103,965

(F1_nat ive_3) SNVs were ident ified (Figure 1D) .

Comparatively, 100,765 (F1_novel_1), 101,506 (F1_novel_2)

and 100,772 (F1_novel_3) SNVs were identified in the

F1_novel group (Figure 1E). Out of 99,999 SNVs in F0 spores,

90,249 and 91,827 SNVs were found in all three replicates in

both native and novel hosts. Over 90% of the parental SNVs

were found in spores produced by the infection, irrespective of

the host species. The numbers of maintained SNVs were

independent of host species (Fisher’s exact test, P > 0.05). The

genome differentiation index (FST) within species was slightly

smaller than between the host species (Table 1). Within the

produced spores, the native host showed greater genome

differentiation than the novel host when compared with the

parental spores. The parental and produced spores showed

similar genome diversity (p) and Watterson’s q, irrespective of

the host species (Table 1). Tajima’s D was positive in all isolates.

The coefficient S was quantified for the maintained SNVs from
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F0 to F1 spores. Among the top 1% loci with the highest allele

frequency variation, the loci were highly congruent across

replicates and the host species, which was significantly higher

than random (Fisher’s Exact test, P < 0.001). Among those loci,

50 genes were identified, which were significantly enriched in

ATP binding (GO:0005524, adjusted P < 0.001) and cell

proliferation (GO: 0010971, adjusted P < 0.01).
Discussion

Understanding the co-evolution between hosts and their

parasites is particularly important in ecology and conservation

biology (Gómez and Nichols, 2013; Paplauskas et al., 2021). Most

empirical and theoretical studies of host-parasite interactions were

conducted in a paired host and parasite (Rabajante et al., 2016;

Best et al., 2017; Ebert and Fields, 2020). In natural conditions, the

parasite may infect and spill among multiple hosts (Bailey et al.,

2009). Consequently, parasite transmission and diversity depend

on the relative degree of host abundance and susceptibility (Hardy

and Cook, 2010; Neiman and Fields, 2016). N. ceranae is an

intracellular gut parasite of honey bees transmitted through the

fecal-oral route. Transmission heavily depends on direct (such as

trophallaxis among colony members) and indirect (via commonly

visited flowers) contact among honey bees (Graystock et al., 2015).

As a part of its range, N. ceranae has spilled from Asian honey

bees to European honey bees in instances where the shifting

dynamic depends on the relative abundance of the host species’

numbers (Hovestadt et al., 2019). Previous studies found that the

infection showed a high virulence in the novel host (Eiri et al.,

2015; Gage et al., 2018; Paris et al., 2018). In this study, we found

that the parasite N. ceranae produced a significantly higher

number of spores in novel hosts compared with the native host.

This suggests that novel hosts cannot suppress parasite

proliferation at the individual honey bee level, as we previously

found for the colony level (Wu et al., 2022). Additionally, we

found that native hosts showed higher mortality. Thus, native

hosts might limit parasite growth by sacrificing infected nest

members, a trait observed in a honey bee strain selected for N.

ceranae tolerance (Huang et al., 2012). A similar phenomenon has

also been observed in the native host towards the mite infestation,

wherein infected larvae were sacrificed to limit mite reproduction

(Page et al., 2016).
TABLE 1 Population-genetic statistics for the three parasite isolates (Mean ± SE).

Parasites p Watterson’s q Tajima’s D F1_native (FST) F1_novel (FST)

F0 0.00851 ± 0.00007 0.00817 ± 0.00008 0.67 ± 0.01 0.0029 ± 0.0024 0.0015 ± 0.0009

F1_native 0.00855 ± 0.00007 0.00813 ± 0.00007 0.55 ± 0.01 0.0018 ± 0.0010

F1_novel 0.00845 ± 0.00007 0.00799 ± 0.00008 0.66 ± 0.01
p indicates the genome diversity. Tajima’s D was corrected for the pooled population. Pairwise fixation index FST was used for pairwise comparisons.
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Using a set of markers,N. ceranae diversity has been reported to

be higher within honey bee colonies than among neighboring

colonies (Gómez-Moracho et al., 2014; Gómez-Moracho et al.,

2015). Previously, we found that the genetic diversity of N.

ceranae was substantially higher in habitats where the native and

novel honey bee species co-exist (Ke et al., 2021). This study found

minor disparities in genetic diversity variation across replicates. In

our data, pwas slightly higher thanWatterson’s q, leading to a small

positive Tajima’s D, which suggests a small number of low-

frequency alleles in all parasite isolates. The rare loci might have a

strong tendency to be lost, and the genome was under balancing

selection (Fu and Li, 1993; Stajich and Hahn, 2005). The fixation

index FST reflects the overall genome differentiation. In our data, the

FST was slightly higher within a species than between the two host

species, which suggests host-specific adaptation shaped the genome

evolution, even though the effect was not strong. In host-parasite

studies, allele frequency fluctuation can provide insights into

virulence and infection (Campbell et al., 2013; Papkou et al.,

2019). In our study, the impact of host species on allele frequency

variation was minor, which might reflect their close

phylogenetic relationship.

The life cycle ofN. ceranae is approximately four days (Higes

et al., 2007; Gisder et al., 2011). In our data, the proliferation

initiated earlier when infecting the novel host. As a result, more

spores were found in the novel host. In the parasite genome,

2,280 genes were annotated. Out of those, 762 genes were

significantly up-regulated when infecting the novel host, which

was broadly involved in DNA/RNA replication. Notably, the

polar tube protein was constantly up-regulated, which is

essential to attach to the host cell membrane and is vital to

initiate the infection (Han et al., 2017). When the expression

level of the polar tube protein was suppressed, the number of

produced spores was substantially reduced (Rodriguez-Garcia

et al., 2018). After the inoculation, the native host strongly

responded to the infection. It is known that N. ceranae

suppresses apoptosis in infected honey bees and that bees with

accelerated apoptosis are more tolerant of infection (Higes et al.,

2013; Kurze et al., 2015). In our data, cell-cycle genes were

suppressed in the novel host, suggesting that infected cells can’t

initiate apoptosis to limit parasite proliferation. Thus, apoptosis

may reflect an important strategy used by native hosts to limit N.

ceranae infection.
Materials and methods

Host and parasite sources

The honey bee, Apis cerana, is the native host of the parasite

Nosema ceranae, and the honey bee Apis mellifera is the novel

host of the parasite N. ceranae. This study simulated parasite

dispersal from native to novel host species by artificially

inoculating the two honey bee species with N. ceranae spores.
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First, the parasite spores were purified from the native host,

A. cerana. Then, the purified spores were used to inoculate the

novel and native host separately to harvest produced spores by

infection (Figure 1A). Overall, three sources of parasite spores

were collected and analyzed, including parental spores isolated

from native hosts (F0), spores produced by infection in the

native hosts (F1_native), and spores produced in the novel hosts

(F1_novel). Additionally, the parasite gene expression (RNA-

seq) in the two hosts was quantified from one to five dpi, which

covers a complete parasite proliferation cycle.
Parasite isolation, inoculation, and
sample collection

To harvest sufficient number of spores, 200 honey bee

foragers were randomly collected from four A. cerana colonies

that were heavily infected with N. ceranae in the experimental

apiary. Midguts of the honey bees were dissected and

homogenized to isolate N. ceranae spores using centrifugation

(Fries et al., 2013). The spores were further purified using Percoll

gradient centrifugation and the species status of N. ceranae was

confirmed by species-specific primers using conventional PCR

(Chen et al., 2013; Fries et al., 2013). The pooled spores

represented local parasite diversity and served as a common

source for inoculations.

Frames with emerging brood were removed from colonies of

the native (A. cerana) and novel host (A. mellifera), which were

kept in an incubator (34 ± 1°C, 60% relative humidity). For each

honey bee species, 150 newly emerged honey bee workers were

individually fed with 2 µl of sucrose solution containing

105 N. ceranae spores isolated from the native host. An

additional 150 newly emerged native and novel host honey bee

workers were fed with 2 µl sucrose solution as an uninfected

control. During the experiment, cohorts were divided into three

cups containing 50 bees each and maintained on 50% sucrose

solution ad libitum in the incubator. Dead bees were recorded and

removed daily. Three bees were collected from one to five dpi

from each cup at 24h intervals. The midgut was dissected for RNA

extraction with TriZol and sequenced using Illumina Hiseq 2000.

At 14 dpi, the remaining honey bees were harvested for spore

counting. The spores of the same species were pooled for DNA

extraction using CTAB (cetyl trimethylammonium bromide)

(Chen et al., 2013), which were also sequenced using Illumina

Hiseq 2000. For each treatment, three replicates were performed.
Gene expression and SNV analysis

For genetic diversity analysis, a DNA library for F0 spores,

three DNA libraries for F1_native spores (F1_native_1,

F1_native_2 and F1_native_3) and three DNA libraries for

F1_novel spores (F1_novel_1, F1_novel_2 and F1_novel_3)
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were sequenced. DNA sequencing reads were aligned to the N.

ceranae genome (Ncer 3.0, GCA_004919615.1) using BWA with

default parameters (Li and Durbin, 2009; Huang et al., 2021).

The SNVs were identified and annotated using the Picard-

GATK-SNPEFF pipeline (Van der Auwera et al., 2013). The

SNVs found in F0 spores but not in F1 spores were defined as

lost SNVs. The SNVs found in F1 spores but not F0 spores were

defined as novel SNVs. The SNVs found in both F0 and F1

spores were defined as maintained SNVs. For the RNA-seq

analysis, three RNA libraries for the uninfected native host,

three RNA libraries for the uninfected novel host, three RNA

libraries for the infected native host, and three RNA libraries for

the infected novel host were sequenced per day from 1 to 5 dpi.

The RNA reads were aligned to the parasite (N. ceranae, Ncer

3.0, GCA_004919615.1), the native host (honey bee A. ceranae,

HAv3.1, GCA_003254395.2), and the novel host (honey bee A.

mellifera, ApisCC1.0, GCA_002290385.1) with Hisat2 with

default parameters (Kim et al., 2015; Diao et al., 2018;

Wallberg et al., 2019). The variance of the three replicates was

used to calculate the within-group variance to determine

significantly regulated genes using EdgeR (Robinson et al.,

2010). The protein sequences of significantly regulated genes

were quired to NCBI non-redundant database and KEGG to

infer putative biological function and pathways (Kanehisa and

Goto, 2000). GO terms were retrieved using EggNOG-mapper,

and enrichment analysis was performed using TopGO (Alexa

and Rahnenfuhrer, 2021; Cantalapiedra et al., 2021). In total, 7

DNA and 60 RNA libraries were sequenced and analyzed.
Population genetic analysis and statistics

Watterson’s q, genome diversity p, and corrected Tajima’s D

values were calculated using Popoolation (Kofler et al., 2011a).

The fixation index FST was calculated using Popoolation2 (Kofler

et al., 2011b). Survival was analyzed with the Kaplan-Meier

procedure using SPSS and adjusted for FDR using R (R Core

Team, 2013). The spore load variance was analyzed using the

Kruskal Wallis test using R (R Core Team, 2013). Paired t-tests

were used to compare the number of up and downregulated

genes with R (R Core Team, 2013). As the common parental

spores were inoculated to harvest produced spores, one sample t-

test was used to compare the number of SNVs in parental and

produced spores using R (R Core Team, 2013).
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