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Diets rich in fiber may provide health benefits and regulate the gut microbiome,

which affects the immune system. However, the role of dietary fiber in

Clostridioides difficile infection (CDI) is controversial. Here, we investigated

the use of fermentable fibers, such as inulin or pectin, to replace the insoluble

fiber cellulose to explore how dietary fiber affects C. difficile-induced colitis in

mice through intestinal microecology and metabolomics. Using C. difficile VPI

10463, we generated a mouse model of antibiotic-induced CDI. We evaluated

disease outcomes and the microbial community among mice fed two

fermentable fibers (inulin or pectin) versus the insoluble fiber cellulose. We

analyzed and compared the gut microbiota, intestinal epithelium, cytokine

levels, immune responses, and metabolites between the groups. Severe

histological injury and elevated cytokine levels were observed in colon

tissues after infection. Different diets showed different effects, and pectin

administration protected intestinal epithelial permeability. Pectin also steadily

increased the diversity of the microbiome and decreased the levels of

C. difficile-induced markers of inflammation in serum and colonic tissues.

The pectin group showed a higher abundance of Lachnospiraceae and a lower

abundance of the conditionally pathogenic Enterobacteriaceae than the

cellulose group with infection. The concentration of short-chain fatty acids

in the cecal contents was also higher in the pectin group than in the cellulose

group. Pectin exerted its effects through the aryl hydrocarbon receptor (AhR)

pathway, which was confirmed by using the AhR agonist FICZ and the inhibitor

CH2223191. Our results show that pectin alters the microbiome and metabolic

function and triggers a protective immune response.
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Introduction

Clostridioides difficile infection (CDI) causes more than 70% of

healthcare-associated gastrointestinal infections, with outcomes

ranging from diarrhea, colitis, and severe toxic megacolon (Smits

et al., 2016). The stable gutmicrobial community is a natural barrier

against C. difficile (Ling et al., 2022). CDI may be caused by

disruption of the resident intestinal microbiota. Antibiotic

therapy is essential for treating bacterial infections. Most notably,

repeated exposure of the intestinal microbiota to antibiotics

eliminates commensal bacteria from the intestinal ecology and

provides opportunities for pathogens, such asC. difficile, to colonize

and proliferate. The metabolites of the intestinal flora, including

short-chain fatty acids (SCFAs) and bile acids (Kochan et al., 2018),

have been associated with C. difficile-induced disease. Therefore,

diet may influence the incidence and severity of CDI. The gut

microbiota and C. difficile metabolic interactions determine C.

difficile fitness (Ng et al., 2013; Buffie et al., 2015; Yan et al.,

2021), and reductions in the levels of dietary microbiota-related

metabolites cause colon inflammation (Earle et al., 2015).

The Western diet includes high consumption of fatty foods

and low consumption of naturally fiber-rich grains, fruits, and

vegetables. Low dietary fiber intake may lead to impaired

intestinal health and an increased prevalence of chronic

inflammatory diseases. Dietary fiber can be broadly classified

as insoluble (e.g., cellulose) or soluble (e.g., pectin, inulin), and

the soluble fiber is readily fermented by intestinal bacteria to

produce SCFAs (Singh et al., 2019). The transformation of

dietary fiber into available nutrients is one of the main benefits

that the gut microbiota provides to the host. The mechanisms

underlying the association of dietary fiber with the development

of intestinal inflammation and immune-related diseases have

not been fully studied. A diet low in dietary fiber alters the gut

microbiota and its metabolism, thereby disrupting host-

microbiota interactions (Sonnenburg and Sonnenburg, 2014).

Studies have reported conflicting results regarding the

relationship between diet and CDI. Some have shown that

dietary fiber can alleviate antibiotic-induced CDI (Hryckowian

et al., 2018). Other studies suggest that dietary fiber may

promote antibiotic-related ecological dysregulation and long-

term C. difficile carriage (Bhute et al., 2022). Pectin may play a

role by regulating the intestinal microbiota composition and T-

cell responses (Bernard et al., 2015; Ishisono et al., 2019; Wu

et al., 2019). Understanding the effects and potential

mechanisms through which dietary carbohydrates influence

CDI may offer useful insights into pathogenesis.

Here, we evaluated the effects of soluble dietary fibers (pectin

and inulin) on CDI and described the flora diversity and

metabolic structure. Thus, we tested whether soluble fiber is

more beneficial than unfermentable fiber during CDI due to its

ability to act as an SCFA precursor. We report that the dietary

soluble fiber pectin ameliorates colitis in a C. difficile-related
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model. The effect of the pectin diet was also explored by

targeting the aryl hydrocarbon receptor (AhR) pathway

through which it may exert its protective effect.
Methods

Model of infection

C. difficile strain VPI 10463 (ATCC 43255) was cultivated in

Difco cooked meat medium (BD Diagnostic Systems, USA) in an

anaerobic atmosphere. C57BL/6 male mice (6-8 weeks) were

housed and fed a standard laboratory diet for one week

(Figure 1A). The mice were then randomly divided: two groups

were fed a cellulose control diet (CNC=8 and CCDI=12), and the

remaining groups were fed a pectin diet (PCDI=12, PNC=8) and

an inulin diet (ICDI=12, INC=8). Table S1 showed the details of

the three isocaloric diets (Dyets Inc., Bethlehem, PA, USA, Cat

D211015, D211016, and D211017). After 2 weeks of feeding, the

three groups (CCDI, PCDI, and ICDI) were modeled for C.

difficile infection as previously described (Chen et al., 2008).

The experimental scheme consisted of 5 days of antibiotic

cocktail water including kanamycin (0.4 mg/ml), gentamicin

(0.035 mg/ml), colistin (850 U/ml), metronidazole (0.215 mg/

ml) and vancomycin (0.045 mg/ml). Clindamycin (10 mg/kg, ip,

D -1) was administered after the next 2 days of normal water

intake. The animals in the CNC group were injected

intraperitoneally with phosphate-buffered saline (PBS), which

was the vehicle control for clindamycin. On D0, all animals

except those in the CNC group received 108 CFU of C. difficile.

The mice were observed, and disease symptoms and diarrhea

were recorded. The mice were euthanized on D6.
Histopathological analysis

The colon samples were embedded in paraffin and cut into 4

mm sections. Then, they were stained with hematoxylin and eosin

(H&E), and histopathological scores were assessed according to a

previous method (Chen et al., 2008). Goblet cells and the mucus

layer were observed and evaluated by Alcian blue periodic acid

Schiff (AB-PAS) staining. For immunofluorescence and

immunohistochemical staining, the embedded colon sections

were immunostained with antibodies against ZO-1, F4/80, and

Ly6G according to the manufacturer’s protocol.
Measurement of serum cytokine and
endotoxin levels

Serum endotoxin lipopolysaccharide (LPS) levels were

quantified using the limulus amebocyte lysate (LAL) (Hycult
frontiersin.org
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Biotech, USA) assay kit. The concentration of LPS-binding

protein (LBP) was measured with an ELISA kit from Abcam

(Cambridge, MA, United States). The levels of serum cytokines,

including G-CSF, IL-1a, IL-6, TNF-a, IL-1b, and MIP-1a, were
analyzed by a cytokine assay kit (Bio-Rad, CA, USA).
qRT−PCR analysis

Colon tissue RNA was extracted using the RNeasy Plus Mini

kit (Qiagen, CA, USA). RNA was reverse transcribed into cDNA

using PrimeScript RT kits (Takara Biomedicals, Japan). mRNA

expression was then repeatedly determined using the ViiA7 real-

time PCR system (Applied Biosystems, Massachusetts, USA)

with Premix Ex Taq (Takara Biomedicals). All gene expression
Frontiers in Cellular and Infection Microbiology 03
levels were normalized to b-actin expression levels. Primer

information is provided in Table S2.
Sequencing of 16S rRNA

Fecal samples were collected prior to sacrificing the mice.

The DNeasy Powersoil Pro Kit was used to extract DNA

(Qiagen, Hilden, Germany). PCR amplification of the 16S

rRNA gene was performed using modified primers.

Sequencing was performed on the Illumina MiSeq platform

(Gu et al., 2020). The raw tags were filtered according to

QIIME, and chimeric sequences were removed by comparison

with the Silva database. Operational taxonomic units (OTUs)

were determined as sequences with at least 97% identity.
B

C D E

A

F

FIGURE 1

A pectin diet protects mice from C. difficile infection. (A) Experimental design diagram; CDI modeling after two weeks of dietary intervention.
(B) Representative images of the colon. (C) Body weight change curves of the mice. (D) Survival curves of different groups. (E, F) Pathological analysis
and histopathological scoring of colon tissue of the mice by H&E staining, AB-PAS staining and immunohistochemistry (F4/80 and Ly6G). #, CCDI vs
PCDI, P<0.05; ns, differences are not significant. CNC, cellulose diet with control group; CCDI, cellulose diet with C. difficile infection; PNC, pectin diet
with control group; PCDI, pectin diet with C. difficile infection; INC, inulin diet with control group; ICDI, inulin diet with C. difficile infection.
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Metabolic profiling

The cecal contents were collected and stored at -80°C.

Metabolomic samples were prepared as described previously

(Bian et al., 2020). Metabolites were analyzed by gas

chromatography-mass spectrometry (GC−MS) using an

Agilent 7890A GC system coupled with an Agilent 5975C

inert mass selective detector system (Agilent Technologies,

Santa Clara, CA). Metabolites were identified using

Lumingbio’s untargeted GC−MS database. Partial least squares

discrimination analysis (PLS-DA), orthogonal PLS-DA (OPLS-

DA), and projection (VIP) values were used to calculate the

significance of variables.

The SCFAs in the cecal contents were detected by GC−MS

analysis of 20 mg of dry weight contents according to a

previously described experimental procedure (Bian et al., 2020).
AhR agonist and antagonist treatments

For the AhR agonist intervention, mice were administered 6-

formylindolo [3,2-b] carbazole (FICZ; Sigma, Germany) by

intraperitoneal injection (1 µg/mouse) once a week. For AhR

antagonist intervention, mice were administered 2-methyl-2H-

pyrazole-3-carboxylic acid (CH223191; Sigma, Germany) by

intraperitoneal injection (10 µg/mouse) once a week

(Monteleone et al., 2011).
Statistical analysis

Data analysis was performed using GraphPad Prism v9.0.0.

The data are presented as the mean ± the standard error of the

mean (SEM). For the determination of statistical significance, a

one-way analysis of variance (ANOVA) followed by Tukey’s test

was used. P values < 0.05 indicated statistical significance.
Results

A pectin diet provides protection against
C. difficile infection

To explore the effect of dietary fiber on CDI, we fed mice a

diet (Table S1) containing 10% cellulose (CNC and CCDI

groups), or three-quarters of the fiber was changed to inulin

(INC and ICDI groups) or pectin (PNC and PCDI groups)

(Figure 1A). After 2 weeks of feeding, CDI modeling was

performed. All infected mice (CCDI, ICDI, and PCDI groups)

showed typical symptoms of infection, while the uninfected mice

in the control group (CNC, INC, and PNC) remained healthy,

and no mice died or showed signs of infection during the

experiment. Typical clinical symptoms of infection were
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significant weight loss (Figure 1D) and diarrhea. These effects

were further exacerbated in the ICDI group, which showed

weight loss and more diarrhea than in the CCDI group, but

only mild symptoms were observed in the PCDI group. Survival

rates differed significantly between the pectin-fed mice and the

animals in all other infectious groups, and pectin protected the

mice (Figure 1C). Proximal colon tissue showed a better

appearance and colon length in the PCDI group than in the

CCDI group (Figure 1B). Histopathological analysis showed

significantly greater pathology in all infected mice than in

uninfected mice (Figure 1F). Histological analysis showed that

CCDI group and ICDI group mice exhibited typical features of

colitis, including a thickened colon wall, distorted crypt

structures, and infiltration of inflammatory cells in the

mucosa. The pathology and scores in the PCDI group were

significantly better than those in the CCDI and ICDI groups

(Figure 1E). Goblet cells secrete mucus to protect the colon

against pathogens. AB-PAS staining showed that the CCDI

group exhibited significantly less mucus secretion and fewer

goblet cells than the normal group (Figure 1F). The pectin

dietary intervention significantly alleviated the C. difficile-

i n du c e d r e du c t i o n i n mucu s and gob l e t c e l l s .

Immunofluorescence staining of macrophages (F4/80+) and

neutrophils (Ly6G+) in colon tissue was also performed,

demonstrating that infection could cause the infiltration of

macrophages and neutrophils in colon tissue and that pectin

reduced this inflammatory phenomenon (Figure 1F).
Pectin ameliorates intestinal barrier
injury induced by C. difficile infection

C. difficile produces toxins and following C. difficile infection,

the intestinal barrier is defective. Intestinal barrier disruption

leads to increased intestinal permeability and endotoxin

translocation. To assess the bacterial translocation caused by

increased intestinal permeability, we further examined the

serum LAL and LBP levels (Figures 2C, D), and C. difficile

infection led to increased serum LAL and LBP levels in the CCDI

group, while the pectin diet decreased the endotoxin response of

the organism. Thus, serum immunoreactivity to the bacterial

product LPS was increased in both the CCDI and ICDI groups of

mice. We also examined the results of immunofluorescence

staining for the intestinal barrier protein ZO-1 and evaluated

the expression of intestinal barrier indicators (ZO-1 and

Occludin) by qPCR. We found that the intestinal barrier was

compromised in the CCDI group, while pectin (PCDI group)

protected C. difficile-infected mice against damage to the

intestinal barrier (Figure 2A) and rescued the mRNA levels of

tight junction proteins (Tjps) in colonic tissue (ZO-1 and

Occludin, P<0.05; Figure 2B), while no alleviation was

observed in the inulin group. These results indicate that pectin

protects mice from infection via mucosal barrier enhancement.
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Pectin attenuates the serum and
intestinal inflammatory response in C.
difficile infection

The production of toxins byC. difficile causes inflammation in

the intestine (Kordus et al., 2022).We assessed the immune status

by measuring the levels of cytokines reflecting immune cell

signaling activity. The mRNA levels of serum cytokines and

intestinal inflammatory factors were examined in C. difficile-

infected mice fed different diets. The results showed that the

levels of serum cytokines, such as G-CSF, IL-1a, IL-6, TNF-a, IL-
1b, andMIP-1a, were higher in the CCDI group than in the CNC
group (Figure 3A). Interestingly, the levels of inflammatory

factors (IL-1a, IL-6, TNF-a, and MIP-1a) were decreased in

the PCDI group (P<0.05). We also assessed the mRNA levels of

inflammatory factors in intestinal tissues and showed that the

expression of inflammatory biomarkers (TNF-a, IL-1a, and IL-

1b) was higher in the CCDI group (Figure 3B) than in the CNC

group, while the pectin diet improved the intestinal inflammation

levels. In conclusion, these results suggest that colon

inflammation induced by C. difficile infection was alleviated in

the PCDI group but not significantly alleviated in the ICDI group.
Frontiers in Cellular and Infection Microbiology 05
Different fibers have different effects on
the gut microbiota

Considering the different effects of inulin and pectin on the

degree of colitis, we compared the microbiota composition that

might underlie or correlate with such differences. To analyze the

diet-induced changes in the intestinal flora, we used 16S rRNA

sequencing to compare the stool samples (CNC=8, PNC=8,

INC=8, PCDI=8, CCDI=8, and ICDI=7). Through comparison

of the a-diversity (Chao1 and Shannon index), we found that C.

difficile infection decreased gut microbial diversity, while pectin

increased diversity (Figure 4A). b-diversity (PCoA based on

unweighted UniFrac) indicated differences in gut flora structure

between groups (Figure 4B).

To identify the characteristic microorganisms, we performed

lineardiscriminant analysis effect size (LEfSe) analysis. LEfSe showed

that the CCDI group exhibited higher abundances of opportunistic

pa thogen ic bac t e r i a , such a s Ente robac t e r i a c eae ,

Peptostreptococcaceae, and Enterococcaceae, and lower abundances

of Lactobacillaceae, Bifidobacteriaceae, Muribaculaceae,

Rikenellaceae, Akkermansiaceae, and Desulfovibrionaceae at the

family level than the CNC group (Figure 4C and Figure S1). The
B

C D

A

FIGURE 2

Pectin enhances intestinal barrier function. (A) Immunofluorescence staining of colon tissue. (B) Relative mRNA levels of ZO-1 and Occludin in
colon tissues measured by qPCR. (C, D) Levels of the inflammatory markers LAL and LBP in mouse serum. *, P<0.05; **, P<0.01; ***, P<0.001;
ns, differences are not significant. LAL, limulus amebocyte lysate; LBP, lipopolysaccharide-binding protein.
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relative abundance of Enterobacteriaceae was lower in the PCDI

group than in the CCDI group (Figure 4D). We observed higher

abundances of Lachnospiraceae and Blautia in the PCDI group than

in the CCDI and the ICDI groups; these bacteria reduce intestinal

inflammation and promote intestinal health (Figure 4D and Figure

S2). Bacteria known to readily metabolize fibers into SCFAs,

including Lachnospiraceae, are preferentially enhanced by pectin

(Riviere et al., 2016). Our results show that the pectin diet increased

theabundanceof theseSCFA-producingbacteriaover the inulindiet.
Distinct fibers differentially impact the
composition of metabolites

To explore the relationship between changes in intestinal

metabolites and C. difficile intestinal damage, we performed

metabolomic analysis using GC−MS analysis of the cecal

contents obtained from the four groups. A total of 632

metabolites were identified. The PLS-DA plot showed that each

group’s metabolomic profile was distinct (Figure 5A), indicating

that the metabolomic composition of these groups was different.

OPLS-DA plots showed the differences in metabolomic

composition between the CCDI group and the CNC group and

between the PCDI group and the CCDI group (Figures 5B, C).

Using VIP>1 (based on the OPLS-DA model) and P<0.05

between groups, we further explored the different metabolic

profiles in the PCDI and CCDI groups. The heatmap showed
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that the characteristic metabolites between the PCDI and CCDI

groups were mainly related to carbohydrates, amino acids, lipids,

etc. (Figure 5E). The differential metabolic pathways included

the biosynthesis of unsaturated fatty acids, the cAMP signaling

pathway, glycine, serine and threonine metabolism, and

inflammatory mediator regulation of TRP channels. The

characteristic metabolites in the two groups are shown

(Figure 5D). The PCDI group was associated with relatively

higher levels of the amino acids and bile acids required to inhibit

the germination and growth of C. difficile , such as

chenodeoxycholic acid, than the CCDI group. The PCDI

group also showed reduced levels of linolenic acid and aconitic

acid. Dehydroabietic acid, adenine, adipic acid, and 2-

ketobutyric acid levels were relatively increased in the PCDI

group (Figure 5D). We also compared and analyzed the different

metabolic profiles that may lead to different efficacies of pectin

and inulin diets. Compared to the ICDI group, the PCDI group

reduced carbohydrates (e.g. trisaccharide, maltotriose, erythrose,

gluconic acid, and galactitol) along with amino acids (valyl-

glycine, alanyl-threonine, L-proline, and valyl-valine). In

contrast, the PCDI group increased L-aspartic acid, tartaric

acid, spermidine, L-phenylalanine, and cholic acid (Figure S3).

Pectin is known to affect the SCFAs involved in T-cell

immunity (Smith et al., 2013). To explore whether the

protective effect of dietary fibers against infection is related to

the major products of fiber metabolism of the microbiome, such

as SCFAs, we examined the SCFAs, such as acetic acid, propionic
B

A

FIGURE 3

Pectin attenuates the systemic and intestinal inflammatory responses in mice with CDI. (A) Serum cytokine levels in the mice. (B) mRNA
expression levels of TNF-a, IL-1a, and IL-1b in mouse colonic tissues. *, P<0.05; **, P<0.01; ***, P<0.001; ns, differences are not significant.
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acid, isobutyric acid, butyric acid, 2-methylbutyric acid, and

valeric acid, in mouse cecal contents. In the CCDI group, C.

difficile infection reduced the levels of acetic acid, propionic acid,

butyric acid, and 2-methylbutyric acid (P<0.05, Figure 5F). The

concentrations of acetic acid, propionic acid, and butyric acid

were higher in the PCDI group than in the CCDI group (P<0.05,

Figure 5F). The levels of acetic acid were higher in animals fed

the pectin diet than in those fed the inulin diet (Figure 5F).

Furthermore, we conducted a correlation analysis between

SCFAs and Lachnospiraceae (Figure S4). The results exhibit a

good linear correlation between the relative abundance of

Lachnospiraceae and SCFAs (such as acetic acid and

butyric acid).
Pectin protects against C. difficile
infection by activating the AhR pathway

Previous studies have shown that catabolic substances

produced by the microbiota can modulate interleukin (IL)-22

production and boost T-cell immunity by activating AhR (Ye

et al., 2017; Lamas et al., 2018), which plays a role in mucosal

immunity (Zelante et al., 2013). Previous studies have shown that

pectin increases the production of metabolites by the microbiota to
Frontiers in Cellular and Infection Microbiology 07
activate AhR (Monteleone et al., 2011), thereby improving

intestinal barrier function. Our gut microbiota analysis also

showed that pectin treatment increased Lachnospiraceae

abundance in the intestine, which is also involved in the

activation of the AhR pathway by metabolic substances (Vacca

et al., 2020; Zhang et al., 2021). We next determined the role of the

AhR pathway in the pectin treatment of C. difficile-induced severe

colitis. IL-22, secreted by CD3+ T cells and ILC3s in the intestine,

has been shown to protect the host from infection as a downstream

gene of the AhR pathway (Parks et al., 2015). We evaluated the

expression levels of the relevant indicators (AHR and IL-22) in

colon tissues of different groups by qPCR (Figures 6A, B). The

results showed that the AhR and IL-22 mRNA levels were lower in

the CCDI group than in the CNC group, while the pectin group

showed increased levels.

We also explored the targeted therapeutic strategies of the

AhR pathway in CDI using AhR agonists and inhibitors. The

body weight in the C. difficile+pectin+AhR antagonist group was

lower than that in the C. difficile+pectin group (Figure 6C),

indicating that the AhR antagonist exacerbated the infection and

clinical symptoms in the pectin diet-fed mice. The death of the

pectin-treated mice was accelerated early after C. difficile

induction because of the AhR antagonist (Figure 6D), but the

effect of pectin pretreatment on the survival of the C. difficile-
B

C D

A

FIGURE 4

Pectin alleviates the dysbiosis of intestinal flora in CDI. (A) Chao1 and Shannon indices of intestinal flora. (B) The PCoA plot based on
unweighted UniFrac shows the b-diversity of the gut microbiome. (C, D) LEfSe cladogram. Blue represents the CNC or PCDI group, and red
represents the CCDI group. *, P<0.05; ***, P<0.001; ns, differences are not significant. LEfSe, linear discriminant analysis effect size.
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infected mice could not fully counteract the outcome. Next, the

effect of the AhR agonist on C. difficile infection was evaluated.

Body weight loss was lower in the C. difficile+AhR agonist-

treated mice than in the C. difficile-treated mice (Figure 6F).
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AhR agonists increased the survival rate of infected mice

(Figure 6G). We also assessed the expression of intestinal

barrier indicators such as ZO-1, and the results showed that

the AhR antagonist diminished the protective effect of pectin
B C

D E

F

A

FIGURE 5

Pectin attenuates C. difficile-induced dysregulation of the intestinal metabolome. (A) Three-dimensional PLS-DA score plots of metabolome
profiles for the four groups. (B, C) OPLS-DA plots between groups. (D) Heatmap for the selected metabolites in the CCDI and PCDI groups.
(E) Pathway of the differentially abundant metabolites between the CCDI and PCDI groups. (F) SCFA levels in the cecal contents of mice.
*, P<0.05; **, P<0.01; ***, P<0.001; ns, differences are not significant. PLS-DA, Partial least squares discrimination analysis; OPLS-DA, orthogonal
PLS-DA. The red color showed valuable differential metabolites.
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(Figures 6E, H). In conclusion, these findings suggest that the

roles of gut microbiota in infection after pectin treatment are

partly mediated by the AhR pathway. These results confirm that

the AhR-dependent pathway contributes to pectin diet-mediated

protection against C. difficile infection in mice.
Discussion

The microbiota in the gut plays a crucial role in host health

and provides resistance to a variety of intestinal pathogens

(Sassone-Corsi and Raffatellu, 2015; Khan et al., 2022). The

depletion of the gut microbiota caused by antibiotics can be

exploited by pathogens such as C. difficile (Kriss et al., 2018).

Diet affects the composition and function of the gut microbiota.

Adequate intake of dietary fiber may play a beneficial role in

enhancing intestinal immunity by regulating the gut microbiota
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(Makki et al., 2018). The study showed the effects of dietary

composition on the physiology and pathogenesis of C. difficile in

an animal model of antibiotic-induced CDI. Our study

extensively assessed the functions of two soluble fibers, pectin

and inulin, on a mouse model and the response of microbial

communities to a diet with a widely varying nutrient

composition following antibiotic treatment. Pectin was shown

to improve the clinical outcomes of infection compared to

inulin, and the mechanism underlying the relief in C. difficile

infection may relate to anti-inflammatory effects, protection of

the mucosal barrier, and maintenance of intestinal flora and

metabolism homeostasis. Our study showed that inulin did not

exhibit effective protection. However, a previous study showed a

protective effect of inulin against C. difficile infection

(Hryckowian et al., 2018). The different roles played by

carbohydrates in C. difficile infection may be related to the

type of carbohydrate and its concentration. The ability to
B

C D E

F G H

A

FIGURE 6

Pectin protects mice with CDI from intestinal infection by enhancing AhR pathway activation. (A, B) Relative mRNA levels of IL-22 and AhR in
colon tissue. *, P<0.05; **, P<0.01; ***, P<0.001; ns, differences are not significant. (C, D) Body weight changes and survival curves of the mice
with CDI treated with the AhR antagonist CH223191. *, CCDI vs PCDI+ CH223191, P<0.05; #, PCDI vs PCDI+ CH223191, P<0.05. (E) Relative
mRNA levels of ZO-1 in colon tissues. (F, G) Body weight changes and survival curves of the mice with CDI treated with the AhR agonist FICZ. #,
CCDI vs CCDI+FIZC, P<0.05. (H) Relative mRNA levels of ZO-1 in colon tissues.
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target the microbiome through diet would enable microbiome-

based modulation to ameliorate C. difficile infection.

Carbohydrate-rich diets (especially high-fiber diets) improve

gut health, which has been well studied and is thought to be

associated with SCFA production by intestinal flora (Maslowski

et al., 2009; Singh et al., 2014). Several studies have shown that

dietaryfiber alleviatesC. difficile infection (Hryckowian et al., 2018).

C. difficile is directly affected by diet through germination, growth,

and spore formation as well as indirectly by ecological interactions.

In addition, diet may directly alter pathogenic factors expressed by

C. difficile. Several studies have shown that pectin beneficially affects

immunity and prevents inflammation and disease, and it can

improve colon cancer by modulating signaling pathways

activated by oxidative stress and inflammation (Tan et al., 2018).

Toxins produced by C. difficile are thought to be the main virulence

factors. These toxins induce inflammation, intestinal damage, and

diarrhea (Kordus et al., 2022). Our experimental results showed

that a pectin diet protected the intestinal barrier, reduced the

cellular permeability of intestinal epithelial cells, and reduced the

elevated LBP and LPS levels due to the impaired intestinal barrier

caused by C. difficile infection. The etiology and pathogenesis of C.

difficile infection are complicated, and an imbalance of pro- and

anti-inflammatory cytokines has been linked to C. difficile

development and progression, leading to persistent inflammatory

response in the colon (Pawlowski et al., 2010). Our experimental

results showed significantly higher cytokine levels in the CCDI

group, and the pectin diet improved this outcome.

The gut microbiome contributes to the disease susceptibility

and outcome of CDI and impacts innate and adaptive immunity

(Li and Chen, 2022). Consistent with previous studies (Schubert

et al., 2015; Ross et al., 2016;Wu et al., 2022),C. difficile infection is

associated with a flora imbalance and decreased diversity of

intestinal microbes. Our results showed that C. difficile reduced

microbiome richness and diversity, whereas pectin improved

microbiome flora diversity. There is clearly a link between

microbiome status and disease regulation. Microorganisms can

take bile acids from the liver into the intestine and convert them

into secondary bile acids. The primary to secondary bile acid ratio

is critical and affects the growth of C. difficile. C. difficile also

produces toxins that penetrate the intestinal barrier, while SCFAs,

produced by other intestinal microbes, help tighten the intestinal

barrier. Themaintenance of the homeostasis of the intestinal flora

is closely related to the number of bacteria that produce SCFAs,

which contribute to the maintenance of the homeostasis of the

intestinal environment. Other methods to decrease C. difficile

survival involve nutritional competition for ecological niches in

the intestinal environment and other indirect mechanisms. C.

difficile infection leads to an increase in the abundance of

intestinal opportunistic pathogens such as Escherichia-Shigella

and Enterococcus (Gu et al., 2016). Opportunistic pathogens

promote intestinal inflammation and are triggered to induce

disease by intestinal inflammation. In contrast, a pectin diet

increases the level of beneficial intestinal flora, such as
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Lachnospiraceae, which are the main producers of butyrate in

the intestine (Baxter et al., 2019). Correlation analysis showed a

good correlation between Lachnospiraceae and SCFAs in our

results. The pectin group, but not the inulin group, increased the

abundance of Lachnospiraceae, which may contribute to the

observed differences in treatment outcomes between the two

diets. Lachnospiraceae also produce indole derivatives, which

are tryptophan-converting metabolites that activate AhR (Vacca

et al., 2020). Rorgt+ Tregs, which are highly expressed in the

intestinal tract, may be stimulated by these tryptophan

metabolites (Ye et al., 2017). We also used AhR agonists and

inhibitors to demonstrate the involvement of the AhR pathway in

the role of a pectin diet against C. difficile infection.

Numerous intestinal commensal metabolites, including amino

acid derivatives, carbohydrates, and vitamins, modulate a variety of

host immune cell subsets through different mechanisms (Li et al.,

2022). Based on these findings, we hypothesized that a fermentable

fiber diet would negatively affect C. difficile adaptation in two

interrelated ways. First, a fermentable fiber diet promotes the

privileged growth of members of the microbiota that utilize fiber

(e.g., Bacteroides). Second, SCFAs produced by fermentable fiber

metabolism negatively impact C. difficile adaptation, likely due to

the accumulation of key metabolic pathway end products, such as

reduced acetate production andbutyrate production (Ferreyra et al.,

2014). Dietary fiber and its products, particularly SCFAs, have been

proven to benefit inflammatory diseases (Maslowski et al., 2009;

Trompette et al., 2014). The expression of TcdB and TcdA is

modulated by many factors, such as nutrients, population

sensing, and other environmental indices. SCFAs act as signals

from the microbiome to ferment C. difficile, and this competitive

and unsuitable intestinal environment can lead to increased toxin

production. C. difficile strains are inhibited by SCFAs based on

concentration (Hryckowian et al., 2017). Butyrate can affect toxin

expression (Karlsson et al., 2000). Butyrate also protects against CDI

by protecting the intestinal barrier and alleviating inflammation

through overexpression of hypoxia-inducible factor 1 (HIF-1), the

host pathways that may independently affect inflammation and C.

difficile burden and toxin (Kelly et al., 2015; Fachi et al., 2019).

Moreover, gutmicrobes play a role in bile acidmetabolism, affectC.

difficile (Buffie et al., 2015) andmay interact with dietary influences.

These metabolic processes convert primary bile acids and

conjugated bile acids (e.g., taurocholic acid), which promote C.

difficile germination, into unconjugated primary bile acids and

secondary bile acids (e.g., cholic acid and deoxycholic acid),

which are either less effective germination agents or even inhibit

this process (Ridlon et al., 2006). Our results showed that the pectin

group modulated bile acids such as chenodeoxycholic acid, which

may also be one of the mechanisms underlying the effects of pectin

on CDI. Bile acids are an important signal for C. difficile spore

germination; however, the bile acid signal alone is not sufficient.

Amino acids such as glycine are another signal necessary for C.

difficile spore germination. Glycine is an important germinator ofC.

difficile spores (Neumann-Schaal et al., 2019). Glycine, serine, and
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threonine metabolism is one of the differential metabolic pathways

after pectin treatment. By comparing themetabolomes of the pectin

and inulin groups, the different metabolites, such as l-

phenylalanine, had an inhibitory effect on C. difficile spore growth

(Pickering et al., 2018). And valine is also a co-emergent source ofC.

difficile. More work will focus on exploring how dietary factors may

influence the dynamics of infection.

The gutmicrobiota has been identified as a potentialmodifiable

nongenetic factor. Diet can affect the microbiota, supporting the

hypothesis that changes in diet may affect the occurrence and

development of C. difficile infection. Recently, studies evaluated the

consumption of fiber foods rather than refined fiber, and we

examined the effect of refined fibers (pectin and inulin) on C.

difficile infection. We observed that dietary pectin prevented the

development ofC. difficile-induced colitis, whereas inulin promoted

its development, probably at least in part by promoting the

activation of the AhR pathway. Although fiber has many

beneficial effects on the gut, it may also have negative effects,

which may depend on the genetic and physiological status of the

host. Accordingly, pectin can be conditionally beneficial, depending

on preexisting intestinal conditions and the specific fiber.

According to these results, specific dietary fibers may have

benefits or risks in the case of C. difficile infection. Limitations of

this experiment include the fact that our study focused on the effects

of pectin and inulin on C. difficile infection, used cellulose as a

control group, and did not set an infectious group with a standard

lab diet, which will be verified in our subsequent experiments.

Our results support the idea that certain dietary fibers have the

potential to attenuate inflammation, and the utilization of dietary

fiber flora and associated end products of dietary fiber metabolism,

such as SCFAs, are associated with reduced C. difficile adaptations.

Currentmicrobiota-centered therapies forC. difficile infection, such

as fecal microbiota transplantation and probiotics, are mediated by

the introduction of exogenous microorganisms. Prebiotics, such as

pectin, is a promising approach to improve the human microbiota.

Our studies suggest that different fibers can have different effects,

which may also be due to the different microbial fermentations of

different fibers. A better understanding of the fibers may contribute

to the optimization of fiber-based personalized treatments for

C. difficile infection.
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