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“Upcycling” known
molecules and targets for
drug-resistant TB

Christine Roubert*, Evelyne Fontaine and Anna M Upton

Evotec ID (Lyon), Lyon, France
Despite reinvigorated efforts in Tuberculosis (TB) drug discovery over the past

20 years, relatively few new drugs and candidates have emerged with clear

utility against drug resistant TB. Over the same period, significant technological

advances and learnings around target value have taken place. This has offered

opportunities to re-assess the potential for optimization of previously

discovered chemical matter against Mycobacterium tuberculosis (M.tb) and

for reconsideration of clinically validated targets encumbered by drug

resistance. A re-assessment of discarded compounds and programs from the

“golden age of antibiotics” has yielded new scaffolds and targets against TB and

uncovered classes, for example beta-lactams, with previously unappreciated

utility for TB. Leveraging validated classes and targets has also met with

success: booster technologies and efforts to thwart efflux have improved the

potential of ethionamide and spectinomycin classes. Multiple programs to

rescue high value targets while avoiding cross-resistance are making

progress. These attempts to make the most of known classes, drugs and

targets complement efforts to discover new chemical matter against novel

targets, enhancing the chances of success of discovering effective novel

regimens against drug-resistant TB.

KEYWORDS

drug resistance, target, antibiotics, phenotypic screening, golden age of antibiotics
Abbreviations: TB, Tuberculosis; WHO, World Health Organization; DMPK, Drug metabolism and

pharmacokinetics; M. tb, Mycobacterium tuberculosis; BacPROTACs, Bacterial-Proteolysis Targeting

Chimeras; MDR, Multidrug-resistant; XDR, Extensively drug-resistant; InhA, Enoyl Acyl Carrier

Protein Reductase; PZA, pyrazinamide; RIF, Rifampicin; INH, Isoniazid; ETH, ethambutol; FQ,

fluoroquinolones; CID, Compound identification number.
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Introduction

Despite 20 years of new vigor in Tuberculosis (TB) drug

discovery, the number of novel compounds that have potential

utility against drug resistant TB, and that have successfully

advanced to clinical studies, is low. The Target Regimen

Profiles for TB, for example those set out by the World Health

Organization (WHO, 2016), set a high bar for contributing

drugs, aiming for regimens that shorten treatment compared

to the standard of care and are improved with respect to route of

administration (oral replacing non-oral), tolerability, drug-drug

interactions and with a limited need for monitoring.

Considering these goals and the desire to de-risk drug

candidate properties prior to clinical development, it is

understandable that significant attrition is seen across

discovery and early development, especially when considering

novel chemical series for which precise safety, pharmaceutical

and distribution, metabolism and pharmacokinetics (DMPK)

profiles are, a priori, unknown. Programs seeking to discover

and develop novel treatments suitable for drug-resistant TB face

an additional constraint that can limit options when considering

novel chemical matter - that is the requirement that the series of

interest exhibit very limited or no pre-existing resistance (Miotto

et al., 2017; Coll et al., 2018; Walker et al., 2022).

Most TB drug resistance is drug-target related, so significant

efforts have been expended towards discovery of modulators of

new targets. However, new targets, by definition, are not yet

clinically validated. So far, for the small number of development

compounds against new targets, the success rate in

demonstrating proof of concept efficacy in Early Bactericidal

Activity clinical trial trials has been high (Diacon et al., 201).

This is likely due to the care that has been taken by teams to

evaluate and preclinically-validate new targets, as well as the

good overall performance of the tools available to enable

prediction of clinical efficacy, including animal models of TB.

However, a key desirable property for novel TB treatments is the

ability to shorten treatment duration to cure, compared to the

standard of care. For this specific property, due to the limited

clinical data available, it is more challenging to predict the degree

to which a drug against a new target will contribute.

Over recent years, several strategies have emerged, to address

the risks inherent in progressing novel chemical matter against

novel targets. These involve a second look at what may be

already-existing possibilities: to leverage known antibacterial

classes for TB (with the advantage of their known safety and

DMPK profiles, but lack of pre-existing resistance), and to

“rescue” clinically validated TB drug targets (with known

clinical efficacy profiles) that have been compromised by

resistance. In both cases, this second-life brings together pre-

existing opportunities with new technologies and thinking,

against drug-resistant TB (Lohrasbi et al., 2018; Bandodkar

et al., 2020; Singh and Chibale, 2021).
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This perspective summarizes the progress of these

approaches to date, together with evident advantages and

limitations of these strategies.
Revisiting known classes and
abandoned programs from the
golden age of antibiotics

Prior to the renewed efforts of the past 20 years, the last phase of

major activity in TB drug discovery was during what is now called

“the golden age of antibiotics” (Lewis, 2013). Multiple successful TB

drugs emerged from this period, including Streptomycin (1943),

para-aminosalicylic acid (1946), isoniazid (INH, 1952),

pyrazinamide (PZA, 1952), ethambutol (ETH 1961) and

rifampicin (RIF, 1966) (Chakraborty & Rhee, 2015). Many other

TB drug research projects began and were then discontinued during

this time, often for scientific and/or business reasons. In some cases,

based on anti-M.tb activity data available at the time, classes such as

beta-lactams were developed for other antibacterial indications but

were not progressed for TB. In other cases, compounds were

advanced to early clinical studies but were discontinued due to

low probability of commercial success judged based on the

contemporary landscape and capabilities. A second, new-

millennium look at cases of these types has brought new insights

to the TB drug target space as well as progression of known classes

and molecules re-directed for potential utility against TB.
Maximizing utility of known classes

Beta-lactams are an exceptionally safe class of antibiotics.

They kill bacteria by inhibiting the transpeptidase that catalyzes

the final step in cell wall biosynthesis - a source of several

clinically validated TB drug targets. However, this class was long

considered to be ineffective against M.tb, due to rapid hydrolysis

by the M.tb beta lactamase and was never used to treat TB.

Therefore, unlike the situation for other cell wall targeting TB

drugs, no clinical record of beta-lactam resistance exists. In an

example of a successful strategy to look again at a well-known

class, evaluated the activity of carbapenems combined with

clavulanic acid, a beta-lactamase inhibitor, was evaluated

against M.tb, demonstrating potent activity of the

meropenem-clavulonate combination (Watt et al., 1992;

Huggonet et al., 2009). This opened the door to clinical

exploration of this class for TB, with early bactericidal activity

of meropenem, administered intravenously combined with

amoxicillin–clavulanic acid, demonstrated in 2016 (Diacon

et al., 2016). This clinical proof of concept motivated a search

for an oral beta-lactam with utility for TB, resulting in the

repurposing of the tricyclic beta-lactam Sanfetrinem, cilexetil,

the oral prodrug of sanfetrinem, developed by GlaxoSmithKline
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in the 1990s (Singh et al., 1996; Iavarone et al., 1997). This drug

is currently in early development (Phase 2, NCT05388448)

following preclinical demonstration of anti-M.tb activity

(Ramon-Garcia, 2019). In parallel, in an extraordinary

example of the use of pharmaceutical companies’ patrimony in

a collaborative approach, an initiative led by the Tuberculosis

Drug Accelerator consortium screened about 8900 beta-lactams

from GSK, Sanofi, Lilly, and MSD (Gold et al., 2022), looking for

safe, in vivo active and possibly beta-lactamase inhibitor

independent compounds.

In another example of successful revisiting of known classes,

spectinamides, semisynthetic analogs of Spectinomycin, which

was discovered in 1961 (Mason et al., 1961; Bergy et al., 1961),

have demonstrated efficacy against TB in mouse models and

MBX-488A has progressed to preclinical development as a

potential TB drug. Spectinomycin exhibits poor activity against

M.tb (Lee et al., 2014), despite targeting protein synthesis – a

validated TB drug target - via the 30S subunit of the bacterial

ribosome. It is used to treat gonorrheal infections but

demonstrates limited tolerability and is dosed with

intramuscular injections. The semisynthetic spectinamides, on

the other hand, demonstrate improved selectivity as well as more

potent anti-M.tb activity by avoiding efflux through the M.tb

efflux pump Rv1258c. In a remarkable medicinal chemistry

effort, Lee and colleagues optimized the series to avoid the

Rv1258c efflux pump resulting in leads that demonstrate

significant activity in acute and chronic mouse models of TB

and contribute to combinations of TB drugs (Lee et al., 2014;

Bruhn et al., 2015; Gonzalez-Juarrero et al., 2021).

Macrolides represent another class of antibacterial protein

synthesis inhibitors that were thought to lack potency and utility

against TB. This thinking has now been challenged by, for

instance, the SEQ-503 macrolide from the Sanofi Natural

Product patrimony, discovered in 1962 in Vitry-sur Seine and

named after sequana, the seine goddess in the Gallo-Roman

religion models (Lair et al., 2015). Optimization of SEQ-503 has

given rise to SEQ9 which has a lower MIC (0.6 µM) than

previously tested macrolides, for example Clarithromycin

(8 µM), and is similarly potent to the more active macrolides

reported by Falzari and colleagues (Falzari et al., 2005). Similar to

the substituted 11,12 carbazate macrolide reported by Falzari et

al, SEQ9 is active in mouse TB models (Lair et al., 2015); another

demonstration of a new activity for a revisited class of antibiotics.
Bringing today’s technologies to
yesterday’s discoveries

Beyond rethinking potential utility of known drug classes,

like ghosts from the past, compounds discovered in the golden

age of antibiotics but not advanced to market can be identified,

retrieved and re-addressed with a new view. Such activities

have been invigorated in the informatics era by document
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scanning and digitization of archives, providing the possibility

to perform extensive searches of databases to select forgotten

compounds for improvement or repurposing. Recent

examples include the unexplored cyclohexapeptide natural

product Desotamide (Miao et al., 1997), or Wollamides A

and B (Khazil et al., 2014), which exhibit antimycobacterial

activity including inhibition of intracellular M.tb in murine

bone marrow-derived macrophages. These were optimized

from 2017 resulting in improved pharmacokinetic properties

but no description of vivo efficacy has been reported yet

(Asfaw et al., 2017; Asfaw et al., 2018; Khalil et al.,

2019) (Table 1).

In the meantime, TB drug discovery also benefited from the

progresses made in peptide chemistry. After Merrifield’s discovery

(Merryfield, 1963) on solid-phase peptide synthesis in 1963 and the

introduction of basolabile 9-fluorenylmethyloxycarbonyl (Fmoc)

able to protect orthogonal side-chain groups (Carpino and Han,

1970), the automation of the process combined to the use of new

types of resins have successfully improved the speed and possibility

to explore SAR on natural compounds with total or hemisynthesis

(Kimmerlin and Sebach, 2005).

Considering the differentmergers of pharmaceutical companies,

searching and analyzing the archive (patrimony) and compound

libraries of pharma companies, not available to the public, might

represent a golden opportunity inherited from the past. This strategy

was used by Sanofi with the revival of natural product scaffolds)

discovered by Rhône-Poulenc-Rorer in the 1960-1980 era.

Griselimycin, discovered in 1964, showed success in treating TB,

butwithpoorADMEproperties (Hénazet1966;Noufflard-Gyu-Noé

and Berteaux, 1965). The discovery of its unique mechanism of

action(Klingetal., 2015) throughDnaN, supportedbyearlier reports

of the effectiveness of Griselimycin against drug-resistant M.

tuberculosis (Toyohara, 1987) led to a new drug discovery program

addressing liabilitiesof thismolecule.Advances inpeptidechemistry,

as described above, were instrumental in taking the original natural

product further to produce the lead hexyl compound.

There are many further examples of TB active compounds

uncovered from patent or literature searches that revealed

antibiotic activity on M.tb and that have been, or have

potential for optimization using modern techniques. These

include Viomycin and Capreomycin (Youmans & Youmans,

1951; Bycroft, 1972), Histogranin (Lemaire et al., 1993)

Amiclenomycin (Okami et al., 1974; Mann and Ploux, 2006;

Dey et al., 2010), Isoxazoline (Tangallapally et al., 2007;

Phanumartwiwath et al., 2021), and Pleuromutilin (Kavanagh

et al., 1951; Lemieux et al., 2018). In some cases, a close look at

such compounds using new technologies has also yielded targets

of interest, for example cyclomarin A (Renner et al., 1999;

Schmitt et al., 2011; Kiefer et al., 2019), which targets the Clp

protease complex and was recently used in a proof of concept for

chimeric small-molecule degraders, the bacterial-Proteolysis

Targeting Chimeras (BacPROTACs) in M.tb (Morreale

et al., 2022).
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TABLE 1 Compounds described in this review.

Coumpound Suspected
Target

Target
Class

Pubmed
CID

Reported Minimal
Inhibitory Concen-
tration MIC (µM)
* author generated

data

Efficasacy demonstrated
in an animal model

results can be limited by
adm routes/ poor Pk/

animal models

Discovery TB
patients

Isoniazed InhA Cell wall 3767 0.3* Yes 1912 1952

Rifampicin RNA polymerase Transcription 135398735 0.09 Yes 1957 1971

Meropenem L,D-
transpeptidase

Cell wall 441130 6.5 Yes 1976 2016

Sanfetrinem L,D-
transpeptidase

Cell wall 71452 5.3 Yes 1976? 2022 Phase 2,
NCT05388448

Spectinomycin 30S subunit of
the bacterial
ribosome

Protein
synthesis
inhibitor

15541 150 low/no activity 1961

Spectinamides 1599 30S subunit of
the bacterial
ribosome

Protein
synthesis
inhibitor

60173108 3.3 Yes 2014

Clarithromycin 23S rRNA Protein
synthesis
inhibitor

84029 8* No 1980

SEQ9 23S rRNA Protein
synthesis
inhibitor

0.7 Yes 2015

Desotamide 181446 NA 1997

Wollamides B Unknown 102341742 3 2014

Viomycin 23S/16S Translation 135398671 5.8-12 1950

Capreomycin 23S/16S Translation 3000502 5.8-12 Yes 1960 1966

Histogranine Unknown/ATP 16131189 6.9 1993

Amiclenomycin Biotin pathway Metabolism 99594 16 1975

Pyridomycin InhA Cell wall 3037036 0.55-3.0 1953

CPZEN-45 MraY/murX Cell wall 674119859 2.3 Yes 2003 Pre-Clinical
(Non-GLP)

FNDR 20364 inhibiting
ribosome
associated Gtpase
activity

translation Unknown Yes Unknown GLP
toxicology

Cyclomarin A ClpC1 proteostasis 10772429 1999

Pleuromutilin 50S subunit Translation 9886081 2.2 Yes 1951

Griselimycin DnaN Replication
inhibitor

429055 0.09 Yes 1964 1964

Ethionamide ethA Cell wall 2761171 4.5* 1956 1965

Pretomanid 456199 0.3* 2000 2019

Kanglemycin A RNA polymerase Transcription 6443924 0.36 Yes 2018

Sorangicin A RNA polymerase Transcription 657059 Unknown 1985

Corallopyronin RNA polymerase Transcription 90477824 30 1985

Fidaxomycin RNA polymerase Transcription 10034073 0.24 1987

PUM RNA polymerase Transcription 72792467 inactive 2017

D-AAP1 RNA polymerase Transcription 4 2017

Nargenicin DnaE1 Cell wall 6326334 12.5 1980

Compound 22
(Spiropyrimidinetrione)

DNA Gyrase Replication
inhibitor

1.7-5.2 Yes 2015

VXc-486/SPR720 DNA Gyrase Replication
inhibitor

Yes 2014 Phase 2,
NCT04553406

(Continued)
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Many of these golden era natural products suffer from lower

oral bioavailability. Newer drug delivery systems and formulation

technologies can be brought to bear to improve oral bioavailability

or even increase specific targeting, once again harnessing modern

technology to make use of known or re-discovered TB actives.

New formulation adapted to classical TB drugs in the hope to

overcome both toxicity and resistance has been reviewed

elsewhere (Singh et al., 2016; Mazlan et al., 2021). Combinations

of clinically validated antibiotics, encapsulated in nanoparticles,

have been investigated in macrophages and this concept could be

opening a new path to combinations of drugs with different PK/

PD parameters (Jiang et al., 2022). Furthermore, the recent

examples of FNDR 20364 (Working Group for New TB Drugs)

or CPZEN-45, a caprazamycin derived compound (Salomon et al.,

2013) indicates potential for success using these approaches.
Approaches to address highly
validated drugs and targets
compromised by resistance

Besides the possible forgotten classes and missed opportunities

from the Golden Age, several antibiotics were indeed developed and

successfully used for TB from that time and beyond. Unfortunately,

most of these are now compromised by resistance. With proven

efficacy, these drugs and their targets are well validated and a variety

of approaches have been pursued to “rescue” the targets and the

drugs themselves for further use including against resistant TB.
Rethinking known marketed drug classes
for TB

Towards rescuing known TB drugs to which resistance has

emerged, a potential “short-cut” or repurposing strategy is to

reconsider dosing of efficacious clinical anti-TB drugs, to evaluate

whether higher exposures than currently used can safely and

effectively treat TB due to infections with Mtb strains resistant to
Frontiers in Cellular and Infection Microbiology 05
that drug. Indeed, the first line drug RIF could be given at higher

doses and although current clinical trials are aiming to shorten

treatment of drug sensitive TB, the outcome of a safe higher dose

of RIF could also impactMDRTB (RIFASHORT, NCT02581527;

HIRIF, NCT01408914). The same thinking has been applied to

INHwith the INHindsight study, a phase 2A dose-ranging trial of

INH for patients with pulmonary MDR-tuberculosis

and inhA mutations (Dooley et al., 2020; Wasserman and

Furin, 2020). Alternatively, members of the same class as

existing TB drugs can be evaluated where added value on

moderately resistant clinical strains has been implied. An

example is the rifampicin analog, rifabutin, which demonstrates

activity on some RIF- resistant clinical strains (Yan et al., 2015;

Berrada et al., 2016; Alfarisi et al., 2017).

For drugs to which high level resistance has emerged, such dose

optimization is often not an option, and alternative efforts are

needed. In a noteworthy example of innovation, utilizing a known

marketed drug with a “resistance bypassing” strategy, the

potentiation of Ethionamide has been achieved, to overcome its

deleterious side effects and resistance. Ethionamide, discovered in

1956, is an intra-bacterial-prodrug that requires bioactivation

within M.tb to acquire its antibacterial effect. Screening for

“Ethionamide boosters” was conceptualized by the Institut

Pasteur of Lille (Willand et al., 2009), and this group and

collaborators have conducted fragment-based screening and

structure-based optimization efforts (Prevet et al., 2019;

Villemagne et al., 2020) towards achieving molecules inactivating

repressors of the enzymes responsible for the bioactivation of drugs

within M.tb, referred to as Small Molecules Aborting Resistance

(SMARt) (Blondiaux et al., 2017) with the subsequent discovery of

the phase 1 compound BVL-GSK098 (Working Group on New TB

Drugs). Now, this group is actively working on this concept for

other intrabacterial-prodrugs with low-level pre-existing resistance

that may rise to significant clinical resistance in the future, such as

pretonamid (Djaout, 2022).

The discovery of specific pathways and underlying druggable

targets involved in M.tb’s adaptation to and the subsequent

reduction of efficacy of clinically validated anti-TB drugs might
TABLE 1 Continued

Coumpound Suspected
Target

Target
Class

Pubmed
CID

Reported Minimal
Inhibitory Concen-
tration MIC (µM)
* author generated

data

Efficasacy demonstrated
in an animal model

results can be limited by
adm routes/ poor Pk/

animal models

Discovery TB
patients

Compound 17
(Thiazolopyridone
ureas)

DNA Gyrase Replication
inhibitor

2 Yes 2014

Gepopidacin
(GSK2140944)

DNA Gyrase Replication
inhibitor

25101874 0.38 2015
f

CID, pubchem compound identification number; DprE1, decaprenylphosphoryl-b-D-ribose 2’-epimerase (Rv3790); EthA, monooxygenase EthA (Rv3854c); DnaN, DNA polymerase III
DnaN (Rv0002); ClpC1, TP-dependent Clp protease ATP-binding subunit ClpC (Rv3596c); InhA, NADH-dependent enoyl-[acyl-carrier-protein] reductase (Rv1484); MmpL3,
ransmembrane transporter (Rv0206c); LeuRS, leucyl-tRNA synthetase (Rv0041); DnaE1, DNA polymerase III alpha subunit (Rv1547); DHFR, dihydrofolate reductase DfrA (Rv2763c).
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be of great value. Recently, ingenious use of a set of inducible

transcription factors strains, the Transcriptional Regulator Induced

Phenotype (TRIP), representing most annotated M.tb regulators

unraveled new uncharacterized regulons and downstream genes

involved in the adaptation to INH (Ma et al., 2021). Understanding

these mechanisms may lead to strategies to intervene and reverse

such drug tolerance that may be the gateway to drug resistance.

As the non-target mechanisms of TB drug resistance continue

to be uncovered, there exists an opportunity to identify and develop

modulators of these mechanisms, as potential companion drugs,

potentially lending new life to further existing TB drugs.

How can we rescue compromised
validated targets

Another approach to overcoming drug resistance is the

identification of novel scaffolds that inhibit the few clinically

validated targets of the first and second-line anti-TB drugs, which

have already shown efficacy or even treatment-shortening behavior.

Indeed, the exploitation of new or modified scaffolds against highly

validated targets for which existing TB drugs are compromised by

resistance can decrease biological and clinical failure risk associated

with pursuing compounds against new targets.

An obvious opportunity towards this aim is classical target-

based screenings and these have been conducted against validated

TB targets, seeking new chemical matter against targets for which

current drugs are compromised by resistance. However, these

have not met with much success. Small molecule uptake into and

metabolism within Mtb, as well as access to molecular targets in

the complex lipid-rich cell wall of mycobacteria, has hindered this

effort. Freely accessible algorithms have been developed and can

be used to predict mycobacterial cell wall penetration (eg

MycPermCheck) based on drug activity (Merget et al., 2013).

However, it remains to be seen whether such tools can aid in

optimizing whole cell penetration for target-based hits without

whole cell activity. Alternative approaches to screening, conducted

against validated targets and pathways, but in whole cells, may

prove more successful (Abrahams et al., 2012; Bonnett et al., 2016;

Naran et al., 2016; Abramovitch, 2018; Evans and Mizrahi, 2018;

Johnson et al., 2019; Burke et al., 2020; Smith et al., 2020).

However, the following outlines alternative and innovative

approaches towards this drug and target “rescue” goal.

Besides target-basedscreeningapproaches, repurposingand lead

optimization strategies have been applied for molecules inhibiting

validated targets in a different way to, and without cross-resistance

with, important TB drugs. As an example, treatment shortening

behavior has been clinically demonstrated with rifamycins, making

them key TB drugs. They target the beta-subunit of the RNA

polymerase complex encoded by the rpoB gene and this represents

a valuable target. However, it is unclear if RIFs are sterilizing due to

their specific binding mode, their physicochemical and excellent

pharmacokinetic-pharmacodynamic properties including lesion

penetration (Sarathy et al., 2016), or a combination of these.
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Efforts have been made to repurpose and optimize RNA

polymerase inhibitors discovered to be active in other bacterial

species. These have been assessed in M.tb. with moderate success

in vitro (Table 1). Examples are Kanglemycin (Mosaei et al.,

2018; Peek et al., 2020; Harbotte et al., 2021) and Sorangicin A

(Lilic et al., 2020) as well as compounds binding to different

pockets than RIF like Corallopyronin A (Haebich et al., 2009;

Boyaci et al., 2019); Fidaxomycin (Kurabachew et al., 2008;

Boyaci et al., 2018); PUM (Maffioli et al., 2017) and the small

molecule D-AAP1 (Lin et al., 2017). Moreover, much progress

has been made in the comprehension of M.tb’s RNAP complex

and the design of new biochemical and biophysical assays should

soon answer this tricky question (Stefan et al., 2020).

New whole‐cell phenotypic screenings focusing on the global

protein synthesis pathway, addressing both RNA polymerase and

the ribosome, may be the key of new discoveries in this field (Burke

et al., 2020). Indeed, protein synthesis inhibitors have also shown

their value as antibiotics (Kavčič et al., 2020) in TB treatment. For

instance, oxazolidinones’ contributions to regimen have proven

their treatment shortening activity inmouseTBmodels (Zhao et al.,

2014; Xu et al., 2019) as well as in the Nix-TB and ZeNix clinical

trial (Conradie et al., 2020; Conradie et al., 2022). Drug discovery

efforts to date have mostly focused on finding safer oxazolidinones

because there is very little pre-existing resistance for this class.

Inhibition of nucleic acid synthesis by inhibiting M.tb’s type II

topoisomerase, responsible for ATP-driven introduction of

negative supercoils into DNA, has proven to be a successful

strategy for antibacterial drugs. However, high level resistance to

fluoroquinolones (FQ), used as second-line TB treatments

(moxifloxacin, levofloxacin, and gatifloxacin) is observed

throughout targeted bacterial species. Significant efforts, including

target-based screens have resulted in new antibacterial drugs that

are effective against fluoroquinolone-resistant pathogens. These

include Spiropyrimidinetriones which act against type II

topoisomerase (Basarab et al., 2022; Govender et al., 2022) as well

as compounds inhibiting DNA replication with different modes of

action like the aminobenzimidazole, VXc-486, alias SPR720

(Locher et al., 2015); Thiazolopyridone ureas (Kale et al., 2014)

and more recently, Gepotidacin analogs, members of the “novel

bacterial topoisomerase inhibitors” (NBTIs) (Blanco et al., 2015;

Gibson et al., 2018). As deeply reviewed by Reiche et al. (2017), the

DNA replication machinery is encoded by essential mycobacterial

genes. Thus, other replication inhibitors are being explored

including compounds targeting topoisomerase I (Sandhaus et al.,

2016; Ekins et al., 2017), DNApolymerase complex (byNargenicin,

targeting DnaE1) (Chengalroyen et al., 2022) or Griselymicin

(DnaN) as described above. Whether or not these molecules

targeting machinery other than the fluoroquinolone target – i.e.

type II topoisomerase – will deliver efficacy similar to that of the

fluoroquinolone class – remains to be seen. As discussed in Basarab

et al., 2022, fluoroquinolones and other DNA-targeting agents that

have a characteristic mode of action, by which they elicit an SOS

response, demonstrate enhanced bactericidal killing versus those
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that do not (and tend towards bacteriostatic behavior). It is to be

determined whether specific modes of target engagement and/or

specific DMPK properties, can lead to the specific efficacy profile of

successful TB drugs such as moxifloxacin.

In addition to these efforts to rescue the targets of RIFs and

FQs, multiple programs have sought to identify replacements for

INH that inhibit its target. In the end, what may have appeared

as the most simple of rescue efforts, was not: INH is a prodrug

and most INH-resistant clinical isolates arise from mutations in

KatG, an enzyme responsible for INH activation within M.tb. So,

compounds that inhibit Enoyl Acyl Carrier Protein Reductase

(InhA), an enzyme involved in fatty acid synthesis and mycolic

acid biosynthesis, without first requiring KatG activation, should

be active against most INH resistant strains. But identifying

novel compounds that target InhA – so-called Direct InhA

Inhibitors (DIIs)- has faced many hurdles like uncorrelated

enzymatic inhibition and Mtb activity, or poor ADMET and

PK properties (Rožman et al., 2017) and have not delivered

efficacy similar to INH in mice. These DIIs might not

recapitulate entirely INH’s mode of action against M.tb.

Recent knowledge and inhibitor classes have been extensively

reviewed by Prasad et al. (Prasad et al., 2021).

Last but not least, the mysterious antibiotic PZA, a prodrug

used as a first line anti-TB drug since the 1980s, will be the most

challenging to address, since its mechanism of action is not

completely understood. Adding PZA to RIF INH and ETH

reduced the treatment time to a TB cure from 9 to 6 months

and exploring PZA’s mode of action (Ragunathan et al., 2021) may

eventually facilitate efforts to discover new pathways involved in

sterilization and treatment shortening.
Conclusion

With the increasing threat of multidrug-resistant (MDR)

and extensively drug-resistant (XDR) TB, multiple innovative

efforts have been conducted and are ongoing to identify novel

chemical matter against M.tb using a variety of screening

approaches that are agnostic to drug target. These aim to

discover novel M.tb-active classes and, in addition, have a

chance to reveal or pharmacologically validate novel targets (Li

et al., 2017; Ballinger et al., 2019; Shetye et al., 2020;

Nuermberger et al., 2022) that can be pursued. In addition,

recent advances in the understanding of TB target vulnerability

and in pharmacological and genetic validation of specific novel

targets have highlighted additional targets for further work

(Bosch et al., 2021; Koh et al., 2022; Smith et al., 2022).

Target-based or pathway-specific screens in whole cell systems

show particular promise. Multiple compounds representing the

fruits of these approaches have entered the clinical TB pipeline.

These are extensively reviewed elsewhere (Dartois and Rubin,

2022; Butler et al., 2022)
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In this article, we highlight a different swath of activities in

the TB drug discovery field; those that seek to leverage known

drugs and drug classes, previously discovered but not optimized

leads, or validated drug targets that are compromised by

resistance. These activities have met with some success and

demonstrate the power of collaborative approaches; of bringing

new technologies and innovations to bear on old drugs and

compounds, and of careful re-assessment of existing data

associated with old drugs and abandoned concepts. It is

noteworthy that about a third of the compounds reported to

the Stop TB Partnership’s Working Group on New TB Drugs as

currently undergoing preclinical or clinical development for TB,

have been developed through this type of program.

These approaches may in some cases avoid the considerable

costs, time and risks associated with the discovery and clinical

development of a totally new chemical entity and/or compounds

against a completely novel target. However, potential pitfalls

abound – the advantage of known properties and profile of an

existing class is balanced by its known liabilities. Compounds

from the Golden Age might represent forgotten possibilities but

come with the challenges inherent to natural products, including

possibly limited optimization opportunities due to the smaller

number of skilled natural products chemists involved in TB drug

discovery today. Finally, care should be taken in assessing the

chance of success when attempting to recapitulate a specific

efficacy profile of a known TB drug by seeking a novel modulator

of the same target. There is still much to learn regarding the

specific mode of target engagement, downstream events and

DMPK properties that lead to the precise clinical efficacy profiles

observed for TB drugs.

Finally, a new path to bypass resistance might not arise from

small drug molecules but from RNA network regulation such as

ncRNAmodulation (Gerrick et al., 2018) or proteinaceous inhibitors

that may disrupt important protein-protein interaction (Sala et al.,

2014), or from antimicrobial peptides (Oliveira et al., 2021).

By conducting diverse drug discovery and development

efforts that encompass both identification of novel series and

targets and the optimization or rescuing of known classes and

targets, the field may produce sufficient substrate for novel

treatment-shortening regimens that are effective against drug-

resistant TB. Directing our energies to all approaches in a

balanced, innovative and collaborative manner will undeniably

represent new hopes for fighting TB resistance.
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