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Prolonged mask wearing does
not alter the oral microbiome,
salivary flow rate or gingival
health status – A pilot study
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Bano Awan1, Jenelle Alvarez1, Shari Sklar3, Tsute Chen4,
Sumant Puri2 and Nezar N. Al-Hebshi2*

1Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States, 2Oral Microbiome
Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple
University, Philadelphia, PA, United States, 3Department of Restorative Dentistry, Kornberg School
of Dentistry, Temple University, Philadelphia, PA, United States, 4Department of Microbiology,
Forsyth Institute, Cambridge, MA, United States
The COVID-19 pandemic has resulted in the widespread use of N95 respirators

and surgical masks, with anecdotal reports among healthcare providers and the

public of xerostomia, halitosis, and gingivitis, a consortium of symptoms

colloquially termed “mask mouth”. However, this has not been scientifically

verified. The aim of this study was to assess changes in salivary flow rate,

gingival health status and oral microbiome associated with prolonged mask

use. A total of 25 dental students (mean age = 26.36 ± 1.58) were included in

the study and evaluated at three time points: T1, at the end of at least 2 months

of full-day mask wear (7.26 ± 1.56 hours/day); T2, at the end of a period of

minimal mask use (1.13 ± 1.13 hours/day); and T3, at the end of 2-3 weeks of

resuming full-day mask wear (6.93 ± 1.80 hours/day). Unstimulated whole

saliva (UWS) flow rate, xerostomia (on a quantitative scale of 10), gingival index

(GI) and plaque index (PI) were assessed at each time point. The salivary

microbiome was characterized using 16S rRNA gene sequencing. Overall,

UWS flow rates were normal (mean of 0.679 ml/min) and xerostomia, PI and

GI scores were low (Mean of 3.11, 0.33 and 0.69, respectively) with no

significant differences as a result of prolonged mask wearing. Similarly, there

were no significant microbial changes at a false discovery rate (FDR) ≤ 0.05.

However, some trends were identified using a nominal p-value cut-off of ≤

0.01, namely Gemella sanguinis, Streptococcus sp. Oral taxon 066 and Oral

taxon 058 were associated with prolonged mask wear. Trends were also seen

by gender, race and age, for example an increase in P. gingivalis and P.

intermedia with age. In conclusion, we found no evidence that prolonged

mask wear adversely affects oral health. The findings support that the oral

microbiome of healthy individuals is resilient.
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Introduction

The human oral cavity is colonized by a diverse ecosystem of

microorganisms (oral microbiome) that maintains a balanced state

through dynamic inter-microbial and host interactions. The oral

microbiome is known to influence the hosts’ state of systemic and

oral health or disease (Deo and Deshmukh, 2019). Although the

oral microbiome has been shown to exhibit fluctuations depending

on diet, circadian rhythm, and physiologic factors, a healthy

microbiome demonstrates an ability to return to equilibrium

(McBain et al., 2019).. When the oral microbiome is dysregulated,

also known as dysbiosis, there is an increase in the abundance of

periodontal pathogens such as Porphyromonas gingivalis,

Treponema denticola, and Tannerella forsythia, infectious fungi

(Candida spp.), or cariogenic bacteria (e.g. mutans streptococci

and lactobacilli) (Nishikawara et al., 2007; Costalonga and

Herzberg, 2014; Palmer, 2014; Montelongo-Jauregui and Lopez-

Ribot, 2018). These dysbioses are associated with the development

of periodontitis, dental caries, halitosis, and opportunistic mucosal

infections (Costalonga and Herzberg, 2014; Singh et al., 2014;

Lamont and Hajishengallis, 2015; Mogilnicka et al., 2020).

A key host mechanism in maintaining oral health and

microbial stability is saliva, which plays a protective role by

buffering the chemical and biological processes in the mouth,

providing enzymatic activity, and serving as an inhibitor of

pathogenic microorganisms (Amerongen and Veerman, 2002). In

dry mouth (hyposalivation), the lack of salivary secretions and its

antimicrobial properties can result in dysbiosis. For instance,

Sjögren’s syndrome is a systemic autoimmune disease that is

characterized by impaired salivation. The oral microbiota profile

analysis of those with Sjögren’s syndrome has shown a significant

difference from that of healthy patients, with increases in species

indicated with dysbiosis (e.g. members of the red complex) and a

decrease in Porphyromonas pasteri, which is associated with

periodontal health (Rusthen et al., 2019). Higher levels of

cariogenic bacteria and elevated caries prevalence has also been

observed in these patients (Mathews et al., 2008; Tsigalou et al.,

2018). Long-term mouth breathing may present similar challenges,

where drying of the teeth and oral mucosa results in changes to the

microbiome. Patients with this habit show greater counts of

Streptoccocus mutans and lactobacilli (Mummolo et al., 2020),

and higher incidence of oral malodor (halitosis) (Motta et al., 2011).

With the widespread use of masks for an extended period of

time as a result of the COVID-19 pandemic, there has been

anecdotal reports among healthcare providers and the public of

xerostomia (subjective sensation of dry mouth), halitosis, and

gingivitis after prolonged wear of mask, a consortia of symptoms

colloquially termed “mask mouth” (Colgate Palmolive, 2022).

However, the phenomenon has not been scientifically investigated.

While a recent questionnaire-based study (Purushothaman et al.,

2020) involving 250 healthcare workers showed that 35% and 22% of

the participants reported experiencing symptoms of xerostomia and

halitosis, respectively, the findings were not objectively validated, for
Frontiers in Cellular and Infection Microbiology 02
example by measurement of salivary flow rate. To the best of our

knowledge, there has been no attempts to study the effect of

prolonged mask wearing on oral health.

Therefore, the aim of this study was to examine whether

prolonged mask wearing indeed results in reduction of salivary

flow rates (hyposalivation), alterations to microbial community

composition, or shifts in gingival health status.
Materials and methods

Study design

The study was designed such as assessments were performed

at three time points: T1, immediately before winter break where

masks had been worn for extended hours daily for at least 2

months prior to the study; T2, immediately after the 2-3-week

winter break assuming mask wear would be minimal and it

would therefore serve as a “washout” period for microbiome

reset; and T3, 2-3 weeks after resuming clinical practice with

prolonged mask wearing again. The study was conducted

between December 2020 and February 2021.
Recruitment of study subjects

Twenty-five participants fulfilling the following criteria were

recruited from among Junior and Senior dental students

attending Temple University’s Kornberg School of Dentistry:

involvement in full-day clinical affairs (at minimum 5 hours per

day) while wearing masks (surgical or N95) over at least 2

months prior to the study; no evidence of candidiasis or

opportunistic oral infections; no current oral abscess,

ulcerations, or lesions caused by oral microbial agents; no

history of antibiotic, antifungal, or steroid intake within 3

months prior to sampling; not on medications that cause dry

mouth symptoms; not on triclosan or chlorhexidine mouthwash;

no recent history of dental prophylaxis in the previous 30 days;

systemically healthy as self-reported with no history of co-

morbidities like diabetes, immunodeficiencies, or respiratory

illnesses; and no diagnosis of periodontal disease.

This study was approved by the Institutional Review Board at

Temple University (Protocol no. 27761), and conducted in

accordance with the Helsinski declaration on medical research

involving human subjects. Informed consent was obtained from

all participants.
Clinical examination and assessment
of xerostomia

These were performed at each of the three time points (T1,

T2 and T3). A questionnaire was used to collect information
frontiersin.org
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about mask use and associated subjective symptoms of dry

mouth (xerostomia). The latter was evaluated as described by

Fox et al. (1985), where each positive answer was scored as 1 and

summed to give a final score out of 10, where a higher value

indicates a greater sensation of dry mouth. Clinical examination

included assessment of gingival health status using the gingival

index (GI) (Loe and Silness, 1963) and plaque index (PI) (Silness

and Loe, 1964), recorded at the six Ramfjords teeth (Ramfjord,

1959). Clinical examinations were performed by a

single examiner.
Collection of saliva and measurement of
flow rate

Subjects were instructed not to eat or drink within 2 hours of

sample collection. All samples were collected in the morning

between 8 am to 12 pm. Unstimulated whole saliva (UWS)

samples were collected at T1, T2, and T3 as detailed by Navazesh

and Kumar (Navazesh et al., 2008). Briefly, subjects were asked

to rinse their mouth with distilled water and rest for 5 minutes,

after which they sat motionless and swallowed to void mouth of

any saliva before drooling into a chilled plastic container for 5

minutes. Saliva was transferred to the laboratory on ice for

measurement of UWS flow rate and subsequent microbial

analysis. The former was calculated as follows:

Salivary   flow   rate

=  
postweight  measure − preweight  measure   gð Þ

collection   period   minð Þ
Where preweight measure is the weight of the empty

container. The rate was then reported in ml/min with the

assumption that 1 g of saliva corresponds to 1 mL (Johansson

et al., 2012).
Candida assay

Two-hundred mL aliquot of the freshly collected UWS was

plated on CHROMagar™ Candida (BD, USA) and incubated for

48h at 30°C for enumeration (colony forming units per ml) of

salivary Candida spp.
DNA extraction

For DNA extraction, 500 μl of each UWS sample were mixed

with 500 μL PBS containing 3.75 mM dithiothreitol and then

centrifuged at 13000 rpm for 10 minutes to pellet the cells.

Supernatant was discarded, and the pellets were each suspended

in 162 μL phosphate-buffered saline and 18 μL of Metapolyzyme

(Sigma, USA) and incubated at 35°C for 4 hours for digestion.
Frontiers in Cellular and Infection Microbiology 03
DNA was subsequently extracted using PureLink™ Genomic

DNA Mini Kit (Invitrogen, USA), according to manufacturer’s

instructions. DNA concentration was determined by Qubit

dsDNA HS kit (Invitrogen, USA).
16S rRNA gene sequencing and
bioinformatic analysis

Library preparation and sequencing were done at the

Integrated Microbiome Resource (IMR, Halifax, Canada).

Briefly, the degenerate primers 27FYM (Frank et al., 2008) and

519R (Lane et al., 1985) were used to prepare indexed libraries of

the V1-V3 region of the 16S rRNA gene that were subsequently

sequenced on an Illumina Miseq platform using 2*300

bp chemistry.

Forward and reverse sequences were merged using PEAR

(Zhang et al., 2014) and subsequent preprocessing of the merged

reads including quality-filtration, alignment and chimera check

was done using mothur software package version 1.39.5 (Schloss

et al., 2009) as previously described (Al-Hebshi et al., 2017). The

high-quality, non-chimeric sequences were classified to the

species-level employing our BLASTN-based algorithm (Al-

Hebshi et al., 2015; Al-Hebshi et al., 2017). A BIOM (Biological

Observation Matrix) table was generated and used for

downstream analysis with QIIME (Quantitative Insights Into

Microbial Ecology) (Caporaso et al., 2010) including generation

of taxonomy plots and calculation of species richness and

diversity. Taxonomic read counts were centered log-ratio (CLR)

transformed and used for principal component analysis (PCA)

based on Aitchison’s distances using Phyloseq (McMurdie and

Holmes, 2013) and Microbiome packages in R (Lahti and Shetty,

2017) and for differential abundance analysis using MaAsLin2

(Mallick et al., 2021). Selected significant results were plotted

using ggplot2 package in R. Given the small sample size, no

stratified analysis was done by mask type (surgical vs. N95).
Results

Demographics of the study population

Twenty-five junior and senior dental students participated in

this study with a mean age of 26.36 ± 1.58 years: 12 were females,

13 were males. Of the participants, 16 identified as White, 8 as

Asian, and 1 as African American.
Prolonged mask wear did not affect oral
health, xerostomia score or salivary rate

Consistent with our study design, there was a significant

reduction in daily mask wear from 7.26 ± 1.56 hours at T1 to
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1.13 ± 1.13 hours at T2, and then back to 6.93 ± 1.80 hours at T3

(P < 0.001). However, there were no statistical differences in

xerostomia scores, UWS flow rate, or PI and GI across the three

time points (Table 1). Overall, the scores were consistent with

good oral health (low PI, GI and xerostomia scores, and normal

salivary flow rate).

There were significant differences by gender (Supplementary

Table 1). Namely, the females reported lower hours of mask

usage but higher xerostomia score and had lower UWS flow rate.

They also showed better oral hygiene (lower PI). For the purpose

of comparison of variables by race (Supplementary Table 2),

African Americans were excluded due to limited sample size

(n=1). Hours of mask usage and xerostomia scores did not differ

between the White and Asian groups, but the latter had lower

salivary flow rate and higher GI scores.
Salivary microbial profiles

A total of 232 species belonging to 63 genera and 9 phyla

were detected in the samples – an average of 140 species and 47

genera per person. The average microbial profiles by time point,

gender and race are shown in Figure 1 and Supplementary

Figures 1A, B, respectively. Regardless of grouping, the phyla

Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and

Fusobacteria, in this order of abundance, were most dominant

and accounted for more than 99% of the average microbiome.

Similarly, at the genus level, Streptococcus, Prevotella, Rothia,

Haemophilus, Porphyromonas, Fusobacterium, Neisseria, and

Veillonella were the most dominant and made up ~80% of the

microbiome on average. At the species level, Rothia

mucilaginosa, Prevotella melaninogenica, Porphyromonas sp.

oral taxon 279, Haemophilus parainfluenzae, Streptococcus

mitis, Streptococcus infantis, Neisseria flavescens|subflava,

Fusobacterium periodonticum, Streptococcus australis and

Streptococcus salivarius were the most abundant accounting

for more than 50% of the microbiome on average.

The CHROMagar assay tested positive in 8 subjects (32%) in

T1 and 5 subjects (20%) in T2 and T3. Only one subject tested

positive in all three time points. The median CFU count was 15

CFUs/ml.
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Prolonged mask wear did not have a
significant impact on the oral microbiome

There were no statistical differences between samples across

the three time points in species richness (observed and Chao

index), alpha diversity (Shannon index) or beta diversity (PCA

plot; PERMANOVA) as illustrated in Figure 2. Differential

abundance analysis with MaAslin2 revealed no significant

differences at the default discovery rate (FDR) of 0.1. However,

using a nominal p-value of 0.01 as a cut-off identified some

differences consistent with the study design, namely a decrease at

T2 (followed by an increase in T3) in the abundances of Gemella

sanguinis and Streptococcus oral taxa 58 and 66 Figure 3.

There were no statistically significant changes in the

detection frequency of Candida spp. as a function of mask

wearing by McNemar’s test (T1 vs. T2 and T2 vs. T3).
Trends of microbial association with
other study variables

There were trends of microbial associations with demographic

and clinical characteristics independent of mask wearing. Males and

females significantly differed in beta diversity but not in species

richness or alpha diversity (Supplementary Figure 2). Differences by

race were significant for beta diversity and species richness but not

for alpha diversity. However, MaAsline analysis did not identify

differentially abundant taxa when correcting for repeated

measurements (random effect) at FDR of 0.1. Still, trends were

observed at a nominal value of 0.01, including higher abundance of

an unclassified Fusobacterium species and Prevotella oris in the

females, Actinomyces oral taxon 175 and Streptococcus anginosus in

the Asian subjects, and Eikenella corrodens and Kingella

dentitrificans in the White subjects (Supplementary Figure 3).

Additional relevant associations were identified at a nominal p-

value of 0.01. For example, an increase in age was associated with

higher abundance of the periodontal pathogens Porphyromonas

gingivalis, Prevotella intermedia, and Fusobacterium nucleatum but

lower abundance of health-associated microflora (Streptococcus

salivarus, Leptotrichia oral taxon 417, Alloprevotella oral taxon

308), as shown in Supplementary Figure 4. An increase in GI was
TABLE 1 Clinical characteristics by time point.

Variable T1n=25 T2n=25 T3n=25 P value*

No. of mask hours 7.26 ± 1.56 1.13 ± 1.13 6.93 ± 1.80 0.000

Xerostomia score 3.40 ± 2.16 2.64 ± 2.06 3.30 ± 2.32 0.140

UWS flow rate (ml/min) 0.682 ± 0.406 0.662 ± 0.314 0.694 ± 0.374 0.738

Plaque index 0.46 ± 0.31 0.27 ± 0.16 0.27 ± 0.22 0.191

Gingival index 0.68 ± 0.25 0.67 ± 0.19 0.74 ± 0.22 0.083
fron
* Friedman test.
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FIGURE 2

Species richness, alpha- and beta-diversity by time point (mask wearing). (A) Rarified taxonomic profiles were used to calculate observed
species, Chao index and Shannon’s alpha diversity for each time point. * Statistical significance was assessed with Friedman's test. (B) Principle
Component Analysis (PCA) plots were generated from centered log-ratio transformed taxonomic profiles.
FIGURE 1

Microbial profiles by time point (mask wearing). DNA extracted from unstimulated saliva samples was sequenced for V1-V3 regions of the 16S
rRNA gene using paired-end chemistry. Merged, quality-filtered were assigned species level taxonomies using a BLASTn-based algorithm.
Stacked bars represent the average relative abundances of all the identified phyla across samples, and top genera and species.
FIGURE 3

Microbial changes with mask wearing (time points). MaAsLin2 R package was used to identify significant associations with mask wearing
adjusting for age, xerostomia score, salivary rates, GI and PI as fixed effects and time point as random effect. Normalization was performed using
centered log-ratio transformation (CLR); nominal p values ≥ 0.01 were considered significant.
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associated with a decrease in Porphyromonas sp. oral taxon 285 and

Firmicutes oral taxon A55 but an increase in Leptotrichia

hongkongensis while an increase in PI was associated with a

decrease in Butyrivibrio oral taxon 455 and Veillonella parvula

Supplementary Figure 5. With higher xerostomia score, a greater

relative abundance of Streptococcus oral taxon 66 and

Lachnospiraceae oral taxon 500 was observed, whereas

Granulicatella elegans was reduced. An increase in salivary flow

rate was associated with an increase in Prevotella melaninogenica

and a decrease in Streptococcus oralis (Supplementary Figure 6).
Discussion

This study was performed to address the emerging concerns

that prolonged mask wearing may adversely affect oral health

through what is called ‘mask mouth’. Namely, we assessed the

effect of prolonged mask usage among dental students on

subjective feeling of dry mouth (xerostomia), salivary flow

rate, the oral microbiome and gingival health, which to the

best of our knowledge is being done for the first time. The study

design was challenging since ideally one would obtain baseline

measurements from a group that had not worn masks and then

follow it up after introducing mask usage. Naturally, however,

that was not possible since healthcare workers routinely use

masks as part of standard precautions that became even more

reinforced during the COVID-19 pandemic. Therefore, as a

compromise, we built the study design around the ~ 3-week

winter break which we assumed would be a period of low mask

wearing. Indeed, the student reported substantially lower daily

mask usage (~ 1 hour) in T2 compared to T1 and T3 (~7 hours).

Typical daily production of saliva ranges from 0.5 to 1.5

liters, with whole unstimulated saliva flow rates approximating

0.3-0.4 ml/min (Iorgulescu, 2009). Disruptions in salivary gland

function or hypsalivation (defined as when UWS is < 0.1 ml/

min) can lead to dysbiosis which have been observed in

individuals affected by Sjögren’s syndrome (Rusthen et al.,

2019) or in mouth-breathers (Mummolo et al., 2020). Mask

wearing has been reported to result in breathing difficulties (Li

et al., 2005; Lee and Wang de, 2011) and introducing mouth-

breathing (Kanzow et al., 2021), and thus it can be hypothesized

that mask wearing can result in some level of mouth dryness.

However, our findings did not show significant changes in UWS

flow rate with increased hours of mask wear, and it was above

the normal average of 0.3-0.4 ml/min at all time points.

Similarly, there were not significant difference in xerostomia

scores (as measured on a subjective perception scale adapted by

Fox et al. (1985)) and the average score was low (3.11 out of 10),

which is not consistent with the study by Purushothaman et al.

(2020) in which 35% of the participant reported a feeling of dry

mouth. The differences in findings may be attributed, at least in

part, to the fact that the current study assessed xerostomia on a

quantitative scale rather than as a dichotomus variable (yes/no
Frontiers in Cellular and Infection Microbiology 06
response). It is important to note though that xerostomia is

subjective complaint of dry mouth and does not necessarily

equate to inadequate salivary production (Iorgulescu, 2009; Villa

et al., 2015). Therefore, salivary flow rate is the most reliable

measure of dry mouth.

Use of N95 or surgical facemasks have been shown to induce

higher temperatures and humidity, creating a microclimate

within masks (Li et al., 2005). With the fact that physical

factors such as oxygen, moisture, and pH acting as driving

forces in creating ecological niches for different microbial

species (Human Microbiome Project, 2012), one would expect

that mask wear would present similar challenges and thus induce

compositional changes in the oral microbiome. However, there

were no significant differences observed in oral microbiological

profiles with prolonged mask use in this study. While using a

relaxed significance cut-off (i.e., a nominal value of 0.01)

revealed that Gemella sanguinis, Streptococcus sp. Oral taxon

066 and Oral taxon 058 tended to have lower abundances in T2

(low mask use) compared to T1 and T3 (prolonged mask use),

the clinical relevance of these changes is questionable. A study by

Roy et al. (2020), investigating the effect of prolonged medical

mask use on nasal and oropharyngeal microbiota through

culture-based methods similarly found no changes.

Candida spp., the most abundant members of the oral fungal

community, also did not show any significant changes across the

three time points. However, it is interesting to note that out of

the eight subject’s positive for Candida spp. at T1, six became

negative and the remaining two showed a reduction in fungal

load, a trend worth of further investigation in a larger scale study,

with more sensitive mycological analysis.

As with xerostomia, salivary flow rates, and microbiome

profiles, we did not observe significant changes in gingival health

because of prolonged mask wearing, for example lower PI and

GI in T2 compared to T1 or T3. All subjects had minimal

amounts of plaque with no to mild gingivitis (mean PI and GI

values of < 1).

There were trends of microbiome differences by gender, race,

salivary flow rate, xerostomia and age independent of mask

wearing. While discussing these trends is beyond the scope of this

paper, we would like to elaborate on the changes by age given their

clinical relevance. Despite the narrow age range, older age was

associated with an increase in the periodontal pathogens

Porphyromonas gingivalis, Prevotella intermedia, and Fusobacteria

nucleatum and a decrease in health-associated species, namely

Streptococcus salivarius, Leptotrichia sp. Oral taxon 417,

Alloprevotella sp. Oral taxon 308), which is interesting given risk

of periodontitis increases with age. Consistently Rodenburg et al.

(1990) found that Prophyromonas gingivalis increases with aging.

Similarly, in analysis of periodontitis subjects of older adults by

Feres et al. (2016), a significant elevation of Prevotella intermedia

and a trend towards higher Fusobacteria nucleatum subspecies was

noted. These finding suggests there is an increase in the levels of

these pathogens before the onset of periodontitis.
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In conclusion, the current study, using objective quantitative

methods, found no evidence that prolonged mask wear among full-

time dental students during the COVID-19 pandemic was

associated with dry mouth or adverse oral health effect, the so

called “mask mouth”. There were also no changes in the oral

microbiome which substantiates the evidence that the oral

microbiome in healthy individuals is resilient. However, the

results may not be generalizable, since dental students are young

and generally maintain good oral hygiene. It may well be that the

effect of prolonged mask use is different in older subjects or in those

with poor oral hygiene or existing gingivitis, which warrants

evaluation in a future study.
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