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Editorial on the Research Topic

The application of OMICS technologies to interrogate host-
virus interactions
Viruses can infect all types of life forms, ranging from humans to bacteria. High-

content data generated with omics technologies can be used to identify emergent properties

of these systems, providing targets for further mechanistic investigations. Since the

completion of the first genome sequencing projects, omics approaches have been used to

study the dynamics and complexity of host-virus interactions. Starting with early

microarray studies aiming to cover a fraction of the host genome and progressively

moving into deep-sequencing projects, these studies shed light on the modulation of host

gene expression profiles upon infection. In addition, changes in the protein level could be

accessed via mass spectrometry-based proteomic methods (Luo and Muesing 2014),

applied on a genome scale [reviewed in (Lum and Cristea, 2016)]. These investigations

allowed direct protein quantification that partially validated previous transcriptomic

findings and highlighted the complexity of the regulation of protein translation and

post-translation modifications during virus infection (Hoogendijk et al., 2019; Kumar et al.,

2020). More recently, network analysis has been progressively used to identify promising

targets for therapeutic interventions and drug repurposing, and is now playing a role in

vaccine development studies (Hagan et al., 2015; Pulendran et al., 2021). At the same time,

reduced sequencing costs and evolving hardware capabilities now allow for massive projects

involving multi-omics data integration (Sammut et al., 2022) and reviewed in (Wang et al.

2019; Appiasie et al., 2021). Therefore, this Research Topic discloses the state-of-the-art

omics technology applied to virus-host interactions. It introduces five selected articles from
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leading groups, covering a selection of up-to-date subjects

revealing the complexity and diversity of omics technology.
Models and markers of
disease progression

While in vitromodels are invaluable tools for the research of cell-

virus interactions, including the development of high-throughput

screenings and live cell imaging assays, robust animal models are

imperative for the understanding of immunological, physiological

and metabolic impacts of virus infections. Nonhuman primates are

an important alternative to murine models of arboviral diseases, as

several viruses, including dengue virus (DENV) and Zika virus

(ZIKV) usually fail to replicate in mice. Mask et al. investigated the

molecular signature of ZIKV in baboons. They showed that, like

infection in humans, ZIKV infection in baboons usually results

rapidly in subclinical cases, with a transient antiviral interferon-

based response signature. The similarity between human and

baboon infection suggests that the latter could be used as a model

for the investigation of the molecular basis of ZIKV infections,

including predicting the early molecular markers of case

aggravation. Among others, molecular markers are paramount for

predicting disease progression and aggravation. Moraes et al. used

label-free shotgun proteomics to investigate the role of extracellular

vesicles (EV) in the pathology of coronavirus disease of 2019

(COVID-19). They observed an increase in the abundance of EVs

in patients with severe COVID-19 and identified proteins involved

with complement and coagulation pathways, platelet degranulation,

and acute inflammatory response that might serve as markers of

severe COVID-19, as well as help explain the pathological pathways

involved with disease aggravation.
Disease transmission by
insect vectors

Arboviral diseases use insect vectors as a vehicle for virus

dissemination. In that sense, vectors must be able to allow the

virus to infect, replicate and colonize target tissues before being

transmitted to the host following a blood meal – a potential that

is influenced by several factors, collectively known as vector

capacity. The interaction of viruses with their cellular host

triggers an immunometabolic response that must be

circumvented by the virus during its replication cycle.

However, knowledge concerning how mosquito cells respond

to arboviral infections and how viruses evade this immune

response remains scant. Vasconcellos et al. studied the

proteomic profile of A. aegypti-derived Aag2 cells infected

with chikungunya virus (CHKV). They identified 196

regulated protein groups upon infection, which are related to

protein synthesis, energy metabolism, signaling pathways, and
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apoptosis, narrowing a list of proteins that could be associated

with antiviral and/or proviral mechanisms and the balance

between viral propagation and the survival of host cells. Zika

virus is an arbovirus that can cause disease associated with

negative fetal outcomes such as microcephaly (reviewed in

(Masmejan et al., 2020). A control strategy relies on

introducing Ae. aegypti mosquitoes carrying Wolbachia

pipientis to the environment, as these mosquitoes are less

susceptible to arbovirus infection and have reduced fertility.

Ramos et al. describes effects of ZIKV and Wolbachia on

reproduction and the immune system in the Ae. aegypti, using

isobaric-labeled quantitative proteomics. Mass spectrometry-

based proteomics are highly effective for assessing host-

pathogen interactions (also reviewed in (Sivanich et al., 2022).

Isobaric labeling quantitative methods allow for multiplexing,

which allows for: higher throughput, increased statistical

robustness, sample conservation, high coverage depth, and

increased efficiency. This research resulted in several crucial

findings, about the impact these microorganisms have on the

vector reproduction and immune system. The authors provide a

thorough discussion of the Ae. aegypti ovary proteome; many

Wolbachia proteins; and numerous proteins that were

modulated during infection (both mono and coinfections), in

order to investigate which pathways were altered. Importantly,

they identified that Juvenile Hormone pathway is modulated by

both ZIKV and Wolbachia; ZIKV may enhance vector

reproduction while Wolbachia seems to be harmful. Further,

ZIKV seems to facilitate infection, while Wolbachia blocks

infection and enhances immune priming. This work can be an

important resource for understanding how microorganism

infection can influence Ae. aegypti immune response and

reproducibility. These fascinating results show the utility of

isobaric labeling-based quantitative proteomics in investigating

host-pathogen interactions and can be used to better design

control strategies.
The epitranscriptomics of
infected cells

During viral infection, not only do the RNA levels of the host

cell change, but several RNA nucleotide modifications also

occur. Campos et al. tested the hypothesis that infection of

Vero cells by Severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) affects the m6A methylation patterns of cellular

transcripts that play important roles in regulating gene

expression. For this, the epitranscriptome of the infected cell

was sequenced using the Nanopore direct RNA sequencing

method. Datasets from four studies were compared and

revealed that the m6A methylation of cellular RNAs is higher

in infected cells. This paper represents a valuable data resource

for epitranscriptome changes regulating SARS-CoV-2 infection.
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