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DEAD/H-box helicases are an essential protein family with a conserved motif

containing unique amino acid sequences (Asp-Glu-Ala-Asp/His). Current

evidence indicates that DEAD/H-box helicases regulate RNA metabolism and

innate immune responses. In recent years, DEAD/H-box helicases have been

reported to participate in the development of a variety of diseases, including

hepatitis B virus (HBV) infection, which is a significant risk factor for hepatic

fibrosis, cirrhosis, and liver cancer. Furthermore, emerging evidence suggests

that different DEAD/H-box helicases play vital roles in the regulation of viral

replication, based on the interaction of DEAD/H-box helicases with HBV and

the modulation of innate signaling pathways mediated by DEAD/H-box

helicases. Besides these, HBV can alter the expression and activity of DEAD/

H-box helicases to facilitate its biosynthesis. More importantly, current

investigation suggests that targeting DEAD/H-box helicases with appropriate

compounds is an attractive treatment strategy for the virus infection. In this

review, we delineate recent advances in molecular mechanisms relevant to the

interplay of DEAD/H-box helicase and HBV and the potential of targeting

DEAD/H-box helicase to eliminate HBV infection.
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Introduction

To date, the prevalence of hepatitis B virus (HBV) infection remains high in the

Western Pacific region and Africa. HBV is a well-known hepatotropic DNA virus capable

of causing persistent infection, which further progresses to hepatic fibrosis, cirrhosis, and

liver cancer. To date, the standard therapy for HBV infection has been limited to
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interferon (IFN), an immunomodulatory agent, and nucleotide

analogs, including tenofovir, entecavir, and tenofovir

alafenamide, which function as HBV polymerase (HBp)

inhibitors. However, these approaches rarely achieve complete

viral clearance, and many undesirable adverse effects, including

fatigue, headache, and dizziness, often limit the efficacy of the

existing antiviral therapies (Tang et al., 2018; Yuen et al., 2018).

The HBV genome contains the S, C, X, and P open reading

frames (ORFs). S ORF codes HBsAg, preS1-Ag, and preS2-Ag. C

ORF contributes to the expression of the structural protein

HBcAg and secretory protein HBeAg. X and P ORFs facilitate

the production of two regulatory proteins, HBX and HBp. After

the virus binds to its receptor sodium taurocholate

cotransporting polypeptide (NTCP) and enters liver cells, viral

DNA can be transported to the host cell nucleus and converted

into closed covalent circular DNA (cccDNA). Depending on a

variety of host and viral factors, HBV cccDNA transforms into a

minichromosome that acts as a template for viral transcription.

Different viral RNAs are then translated into HBV proteins.

Sequentially, viral pre-genomic RNA (pgRNA) is encapsulated

and reverse-transcribed into HBV DNA. Subsequently, viral

DNA-containing particles are enveloped and eventually

secreted from the host cells (Fanning et al., 2019; Iannacone
Frontiers in Cellular and Infection Microbiology 02
and Guidotti, 2022) (Figure 1). The interplay between HBV and

cellular factors is important for viral replication (Ligat et al.,

2021). Hence, targeting host factors that benefit viral infection is

a promising strategy for eradicating the virus in HBV-

infected individuals.

DExD/H-box helicase is an important RNA-binding protein

superfamily of the large super family-2 (SF2) RNA helicases that

contributes to the recognition and unwinding of RNA duplexes

by specific amino acid motifs in an ATP-dependent manner.

Based on the homology of their nucleotide sequences, DExD/H-

box helicases are subdivided into DExD-box helicases (DDX)

and DExH-box helicases (DHX). A conserved motif with a

unique amino acid sequence, D-E-A-D (Asp-Glu-Ala-Asp),

exists in DDX and D-E-A-H (Asp-Glu-Ala-His) in DHX

(Ullah et al., 2022). Although DHX shares many sequences

and structural similarities with DDX proteins, the molecular

mechanisms related to RNA regulation, including RNA duplex

unwinding, mediated by these two types of DExD/H-box

helicases, are different (Gilman et al., 2017). To date, 37 DDX

and 16 DHX have been discovered in humans (Andrisani et al.,

2022), and accumulating data indicate that they are essential for

cellular RNA metabolism, including RNA transcription, RNA

splicing, RNA export, microRNA biogenesis, RNA translation,
FIGURE 1

The effect of DEAD/H-box helicases on the regulation of HBV by disrupting different steps of the viral life cycle. After interacting with NTCP and
entering host cells, the virus is uncoated and then transferred into the nucleus. Next, the HBV genome is converted into cccDNA, forms a mini-
chromosome, and is further transcribed into various viral mRNA, including pregenomic RNA (pgRNA) (3.5kb), preC mRNA (3.5kb), two envelope
mRNAs (2.1kb and 2.4kb), and X mRNA (0.7kb). The pgRNA is a translation template for viral polymerase proteins (HBp) and HBcAg. The preC
mRNA encodes HBeAg antigen. The two envelope mRNAs encode HBsAg, preS1-Ag, and preS2-Ag. X mRNA codes HBX protein. Then, pgRNA
is encapsulated into viral particles and further reverse-transcribed into DNA. Finally, intact viral particles are secreted from liver cells. RIG-I
represses HBV pgRNA. DDX60 facilitates the degradation of HBV RNA. DDX3 inhibits the transcription of viral cccDNA and suppresses viral
reverse transcription. SKIV2L is capable of degrading HBX mRNA. DDX5 inhibits HBV transcription. DHX9 promotes viral DNA replication,
interacts with and inhibits the binding of APOBEC3B to viral pgRNA. DHX36 interacts with the G-quadruplex structure of HBV cccDNA. DDX17
interacts with HBV pgRNA to restrain its encapsidation. UAP56 could facilitate the nuclear export of HBV RNA.
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and RNA decay (Ullah et al., 2022). In addition, some DExD/H-

box helicases function as DNA sensors and participate in DNA

regulation (Hu et al., 2020b; Antcliff et al., 2021). Especially, it

has been demonstrated that DExD/H-box helicases play vital

roles in multiple biological processes consisting of

hematopoiesis, cell proliferation, metabolism, signal

transduction, immune response, and inflammation, and are

relevant to the development of several diseases, including

autoimmune diseases and cancer (Cai et al., 2017; Andrisani

et al., 2022; Samir and Kanneganti, 2022). In addition, a variety

of DExD/H-box helicases can sense non-self-viral nucleic acids

(Fullam and Schroder, 2013; Ullah et al., 2022) and participate in

modulating diverse antiviral immune signaling pathways,

including Toll-like receptor (TLR) and retinoic acid-inducible

gene I (RIG-I)-like receptor (RLR) pathways (Su et al., 2021).

Therefore, further advances in understanding the effect of

DExD/H-box helicases on viral infection may contribute to the

treatment of infectious diseases caused by these viruses.

Recently, many DExD/H-box helicases, including DDX3

(Ko et al., 2014), DDX5 (Sun et al., 2022), DHX9 (Chen et al.,

2020), RIG-I (Sato et al., 2015), MDA5 (Lu and Liao, 2013),

SKIV2L (DDX13) (Shiromoto et al., 2018), DDX17 (Mao et al.,

2021), DHX36 (Meier-Stephenson et al., 2021), and UAP56

(DDX39B), have been identified to play vital roles in the

development of chronic HBV infection (Hu et al., 2020a).

Multiple molecular mechanisms, including the regulation of

HBV replication cycle and the sensitization of the innate
Frontiers in Cellular and Infection Microbiology 03
immune responses (Table 1), are identified to participate in

the control of HBV replication and associated liver diseases

mediated by these identified DEAD/H-box helicases. Here, we

outline the current view of the effect of different DExD/H-box

helicases on the modulation of HBV replication, the role of HBV

in the alteration of DExD/H-box helicases, and the potential of

DExD/H-box helicase-targeting strategies to eliminate

HBV infection.
DDX3

DDX3 is a prominent member of the DEAD/H-box helicases

involved in the regulation of RNA metabolism and has a pivotal

role in antiviral innate immunity (Wang and Ryu, 2010; Ko

et al., 2014). Current evidence suggests that DDX3 restricts HBV

replication by targeting viral transcription and reverse

transcription. For example, by relying on tetracycline-inducible

HBV-producing cells, Ko et al. demonstrated that DDX3

inhibited the transcription of viral cccDNA. Although DDX3

interacts with viral transcriptase HBp, DDX3-mediated HBV

transcription inhibition is independent of the interplay between

HBp and DDX3 (Ko et al., 2014). A common transcription

factor, which has not been well identified so far, may plausibly

contribute to DDX3-mediated transcriptional suppression of the

virus. Wang et al. showed that DDX3 does not affect pgRNA

degradation. However, depending on the interaction of HBp
TABLE 1 The detailed information on the interaction between HBV and DEAD/H-box helicases.

Target
molecules

The role
of target
molecules
on HBV
infection

The biological
processes

related to HBV
mediated by

target
molecules

The role
of HBV
on target
molecules

The viral
protein
related to
target

molecules

The small molecules against
target molecules related to
the repression of HBV

References

DDX3 Inhibition HBV life cycle/
Innate immune
response

Inhibition HBp 5-HT; AS-19; Rg3 Wang et al., 2009; Yu et al., 2010; Choi
et al., 2014; Ko et al., 2014; Kang et al.,
2019

DDX5 Inhibition HBV life cycle/
Innate immune
response

Inhibition HBX Unknown Zhang et al., 2016; Murphy et al., 2016;
Sun et al., 2022

DHX9 Promotion HBV life cycle Promotion HBX Unknown Murphy et al., 2016; Shen et al., 2020;
Shen et al., 2020

RIG-I Inhibition HBV life cycle/
Innate immune
response

Inhibition HBX/HBp poly-U/UC RNA, Poly(I:C)-HMW/
LyoVec, Inarigivir

Yu et al., 2010; Jiang and Tang, 2010;
Sato et al., 2015Asadi-Asadabad et al.,
2021; ; Lee et al., 2021; Fung et al., 2022

MDA5 Inhibition Innate immune
response

Inhibition HBX Poly(I:C)-HMW/LyoVec Wang et al., 2010; Lu and Liao, 2013;
Asadi-Asadabad et al., 2021

SKIV2L Inhibition HBV life cycle Promotion HBX Unknown Aly et al., 2016; Shiromoto et al., 2018

DDX17 Inhibition/
Promotion

HBV life cycle Promotion HBX Unknown Mao et al., 2021; Dong et al., 2022

DHX36 Inhibition HBV life cycle Unknown Unknown Unknown Meier-Stephenson et al., 2021

DDX60 Inhibition HBV life cycle Unknown Unknown Unknown Kouwaki et al., 2016

UAP56 Promotion HBV life cycle Unknown HBX Unknown Hu et al., 2020a
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with DDX3, DDX3 can be incorporated into nucleocapsids.

Furthermore, encapsidated DDX3 had an inhibitory effect on

viral reverse transcription. The suppression of HBV reverse

transcription mediated by DDX3 may be associated with the

disruption of the secondary structure of pgRNA, which is

important for HBV biosynthesis in viral nucleocapsids (Wang

et al., 2009). More importantly, the mutational analysis indicated

that the ATPase activity of DDX3 is vital for the suppression of

viral reverse transcription.

In addition, DDX3 can strengthen the activity of adapter

molecules TANK-binding kinase 1 (TBK1) and IKKϵ, based on

its interaction with IKKϵ or TBK1, which further phosphorylates
IFN-regulatory factor (IRF) 3 to initiate IFN-b production

(Schroder et al., 2008). However, a study by Wang et al.

demonstrated that to facilitate HBV infection, HBp can

restrain IFN-b production that is triggered by TLR3/TRIF and

RIG-I/melanoma differentiation-associated gene 5 (MDA5)-

associated RLR signaling pathways that are stimulated by Poly

(I:C) in the medium. Poly(I:C) was administered by lipofectin

transfection, or treated with Sendai virus, a stimulus of the RIG-I

pathway (Wang and Ryu, 2010). Furthermore, pull-down

coupled with mass spectrometry (MS) and associated

functional experiments revealed that the suppression of TLR3

or RLR signaling pathways mediated by HBp depended on the

interaction of HBp with DDX3 to suppress the activity of TBK1/

IKKϵ by blocking the binding of DDX3 to IKKϵ to suppress the

sensitization of IRF3 and restrain the expression of IFN-b
(Figure 2) (Yu et al., 2010).

Furthermore, there is evidence that multiple compounds

targeting DDX3 have satisfactory effects on the inhibition of

HBV infection in cell models. For example, Kang et al. showed

the interaction of the serotonin (5-HT) component with its

receptor located in hepatocellular cells. This component can

increase the DDX3 promoter activity to restrict HBV replication.

As previously mentioned, DDX3 can inhibit HBV replication

and sensitizes the innate immune response via TBK1/IKKϵ/
IRF3-mediated IFN-b induction (Wang and Ryu, 2010). A wide

variety of 5-HT receptors (from 5-HT1 to 5-HT7 receptors) have

been identified, and the agonist of 5-HT7 receptor AS-19 [(2S)-

(þ)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin]

is also known to activate DDX3 and suppress HBV replication

by increasing IFN‐b expression (Kang et al., 2019). In addition to
AS-19, Choi et al. found that ginsenoside Rg3, an active

ingredient in ginseng, exerts anti-HBV activity by elevating

DDX3 levels. Mechanistically, the upregulation of DDX3

expression mediated by Rg3 is related to the activation of the

DDX3 promoter. Furthermore, p53 phosphorylation mediated

by Rg3 contributes to the inhibition of Akt phosphorylation

which facilitates DDX3 expression and further activates the

TBK1/IKKϵ/IRF3 pathway to inhibit viral replication (Choi

et al., 2014).
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DDX5

DDX5 is one of the best-characterized DEAD-box helicases

and participates in multiple RNA metabolic processes, including

RNA transcription, translation, and decay (Xing et al., 2019).

Current evidence indicates that it also plays a vital role in

controlling viral replication (Cheng et al., 2018). Zhang et al.

showed that DDX5 inhibits viral replication by suppressing the

transcription of HBV cccDNA. Detailed investigations have

indicated that although DDX5 is an RNA-binding protein, it

does not bind HBV RNA. Nevertheless, inhibiting DDX5 can

reduce polycomb repressive complex 2 (PRC2) occupancy along

with decreased repressive H3K27me3 (Zhang et al., 2016), at the

HBV minichromosome formed by viral cccDNA, may leading to

increased transcription of HBV pgRNA. Especially, DDX5 could

interact with chromatin regulating protein suppressor of zeste 12

(SUZ12), one core subunit of PRC2, and based on the helicase

activity, DDX5 enhances the stabilization of SUZ12 by inhibiting

ubiquitination-mediated degradation. A recent study

demonstrated that SUZ12 has a significant antiviral effect

against HBV infection (Wang et al., 2011). Therefore, SUZ12

is speculated to play a crucial role in the inhibition of viral

transcription mediated by DDX5.

Additionally, DDX5 enhances the activation of interferon

(IFN) signaling to suppress HBV replication. Activation of the

JAK/STAT pathway plays a vital role in the antiviral response

induced by IFN (Kong et al., 2021b; You et al., 2022). Sun et al.

showed that DDX5 could bind to STAT1 mRNA and modulate

its translation by resolving a secondary RNA structure, namely

the G-quadruplex, which is in the STAT1 mRNA 5’-

untranslated region (UTR) to accelerate its expression and

activation to facilitate the sensitization of IFN-a signaling

(Sun et al., 2022) (Figure 2). Conversely, the knockdown of

DDX5 via small interfering RNA (siRNA) decreased IFN-a-
stimulated anti-HBV effects by inhibiting the expression

of STAT1.

It has been demonstrated that during HBV replication,

DDX5 is downregulated, and reduced DDX5 in HBV-

associated hepatocellular carcinoma (HCC) is related to poor

prognosis (Mani et al., 2020). In particular, Mani et al.

demonstrated that increased miR106b~25 and miR17~92

clusters, including miR-18a, miR-17, miR-19a, miR-20a, miR-

19b1, and miR-106b, which bind to the 3’-UTR of DDX5,

contribute to the repression of DDX5 induced by HBV (Mani

et al., 2020) (Figure 2). Furthermore, the decrease in DDX5

induced by HBV activated the Wnt pathway, along with elevated

mRNA expression of DVL1, SFRP4, FZD7, SFRP5, and MMP7.

In addition, the interaction of DDX5 with lncRNA HOX

transcript antisense RNA (HOTAIR) and SUZ12 contributes

to the modulation of hepatocarcinogenesis (Zhang et al., 2016).

In addition to HBV-associated HCC, the expression of DDX5
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declined in the liver tumor tissues of HBX/c-myc bitransgenic

mice. In addition, Murphy et al. suggested that DDX5 is a

substrate of HBX-DDB1-CUL4-ROC1 (CRL4 HBX) E3 ligase

(Murphy et al., 2016). Therefore, it is possible that HBX

contributes to DDX5 inhibition during HBV infection, and

further investigation is needed to confirm this assumption.
DHX9

DHX9 also participates in various cellular pathways

associated with RNA metabolism and contributes to the

regulation of viral infections (Lee and Pelletier, 2016; Guo and

Xing, 2021). To date, the expression levels of DHX9 were shown

to be increased in HBV-replicating cells and transgenic mice.

Shen et al. demonstrated that DHX9 was responsible for viral

DNA replication, and the role of DHX9 in HBV biosynthesis

relied on its helicase activity and nuclear localization.

Furthermore, Nup98, an essential component of the nuclear

pore, participates in DHX9-mediated HBV replication (Shen

et al., 2020). In addition, HBV can produce circular viral RNAs.
Frontiers in Cellular and Infection Microbiology 05
DHX9 can bind to HBV circular RNA to modulate the

production of viral circular RNA (Sekiba et al., 2018).

However, it is still unknown how DHX9 modulates the

production of circular viral RNAs during the replication of

HBV. APOBEC3B is known to inhibit HBV replication, and

its antiviral effect relies on its deaminase activity. To date, the

cellular factors that contributed to the anti-HBV effect mediated

by APOBEC3B have not been fully defined. Based on co-

immunoprecipitation, MS, and associated functional

experiments, Chen et al. discovered that the interaction of

DHX9 with APOBEC3B has a suppressive effect on the anti-

HBV effect of APOBEC3B (Chen et al., 2020). Mechanistically,

DHX9 did not affect APOBEC3B deamination activity but

inhibited the binding of APOBEC3B to viral pgRNA (Figure 1).

The current study indicates that DHX9 upregulation

mediated by the virus mainly relies on HBX. Based on tandem

affinity purification (TAP)/MS analysis, DHX9 was found to

serve as a substrate of the CRL4 HBX E3 ligase complex

(Murphy et al., 2016). However, the effect of this E3 ligase

complex on DHX9 remains unclear. In addition, Shen et al.

suggested that HBX could increase DHX9 protein expression by
FIGURE 2

The interaction of HBV with DEAD/H-box helicases to regulate the innate immune response. MDA5 and RIG-I interact with HBV RNA and
function as viral RNA sensors to sensitize the RLR signaling pathway. After being stimulated by HBV RNA, RIG-I and MDA5 activate MAVS and
then sensitize TBK1. Next, TBK1 stimulates the activation of IKKϵ and IRF3 to produce IFN-b and then repress HBV infection. HBX can interact
with MDA5, RIG-I, and MAVS to inhibit their interactions and thereby reduce the activation of the RLR signaling pathway. ADAR1 and Sp110
mediated by HBX also contribute to the modulation of the RIG-I/MDA5-mediated RLR signaling pathway. HBp could interact with DDX3 to
suppress the binding of DDX3 to TBK1 or IKKϵ and inhibit the RIG-I/MDA5-mediated RLR signaling pathway, as well as the TLR3 signaling
pathway. In addition, HBV can induce miR-164a expression to inhibit RIG-I-mediated innate immune response. HBV upregulates miR106b~25
and miR17~92 clusters to repress DDX5, which binds to STAT1 mRNA and regulates STAT1 translation when the cells are stimulated by IFN-a to
suppress viral infection. HBV promotes the activity of hexokinase (HK) and the production of lactate to inhibit the interaction between RIG-I and MAVS.
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enhancing its stability. Furthermore, the elevation of DHX9

protein regulated by HBX in hepatocytes is relevant to the

inhibition of E3 ligase mouse double minute 2 (MDM2)-

associated degradation of DHX9 (Shen et al., 2020).
RIG-I

RIG-I, also called DDX58, is a well-known immune

molecule with the ability to trigger RLR signaling, which is

composed of three DExD/H-box RNA helicases: RIG-I, LGP2

(also called DHX58), and MDA5 in the cytoplasm to regulate

MAVS activation (Kong et al., 2021b). The structures of RIG-I

and MDA5 are similar. They have a helicase domain for RNA

sensing, carboxy-terminal repressor domain (CTD) for activity

modulation, and caspase activation and recruitment domains

(CARDs) for signal transduction. RIG-I mainly binds to short

dsRNA of no more than 300 bp, and viral RNA-bearing 5’-

diphosphate can activate the RIG-I-mediated IFN response. To

date, the molecular nature of MDA5 ligands has not been well

identified, but it has been demonstrated that MDA5 is mainly

activated by long dsRNAs of over 2 kb pairs. In particular, the

presence of specific AU-rich sequences in mRNA, as well as the

lack of 2’-O-methylation in mRNA, can be identified by MDA5

(Chan and Jin, 2022). Furthermore, because of their differing

preferences for RNA binding, these two molecules can recognize

different sections of the same viral genome independently and

synergistically (Brisse and Ly, 2019). In HBV infection, whether

RIG-1 and MDA5 can recognize HBV RNA in an independent

or synergistic manner remains unclear. LGP2 contains only the

CTD and helicase domains. Because of the lack of CARDs, LGP2

is considered incompetent and inhibits RIG-I- or MDA5-

mediated signaling. After MAVS is activated, it further induces

the sensitization of TBK1, which initiates IKK-dependent

phosphorylation of NF-kB and leads to IRF3 activation to

facilitate the production of inflammatory factors and IFN (You

et al., 2022). Current evidence indicates that RIG-I is a viral RNA

sensor with the ability to recognize the 5’-ϵ region of HBV

pgRNA and induce IFN expression to inhibit infection (Figure 2)

(Sato et al., 2015). RIG-I counteracts the interplay between HBp

and viral pgRNA to restrain viral replication (Figure 1).

Furthermore, Wu et al. found that RIG-I could increase the

IFN-a-mediated immune response by elevating the levels of

different antiviral proteins, including PKR, ADAR1, OAS, and

Mx (Wu et al., 2018). Knockdown of RIG-I by a specific siRNA

also inhibits the phosphorylation of STAT1, a signaling molecule

in the IFN-associated immune pathway.

However, to facilitate viral infection, HBV utilizes N6-

methyladenosine to repress the RIG-I-mediated recognition of

viral RNA (Kim et al., 2020). The virus also blocks the expression

of RIG-1 by inducing miR-146a (Hou et al., 2016). Furthermore,

HBp and HBX were found to retrain virus-mediated RIG-I-

associated signaling. For example, HBp can control RIG-I-
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induced IFN production by disrupting the interaction of TBK1

with DDX3 (Yu et al., 2010). HBX was found to bind to RIG-I

(Figure 2) (Jiang and Tang, 2010), and residues Glu119 and

Asn118 of the viral protein were mainly responsible for the

suppression of RIG-I-related RLR signaling (Wang et al., 2020).

HBX also has the ability to interact with MAVS and counteract

the interplay between MAVS and RIG-I to block sensitization of

the IFN-b promoter (Wang et al., 2010). Additionally, HBX

regulates ADAR1 expression to block RIG-I transcription

(Wang et al., 2021). Speckled at 110 kDa (Sp110), a

transcription factor, can also control the expression of RIG-I

(Sengupta et al., 2017; You et al., 2022). The interaction between

HBX and Sp110 may downregulate RIG-I. Furthermore,

targeting HBX using 5’-triphosphate siRNA can enhance the

activation of RIG-I to stimulate the IFN-induced innate response

in HBV-infected hepatocytes and pAAV-HBV-transfected mice

(Han et al., 2011; Han et al., 2019). In addition, to inhibit RLR

signaling, HBV promotes the activity of hexokinase (HK) and

the production of lactate, which suppresses the interaction of

RIG-I with MAVS and blocks IFN production (Zhou

et al., 2021).

Lee et al. evaluated the effect of the RIG-I agonist 5’-

triphosphate-poly-U/UC pathogen-associated-molecular-

pattern (PAMP) RNA on restraining HBV cccDNA (Lee et al.,

2021). The results demonstrated that treating HBV-infected cells

with poly-U/UC RNA induces RIG-I signaling activation and

causes the upregulation of various antiviral genes, including

APOBEC3A, SAMHD1, and APOBEC3G, to repress cccDNA

formation and accelerate the decay of HBV cccDNA. In

addition, poly (I:C)-HMW/LyoVec, a RIG-1, and MDA5

agonist, was also found to inhibit HBV infection (Asadi-

Asadabad et al., 2021), with a decline in HBsAg, HBeAg, and

viral cccDNA. Furthermore, the effect of poly (I:C)-HMW/

LyoVec was observed to be relevant to the upregulation

of APOBEC3.
MDA5

MDA5 is also known as helicase-DEAD-box protein 116. As

mentioned above (You et al., 2022), subsequent to MDA5

sensitization by cytoplasmic dsRNA, the molecule activates the

MAVS-associated RLR signaling pathway to cause the production

of IFN. A study by Lu et al. indicated that the expression levels of

MDA5 were upregulated in HBV plasmid-transfected hepatoma

cells and HBV plasmid-injected mouse livers (Lu and Liao, 2013).

In particular, the authors revealed thatMDA5 associates with HBV-

specific nucleic acids, indicating that themolecule can sense HBV to

induce the sensitization of RLR signaling, and triggers IFN-b-
related innate immune responses with increased expression of

MxA and OAS1. To date, the detailed mechanisms that are

responsible for the recognition of HBV RNA by MDA5 are not

well understood. However, Ebrahim et al. observed that the mRNA
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levels of MDA5 are significantly attenuated in patients with chronic

HBV infection (Ebrahim et al., 2015). Potential explanations for

these inconsistencies include differences in the cell lines or clinical

specimens used. Among the molecules encoded by the virus, HBX

has been observed to suppress MDA5 activation via its interaction

with MDA5 (Wang et al., 2010) (Figure 2). HBX also disrupts the

interaction between MDA5 and MAVS to restrain the sensitization

of the RLR signaling pathway (Wang et al., 2010). In addition,

ADAR1 and Sp110 are linked to a reduction in MDA5 induced by

HBX (Sengupta et al., 2017; Wang et al., 2021; You et al., 2022).
SKIV2L

SKIV2L is required for exosome-mediated RNA surveillance

(Lee-Kirsch, 2022). Shiromoto et al. showed that the

inflammatory factor IL-1b could upregulate the levels of

transcription factor ATF3, which further binds to the cyclic

AMP-responsive element sequence in the SKIV2L promoter to

benefit its expression. Functionally, SKIV2L binds to HBX

mRNA and promotes its degradation to restrict viral infection

(Aly et al., 2016; Shiromoto et al., 2018). Mechanistically, with

the help of SKIV2L, HBX mRNA can bind to the RNA exosome,

and relying on HBS1L-dependent RNA quality control

mechanisms, SKIV2L facilitates the decay of HBX mRNA in

the RNA exosome (Figure 1). Furthermore, the suppression of

HBV replication mediated by SKIV2L is IFN-independent.

Shiromoto et al. found that HBX significantly increased

SKIV2L expression. However, the underlying mechanism

remains unknown.
DDX17

Mao et al. discovered that DDX17 can repress HBV

replication in a helicase-dependent manner, by the RNA-

binding activity of DDX17, which interacts with the stem-loop

structure ϵ of viral pgRNA and then restrains its encapsidation

(Mao et al., 2021) (Figure 1). However, Dong et al. found that

HBX can enhance DDX17 expression (Dong et al., 2022).

Upregulation of DDX17 further enhanced viral replication and

transcription by increasing ZWINT expression. To date, the

effects of DDX17 on HBV replication detected by separate

groups have been inconsistent, as mentioned above, and

are unknown.
DHX36

Current evidence shows that, as a member of the DEAD/H-

box helicase family, DHX36 can enzymatically unwind G-

quadruplex DNA and RNA, which are secondary nucleic acid

structures with various roles in different cellular processes
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(Antcliff et al., 2021). Meier-Stephenson et al. revealed that

DHX36 interacts with the G-quadruplex structure in the pre-

core promoter region of HBV cccDNA, which is responsible for

the generation of viral pgRNA (Meier-Stephenson et al., 2021).

The binding of DHX36 to the G-quadruplex of the viral genome

may contribute to the regulation of viral replication (Figure 1).
DDX60

DDX60 is an IFN-inducible cytoplasmic DEAD/H-box

helicase. Kouwaki et al. found that DDX60 induced by IFN-g
enhanced the degradation of HBV RNA to inhibit HBV

infection. Interestingly, the degradation of cytoplasmic viral

RNA mediated by DDX60 is faster than that of nuclear viral

RNA (Kouwaki et al., 2016) (Figure 1). Conversely, the

downregulation of DDX60 by siRNA delayed the degradation

of cytosolic HBV RNA, but not viral RNA in the nucleus.
UAP56

UAP56 is a cellular mRNA export factor (Morris et al.,

2020). UAP56 benefits HBV replication by binding to HBX to

facilitate the nuclear export of viral RNA (Figure 1).

Furthermore, UAP56 facilitates viral RNA alternative splicing

but not transcription. Moreover, the Q-motif in UAP56 is

associated with helicase activity and contributes to the

interaction between the protein and HBX (Hu et al., 2020a).

Downregulation of UAP56 impairs cytosolic accumulation of

viral RNA transcripts and reduces the levels of HBV pgRNA

splicing variants.
Conclusion and future perspectives

Here, we show that, depending on various molecular

mechanisms, different DEAD/H-box helicases participate in

the regulation of HBV replication. On the one hand, some

DEAD/H-box helicases, including DDX3, DDX17, DDX5, as

well as UAP56, directly participate in the modulation of viral

transcription, viral RNA nuclear export, pgRNA encapsidation,

and viral reverse transcription in the viral life cycle (Figure 1). In

contrast, different DEAD/H-box helicases, such as DDX3,

MDA5, RIG-I, and DDX5, function as sensors of HBV RNA

or modulate the function of adapter molecules or the translation

of distinct genes in the RLR, TLR3, and IFN-related antiviral

signaling pathways to trigger the innate immune response

(Figure 2). In addition, inhibition of HBV replication mediated

by DDX41 and DHX35 has been reported (Aly et al., 2016).

Nevertheless, the underlying mechanisms are still unclear. It

should be noted that, although DEAD/H-box helicases are

involved in HBV infection, the effect of the identified DEAD/
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H-box helicases on viral replication varies. Among the identified

DEAD/H-box helicases, only DHX9 and UAP56 have been

identified to benefit HBV replication, while other DEAD/H-

box helicases exhibit an anti-HBV effect. As stated before, 53

DEAD/H-box helicases have been identified to date (Andrisani

et al., 2022). However, only a few DEAD/H-box helicases,

presented in this review, have been found to modulate HBV

replication. In the future, more research is worthy to elucidate

the interplay between DEAD/H-box helicases and HBV.

The current standard therapy for HBV is based on IFN and

nucleus(t)ide analogs (Tang et al., 2018; Fanning et al., 2019).

IFN treatment elicits the antiviral immune response. Nucleus(t)

ide analogs restrict viral biosynthesis by disrupting HBp activity.

However, these treatments cannot eliminate the virus, and the

main treatment goal is to prevent disease progression and

improve survival and quality of life. Moreover, current

approaches often result in adverse side effects, therapeutic

resistance, and recurrence of the disease (Feng et al., 2018).

Therefore, new molecular targets are urgently required to

improve the therapeutic effects. Because of the potential

significance of DEAD/H-box helicases in the modulation of

viral replication by targeting different steps in the HBV life

cycle or participating in antiviral immune signaling pathways,

targeting these molecules is an attractive strategy to attenuate

HBV infection.

More importantly, our review indicates that the use of

different small molecules to target DDX3 and RIG-I can

effectively repress HBV replication (Choi et al., 2014; Kang

et al., 2019; Lee et al., 2021). In particular, the RIG-I agonist,

inarigivir, has undergone clinical trials for the treatment of HBV

infection in a small study. It has been demonstrated that

inarigivir can cause HBsAg reduction of more than 1 log10

IU/ml in 55% of patients. Nevertheless, 17% of patients had

significant ALT flares. One patient with necrotizing pancreatitis

was dead, and drug-induced liver steatosis and injury were also

observed. Owing to these serious adverse reactions, clinical trials

of inarigivir have been terminated (Fung et al., 2022). In addition

to inarigivir, the antiviral effects of other RIG-1 agonists,

including a synthetic 5’-triphosphate dsRNA RIG-I ligand

(3pRNA), stem-loop RNA 14 (SLR14), and a sequence-

optimized RIG-I agonist (named M8), have been explored by

different groups (Chiang et al., 2015; Mao et al., 2022; Marx et al.,

2022). In the future, the role of these RIG-1 agonists in the

treatment of HBV infections should be examined. However,

compounds targeting other DEAD/H-box helicases, including

DDX5, DHX36, and UAP56, have not yet been discovered. In

recent years, many significant breakthroughs have been achieved

in the development of DEAD/H-box helicase inhibitors to treat

cancer, and the efficacy of some DEAD/H-box helicase

inhibitors has been examined in preclinical studies (Cai et al.,

2017). To better assess whether targeting DEAD/H-box helicase

is an effective therapeutic strategy against HBV, more attention

is needed to develop compounds targeting DEAD/H-box
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helicases and explore their effect on the treatment of

HBV infection.

During HBV infection, viral proteins including HBX and

HBp have evolved multiple strategies to regulate the expression

of different DEAD/H-box helicases to facilitate infection.

Especially, HBX is a multifunctional viral molecule that is

essential for HBV replication and associated diseases (Kong

et al., 2019; Kong et al., 2021a; Kong et al., 2021c; You et al.,

2022). This review examines various evidence that indicates

HBX regulates different DEAD/H-box helicases, including

DHX9, RIG-I, and MDA5. However, the underlying

mechanisms related to HBX-induced modulation of DEAD/H-

box helicases remain poorly understood, and further

investigation is required. In addition, recent studies have

mainly focused on the effects of DEAD/H-box helicases on

HBV replication. In addition, DDX3 (Chang et al., 2006),

DDX5 (Mani et al., 2020), DHX15 (Xie et al., 2019), and

DDX17 (Dong et al., 2022), are associated with HBV-

associated HCC. The role of DEAD/H-box helicases in the

progression of different liver diseases, including hepatic

fibrosis, cirrhosis, and HCC, caused by HBV infection, is

poorly understood. Hence, it is vital to assess the effects of

different DEAD/H-box helicases, and the relevant molecular

mechanisms involved in the modulation of diverse diseases

induced by the viruses in the future.
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