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Heptadecanoic acid and
pentadecanoic acid crosstalk
with fecal-derived gut
microbiota are potential non-
invasive biomarkers for chronic
atrophic gastritis

Xiao Gai1†, Peng Qian1†, Benqiong Guo1†, Yixin Zheng1,
Zhihao Fu2, Decai Yang1, Chunmei Zhu1, Yang Cao1,
Jingbin Niu1, Jianghong Ling3, Jin Zhao2*,
Hailian Shi4* and Guoping Liu1*

1School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine,
Shanghai, China, 2School of Computer Science, Fudan University, Shanghai, China, 3Department of
Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine,
Shanghai, China, 4Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of
Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State
Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources &
Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine
Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese
Medicine, Shanghai, China
Background: Chronic atrophic gastritis (CAG), premalignant lesions of gastric

cancer (GC), greatly increases the risk of GC. Gastroscopy with tissue biopsy is the

most commonly used technology for CAG diagnosis. However, due to the invasive

nature, both ordinary gastroscope and painless gastroscope result in a certain

degree of injury to the esophagus as well as inducing psychological pressure on

patients. In addition, patients need fast for at least half a day and take laxatives.

Methods: In this study, fecal metabolites andmicrobiota profiles were detected

by metabolomics and 16S rRNA V4-V5 region sequencing.

Results: Alteration of fecal metabolites and microbiota profiles was found in CAG

patients, comparedwithhealthy volunteers. To identify themost relevant features, 7

fecalmetabolites and4microbiotawere selectedby randomforest (RF), fromAand

B sample sets, respectively. Furthermore, we constructed support vectormachines

(SVM) classifification model using 7 fecal metabolites or 4 gut microbes, or 7 fecal

metabolites with 4 gut microbes, respectively, on C sample set. The accuracy of

classifification model was 0.714, 0.857, 0.857, respectively, and the AUC was 0.71,

0.88, 0.9, respectively. In C sample set, Spearman’s rank correlation analysis

demonstrated heptadecanoic acid and pentadecanoic acid were signifificantly

negatively correlated to Erysipelotrichaceae_UCG-003 and Haemophilus,

respectively. We constructed SVM classifification model using 2 correlated fecal
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metabolites and 2 correlated gut microbes on C sample set. The accuracy of

classification model was 0.857, and the AUCwas 0.88.

Conclusion: Therefore, heptadecanoic acid and pentadecanoic acid, crosstalk

with fecal-derived gut microbiota namely Erysipelotrichaceae_UCG-003 and

Haemophilus, are potential non-invasive biomarkers for CAG diagnosis.
KEYWORDS

chronic atrophic gastritis, gut microbiota, metabonomics, random forest, support
vector machine
Introduction

Chronic atrophic gastritis (CAG) is the final consequence of an

inflammatory process which finally results in loss of appropriate

mucosal glands (Rodriguez-Castro et al., 2018). CAG is usually

considered as premalignant lesions of gastric cancer (GC), and

greatly increases the risk of GC (Park and Kim, 2015).

Gastroscopy with tissue biopsy is the most commonly used

technology for CAG diagnosis in clinic (Yu et al., 2011; Chooi

et al., 2012; Rodriguez-Castro et al., 2018). However, there are

several limitations: 1) Gastroscope, including both ordinary

gastroscope and painless gastroscope, is invasive, and need at

least half a day fasting and even need eat Laxatives, and results in

a certain degree of injury to the esophagus (Yu et al., 2011); 2)

Ordinary gastroscope often induces nausea and vomiting, which

brings psychological pressure to patients; 3) Painless gastroscope

needs anesthesia which will be a certain risk, especially for the

elderly patients with basic diseases (Schaub and Kern, 2004;

Choi et al., 2018; Hao et al., 2020). Therefore, new non-invasive

technology for CAG diagnosis in clinic is urgently expected.

Researchers paid more and more attention to dysfunction of

metabolites in gastrointestinal diseases especially in GC of rats or

patients (Yu et al., 2011; Xu et al., 2017; Zu et al., 2020; Coker et al.,

2022;Wang et al., 2022). Metabolites in plasma, such as azelaic acid,

glutamate, 2-hydroxybutyrate, urate, creatinine and threonate

characterized progressive stages from chronic superficial gastritis

(CSG) to GC andmight be the potential markers to indicate a risk of

GC. (Yu et al., 2011). Many intervention methods in traditional

Chinese medicine (TCM) such as Huangqi Jianzhong Tang (Liu

et al., 2020), electro-acupuncture and moxibustion (Liu et al., 2017;

Xu et al., 2017;He et al., 2018), aswell as berberine (Tong et al., 2021)

and palmatine (Chen et al., 2020), could modulate metabolites in

CAG rats, indicating the potential role ofmetabolites in pathological

process of CAG. However, metabolite profiles for CAG patients has

not been well-clarified yet.

The gastrointestinal tract is the site that the gut microbiota

interacts with the host. Gut microbiota produces functional
02
molecules like short-chain fatty acids and various metabolites

(Morrison and Preston, 2016). Gut microbiota even modulates

host metabolism (Morrison and Preston, 2016; Zhang et al., 2018).

Gut microbiota disturbance has been also proved to involve in

inflammatory bowel diseases which could be recovered by healthy

gutmicrobiota transplantation(Tungetal., 2011;Li et al., 2017).Also,

gutmicrobiotahomeostasis benefits the regulationof gastrointestinal

function (Cani et al., 2019). Gut microbiota is also proved to involve

in the process of CAG in rats (Sgambato et al., 2017). The abundance

of bacteria inpatientswithCAGincreasedwith the reduced secretion

of gastric acid and that the changes in intestinal microbiota

contribute to the progression from intestinal metaplasia (IM) to

gastric cancer (Sharmaet al., 1984;Parket al., 2019;Zhanget al., 2019;

Zhou et al., 2021). Similar results were also found inCAG rats (Zhou

et al., 2021). Therefore, the metabolites-microbiota crosstalk might

involve in the pathological process of CAG.

There is a crosstalk between gut microbiota and metabolites

(Wang and Zhao, 2018; Jia et al., 2021; Yang and Cong, 2021).

However, up to nowadays, there is no research demonstrating the

crosstalkbetweengutmicrobiota andmetabolites in the fecesofCAG

patients. Therefore, in present study, the microbiota profiles,

metabolites profiles and the possible crosstalk between gut

microbiota and metabolites in the feces of CAG patients were

clarified, and finally the potential non-invasive biomarkers

including gut microbiota and metabolites in the feces of CAG

patients were also investigated.
Materials and methods

Study design and population

As shown in Figure 1, we consecutively recruited 66 healthy

volunteers and 110 CAG patients who received an endoscopic

examination in Shanghai University of TCM affiliated Shuguang

Hospital, Yueyang Hospital and Longhua Hospital. The fecal

metabolites of 78 participants (A sample set) including healthy
frontiersin.org
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control group (N=30) and CAG group (N=48) were detected by

using ultraperformance liquid chromatography/tandem mass

spectrometry (UPLC-MS/MS) system (ACQUITY UPLC-Xevo

TQ-S, Waters Corp., Milford, MA, USA). The gut microbes of 65

participants (B sample set) including healthy control group (N=20)

and CAG group (N=45) were detected by using 16S rRNA

sequencing. In addition, both the profiles of gut microbes and

metabolites in feces of 33 participants (C sample set) including

healthy control group (N=16) and CAG group (N=17) were
Frontiers in Cellular and Infection Microbiology 03
detected by using UPLC-MS/MS and 16S rRNA sequencing as a

small verification cohort (Figure 1). The characteristics of the study

population were showed in Table 1. There was no significant

difference among the CAG group and HC group (A, B and C

sample sets) in the gender (p=0.103, P=0.068, P=1.000), mean age

(p=0.055, P=0.140, P=0.163), and bodymass index (BMI) (p=0.147,

P=0.277, P=0.688). The histological assessment was done by the

experienced pathologists following clinical guidelines according to

“the updated Sydney System” (Dixon et al., 1996). The inclusion
TABLE 1 The characteristics of the study population.

Groups Gender, male, n (%) Age, years,median (min-max) BMI, kg/m2, median (min-max)

CAG_a (n=48) 18 (37.50%) 53.67 (35-72) 22.72 (16.33-29.30)

HC_a (n=30) 6 (20.00%) 51.93 (40-72) 22.44 (16.02-28.52)

P values P=0.103 P=0.055 P=0.147

CAG_b (n=45) 14 (31.11%) 59.20 (38-80) 21.92 (16.33-30.30)

HC_b (n=20) 11 (55.00%) 56.60 (47-80) 22.63 (18.59-27.34)

P values P=0.068 P=0.140 P=0.277

CAG_c (n=17) 5 (29.41%) 53.47 (40-64) 24.08 (22.49-26.67)

HC_c (n=16) 5 (31.25%) 48.44 (41-56) 24.67 (23.12-27.34)

P values P=1.000 P=0.163 P=0.688
FIGURE 1

Study design and population. After pathological diagnosis and exclusion process, a total of 176 fecal samples (110 patients with CAG and 66
healthy controls) from Shanghai University of TCM affiliated Shuguang Hospital were prospectively collected. We divided into the discovery
phase and validation phase. In the discovery phase, we characterized fecal metabolites among A sample set (30 healthy controls and 48 CAG
patients) and gut microbiome among B sample set (20 healthy controls and 45 CAG patients). Furthermore, we identified the markers of gut
microbiome and fecal metabolites to construct CAG classifier by random forest model from A sample set and B sample set, respectively. In
validation phase, we constructed CAG classification model using 7 fecal metabolites or 4 gut microbes, or 7 fecal metabolites with 4 gut
microbes, respectively, on the C sample set (16 healthy controls, 17 CAG patients) to validate diagnosis efficacy.
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criteriawere a confirmeddiagnosis ofCAGaccording topathological

examination. Patients with gastric polyps, gastric bleeding, gastric

tumors, gastrointestinal resection and special gastritis were excluded.

This study was approved by the Medical Ethical Committee of

Shuguang Hospital (2020-834-41-01). All participants signed the

informed consent.

All clinical information was recorded using the questionnaire

made by our study team. Participants were given a fecal sampler

and provided detailed illustrated instructions for sample

collection. Fecal samples freshly collected from each participant

were immediately transported to the laboratory and frozen at -80°

C immediately. The biochemical reports of serum were provided

by the above hospitals.
Targeted fecal metabolomics profiling
and data processing

All fecal-derived metabolites in this study, were detected by

using UPLC-MS/MS with Q300 assay kits for a targeted

approach (Metabo-profile Biotechnology, Shanghai, China).

All samples were stored at -80°C prior to analysis. The fecal

samples were prepared as described previously (Xie et al., 2021).

Briefly, the fecal samples were lyophilized, and about 5 mg of

each sample was weighed and transferred into a safety lock tube.

Homogenization with 25 ml of ultrapure water was followed by

extraction with 120 mL of methanol containing internal

standards, followed by homogenated for another 3 min and

centrifugation at 18 000 g for 20 min. Then the supernatant was

transferred to a 96-well plate for derivatization. The following

procedures were then performed on an Biomek 4000

workstation (Biomek 4000, Beckman Coulter, Inc., Brea, CA,

USA). 20 mL of freshly prepared derivatization reagent was

added to each well, and after derivatization at 30°C for 60

min, 330 mL of ice-cold 50% methanol solution was added to

dilute the sample, then stored at -20°C for 20 minutes. This was

followed by centrifugation at 4 000 g for 30 min at 4°C, and 135

mL of the supernatant from each well was transferred to a new

96-well plate with 10 mL internal standards in each well. All of

the standards were obtained from Sigma-Aldrich (St. Louis, MO,

USA), Steraloids Inc. (Newport, RI, USA) and TRC Chemicals

(Toronto, ON, Canada). A series of standard calibration

solutions were diluted for the calibration curve. The

calibration curve and the corresponding regression coefficients

were obtained by internal standard adjustment. Then, the

absolute concentrations of 146 metabolites in fecal samples

were detected by UPLC-MS/MS by using Q300 assay kits

(Metabo-profile Biotechnology, Shanghai, China).

For mass spectrometer, capillary: 1.5 (ESI+), 2.0 (ESI-) Kv,

source temp.: 150°C, desolvation temp.: 550°C, and desolation

gas flow: 1 000 L h-1. The raw data were deposited into the

MetaboLights database (Accession number: MTBLS5990).
Frontiers in Cellular and Infection Microbiology 04
For data processing, the raw data files generated by UPLC-

MS/MS were processed by using the MassLynx software (v 4.1,

Waters Corp., Milford, MA, USA) to perform peak integration,

calibration, and quantitation for each metabolite. The calculated

absolute concentrations of metabolites were used for univariate

analyses and multivariate analyses. Statistical analysis, and

pathway analysis were processed on iMAP platform (v1.0;

Metabo-Profile, Shanghai, China). A standardized z-score

transformation was applied to convert the concentration

values to z-scores before analysis in heatmap. Potential

biomarkers of differential fecal metabolites were characterized

by P<0.05 using student t test or Wilcoxon test based on whether

the data were normally distributed between the two groups.

Partial least squares-discriminant analysis (PLS-DA) was

performed using metaX to discriminate different variables

between groups. The logarithmic change (FC) value calculated

by comparing the average of the peak area metabolites of both

groups. Kyoto Encyclopedia of Genes and Genomes (KEGG)

(http://www.genome.jp/kegg/) was used to search and identify

important metabolic pathways.
DNA extraction, 16S rRNA V4-V5 region
sequencing and data processing

Microbial community genomic DNA was extracted from

fecal samples using the QIAamp DNA Stool Mini Kit according

to manufacturer’s instructions. DNA concentration and

purity were checked by running the samples on 1.2% agarose

gels. Polymerase chain reaction PCR) amplification of 16S

rRNA genes was performed by using general bacterial primers

(515F 5’-GTGCCAGCMGCCGCGGTAA-3’ and 926R 5’-

CCGTCAATTCMTTTGAGTTT-3 ’). The primers also

contained the Illumina 5’overhang adapter sequences for two-

step amplicon library building, following manufacturer’s

instructions for the overhang sequences. The initial PCR

reactions were carried out in 50 mL reaction volumes with 1-2

mL DNA templates, 200 mM dNTPs, 0.2 mM of each primer, 5X

reaction buffer 10 mL and 1U Phusion DNA Polymerase (New

England Biolabs, USA). PCR conditions consisted of initial

denaturation at 94°C for 2 min, followed by 25 cycles of

denaturation at 94°C for 30 s, annealing at 56°C for 30 s and

extension at 72°C for 30 s, with a final extension of 72°C for 5

min. The second step PCR with dual 8-base barcodes were used

for multiplexing. Eight cycle PCR reactions were used to

incorporate two unique barcodes to either end of the 16S

amplicons. Cycling conditions consisted of one cycle of 94°C

for 3 min, followed by eight cycles of 94°C for 30 s, 56°C for 30 s

and 72°C for 30 s, followed by a final extension cycle of 72°C for

5 min. Prior to library pooling, the barcoded PCR products were

purified by using a DNA gel extraction kit (Axygen, China) and

quantified by using the FTC -3000 TM real-time PCR. The
frontiersin.org

http://www.genome.jp/kegg/
https://doi.org/10.3389/fcimb.2022.1064737
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Gai et al. 10.3389/fcimb.2022.1064737
libraries were sequenced by 2*300 bp paired-end sequencing on

the MiSeq platform using MiSeq v3 Reagent Kit (Illumina) at

Tiny Gene Bio-Tech (Shanghai) Co., Ltd. The raw reads were

deposited into the NCBI Sequence Read Archive (SRA) database

(Accession number: SRP350700).

The raw fastq files were demultiplexed based on the barcode.

PE reads for all samples were run through Trimmomatic

(version 0.35) to remove low quality base pairs using these

parameters (SLIDINGWINDOW: 50:20 MINLEN: 50).

Trimmed reads were then cut primer and adaptors by using

cutadapt (version:1.16). And then further merged using FLASH

program (version 1.2.11) with default parameters. The low

quality contigs were removed based on screen. seqs command

using the following filtering parameters, maxambig= 0,

minlength = 200, maxlength = 485, maxhomop= 8. The 16S

sequences were analyzed using a combination of software

mothur (version 1.33.3), UPARSE (usearch version v8.1.1756,

http://drive5.com/uparse/), and R (version 3.6.3). The

demultiplexed reads were clustered at 97% sequence identity

into operational taxonomic units (OTUs) by using the UPARSE

pipeline (https://drive5.com/usearch/manual8.1/uparse_

pipeline.html). The OTU representative sequences were

assignment for taxonomy against Silva 128 database with

confidence score ≧ 0.7 by the classify.seqs command in mothur.

The data were analyzed on the online platform of Majorbio

Cloud Platform (www.majorbio.com) (Ren et al., 2022). For the

alpha-diversity analysis, Shannon and Sobs index were

calculated. The linear discriminant analysis (LDA) effect size

(LEFSe) method was used to analyze significant differences

between two groups of bacterial genera on the basis of log10

LDA>2.0. We conducted the Spearman’s rank correlation

analysis to predict the correlation between fecal metabolites

and gut microbes. We used PICRUSt2 to perform the

functional prediction of gut microbiota. First, the OTU

abundance was standardized by PICRUSt. Each OTU has its

own Greengene ID, then the KEGG Ortholog (KO) information

of each OTU was obtained by Greengene ID of each OTU,

finally, the abundance of KO was also calculated. According to

the KEGG database, PICRUSt can be used to obtain the level

information of metabolic pathways, and the abundance table of

each level can be obtained respectively.
Feature selection using the random
forest and evaluation using the receiver
operator characteristic curves

Feature selection was conducted by using Python version 3.6.12

and machine learning library scikit-learn version 0.23.2. We used

random forest (RF) to calculate the importance of 35 fecal

metabolites and 27 gut microbes in CAG diagnosis, and sort them

in descending order. Then we trained an (support vector machine)

SVM classification model circularly with a step size of one, and
Frontiers in Cellular and Infection Microbiology 05
determine the significant features (biomarkers) of fecal metabolites

and gut microbes that make the best performance of classification

model on the A and B sample sets. In order to improve the

generalization ability and accuracy of the model, we used 5-fold

cross-validation and grid search. The discrimination ability of the

model was evaluated by using ROC curve, ROC space defines the

false positive rate (FPR) as theX axis and the true positive rate (TPR)

as theY axis. a coordinate point (x = FPR, y =TPR) can be calculated

by given a binary classification model and a threshold, and all

coordinate points of each threshold of a model are drawn in space,

which is called the ROC curve of a specific model. The evaluation

index is the area under the ROC curve (AUC), The AUC>0.7

indicates that the model has predictive value, the closer the AUC to

1, the better the model performance. In order to verify whether the

biomarker of fecalmetabolites and gutmicrobes canwell identify the

new data set to achieve the purpose of diagnosing CAG, the selected

biomarkers were used in the C sample set and established SVM

model, The ROC curve was also drawn for evaluation. In the process

of selecting significance features based on random forest algorithm

and establishing the SVM model, the sample set is divided into 4/5

training set and 1/5 testing set. The code had been deposited in

GitHub (https://github.com/fuzh97/SHUTCM-FDU).
Statistical analysis

The data in text were expressed as mean±standard deviation

(m±SD), M (min -max) or M (Q25, Q75). Differences between two

groups were analyzed by student t-test or Mann-Whitney (U-test)

using SPSS25.0, based on whether the data were normally

distributed between the two groups. P<0.05 were considered

statistically significant.
Results

Bile acid, total cholesterol and low-
density lipoprotein were higher in serum
of CAG patients

As demonstrated in Table 2, the levels of bile acid, total

cholesterol and low-density lipoprotein in CAG patients were

higher than those in healthy volunteers (P< 0.05). However,

there was no significant difference in the levels of high-density

lipoprotein cholesterol, triglyceride and total bilirubin between

healthy and CAG patients.
Alteration of fecal-derived metabolites
profiles in CAG patients

As shown in Figure S1, in A sample set, the composition of

fecal metabolites in CAG group and HC group was analyzed by
frontiersin.org
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metabolomics based on UPLC-MS/MS. A total of 146

metabolites belonging to 16 categories, were identified in fecal

samples from CAG_a group and HC_a group, including 31

amino acids, 27 bile acids, 24 fatty acids, 16 organic acids, 10

carbohydrates, 9 SCFAs, 6 benzonic acids, 6 indoles, 5

phenylpropanoic acids, 3 phenols, 2 phenylpropanoids, 2

benzenoids, 2 carnitines, 1 pyridine, 1 DHA and 1 steroids

and steroid derivatives.

PLS-DA is a versatile algorithm that can be used for predictive

and descriptive modelling as well as for discriminative variable

selection. In this present study, PLS-DA method was used to

reflect the difference of metabolites between HC_a group and

CAG_a group, and to investigate the aggregation tendency of the

same group and the separation tendency of the different groups.

The results demonstrated that there was a separation tendency

between HC_a group and CAG_a group. The metabolites in

CAG_a group were mainly distributed in the left quadrant, and

metabolites in HC_a group were mainly distributed in the right

quadrant. The score plots of PLS-DA are shown in Figure 2A.

As shown in Figure 2B and Table S1, there were 35 fecal

metabolites in CAG_a group significantly different from that in

HC_a group, namely 7 fatty acids (azelaic acid, heptadecanoic acid,

palmitoleic acid, pentadecanoic acid, myristic acid, oleic acid,

citramalic acid); 6 amino Acids (gamma_aminobutyric acid

(GABA), alanine, valine, sarcosine, arginine, asparagine); 4 SCFAs

(ethylmethylacetic acid, isobutyric acid, propionic acid, isovaleric

acid); 3 phenylpropanoic acids (2-phenylpropionate, phenyllactic

acid, hydrocinnamic acid); 3 organic acids (alpha-ketoisovaleric

acid, ketoleucine, 3-methyl-2-oxopentanoic acid); 2 benzoic acids

(3-aminosalicylic acid, gallic acid); 2 bile acids (lithocholic acid 3

sulfate (LCA-3S), apocholic acid (apoCA)); 2 indoles (indoleacrylic

acid, indole-3-propionic acid); 2 phenols (4-hydroxyphenylpyruvic

acid, p-hydroxyphenylacetic acid); 1 benzenoids (phenylpyruvic

acid); 1 carbohydrates (gluconolactone); 1 carnitines (carnitine); 1

phenylpropanoids (cinnamic acid). Comparing with the fecal
Frontiers in Cellular and Infection Microbiology 06
metabolites of healthy people in HC_a group, 11 fecal-derived

metabolites (cinnamic acid, indoleacrylic acid, 2-phenylpropionate,

ketoleucine, azelaic acid, 3-methyl-2-oxopentanoic acid, indole-3-

propionic acid, phenylpyruvic acid, 4-hydroxyphenylpyruvic acid,

alpha-ketoisovaleric acid, hydrocinnamic acid) were down

regulated, and 24 fecal-derived metabolites (alanine, isobutyric

acid, valine, isovaleric acid, gallic acid, palmitoleic acid, apoCA,

oleic acid, p-hydroxyphenylacetic acid, arginine, ethylmethylacetic

acid, heptadecanoic acid, citramalic acid, phenyllactic acid, 3-

aminosalicylic acid, propionic acid, GABA, asparagine, carnitine,

pentadecanoic acid, sarcosine, LCA-3S, gluconolactone, myristic

acid) were up regulated. (P< 0.05).

As shown in Figure 2C, KEGG analysis indicated that the

differentiated metabolites were mainly focused in Valine, leucine

and isoleucine biosynthesis; Valine, leucine and isoleucine

degradation; Alanine, aspartate and glutamate metabolism;

Aminoacyl-tRNA biosynthesis; Phenylalanine metabolism;

Pantothenate and coenzyme A (CoA) biosynthesis ;

Phenylalanine, tyrosine and tryptophan biosynthesis; Arginine

and proline metabolism; Propanoate metabolism; D-Arginine

and D-ornithine metabolism; Cyanoamino acid metabolism;

Taurine and hypotaurine metabolism; Tyrosine metabolism;

Pentose phosphate pathway; Ubiquinone and other terpenoid-

quinone biosynthesis; Nitrogen metabolism; Butanoate

metabolism; Glycine, serine and threonine metabolism.

As demonstrated in Figure 3, PLS-DA assay results

demonstrated that there was a separation tendency between

HC_c group and CAG_c group. The metabolites in CAG_c

group were mainly distributed in the left quadrant, and

metabolites in HC_c group were mainly distributed in the

right quadrant. The score plots of PLS-DA are shown in

Figure 3A.

In C samples set, from feces of CAG_c group and HC_c

group, there were 29 fecal metabolites belonging to 13

catergories in CAG_c group significantly different from that in
TABLE 2 Comparison of HDL-C, TG, BA, T-bil, CHOL and LDL-C between CAG_a group and HC_a group [M (Q25, Q75)].

Pathological indexes CAG_a (n=48) HC_a (n=30) P values

High density lipoprotein-cholesterol
(HDL-C) (mmol/L)

1.46 (1.41, 1.54) 1.41 (1.25, 1.60) P=0.550

Triglycerides
(TG)(mmol/L)

1.33 (0.90, 1.85) 1.26 (0.83, 1.65) P=0.590

Bile acid
(BA)(mmol/L)

3.10 (1.75, 4.40) 1.85 (1.27, 2.70) P=0.002**

Total bilirubin
(T-bil) (mmol/L)

14.20 (11.63, 16.60) 13.05(9.93, 15.53) P=0.130

Total cholesterol
(CHOL)(mmol/L)

5.67 (5.22, 6.48) 5.10 (4.85, 5.70) P=0.002**

Low density lipoprotein-cholesterol
(LDL-C) (mmol/L)

3.63 (3.41, 4.12) 3.25 (3.00, 3.64) P=0.004**

Values were expressed as M(Q25, Q75) (n = 5/group, feces; n = 10/group, cecum contents). Data were analyzed by t-test. **P < 0.01 vs. control group.
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HC_c group, namely 5 fatty acids (pentadecanoic acid, dihomo -

gamma - linolenic acid, (docosapentaenoic acid) DPA, adrenic

acid, heptadecanoic acid); 5 amino acids (glutamic acid,

dimethylglycine, 2-phenylglycine, aspartic acid, pyroglutamic

acid); 4 organic acids (lactic acid, 3-hydroxybutyric acid, 2-

hydroxybutyric acid, oxalic acid); 4 bile acids (7-DHCA (7-

dehydrocholic acid), 3-DHCA (3-dehydrocholic acid), bHDCA

(beta_hyodeoxycholic acid), 7-KetoLCA (7-ketolithocholic

acid)); 2 benzoic acids (gallic acid, phthalic acid); 2

phenylpropanoic acids (hydroxyphenyllactic acid, 3-

hydroxyphenylhydracrylic acid); 1 SCFAs (propionic acid); 1

phenylpropanoids (3,4-dihydroxyhydrocinnamic acid); 1

indoles (1H-indole-3-acetamide); 1 phenols (homovanillic

acid); 1 benzenoids (mandelic acid); 1 carbohydrates

(gluconolactone); 1 steroids and steroid derivatives

(murocholic acid). Comparing with the fecal metabolites of

healthy people in HC_c group, only 2 fecal-derived

metabolites (aspartic acid, pyroglutamic acid) were

downregulated, and 27 fecal-derived metabolites (propionic

acid, bHDCA, phthalic acid, oxalic acid, mandelic acid, 3-

hydroxybutyric acid, glutamic acid, homovanillic acid, 3-

hydroxyphenylhydracrylic acid, 1H-indole-3-acetamide, gallic

acid, dimethylglycine, 7-ketoLCA, heptadecanoic acid, DPA,
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pentadecanoic acid, murocholic acid, 3-DHCA, 7-DHCA, 2-

phenylg lyc ine , 2-hydroxybutyr ic ac id , lact ic ac id ,

hydroxyphenyllactic acid, adrenic acid, dihomo-gamma-

l ino len ic ac id , 3 ,4-d ihydroxyhydroc innamic ac id ,

gluconolactone) were upregulated. (P< 0.05) (Figure 3B,

Table S2).

As shown in Figure 3C, KEGG analysis indicated that the

differentiated metabolites were mainly focused in Propanoate

metabolism; Alanine, aspartate and glutamate metabolism;

Tyrosine metabolism; Glutathione metabolism; Nitrogen

metabol ism; Butanoate metabol ism; Synthesis and

degradation of ketone bodies; Histidine metabolism;

Nicotinate and nicotinamide metabolism; Glycine, serine and

threonine metabolism; D-Glutamine and D-Glutamate

metabolism; Cyanoamino acid metabolism; Aminoacyl−

tRNA biosynthesis; Arginine and proline metabolism;

Pantothenate and CoA biosynthes is ; beta-Alanine

metabolism; Glycolysis or Gluconeogenesis; Pyruvate

metabolism; Lysine biosynthesis; Pentose phosphate pathway;

Ubiquinone and other terpenoid-quinone biosynthesis;

Glyoxylate and dicarboxylate metabolism; Cysteine and

methionine metabolism; Tryptophan metabolism; Porphyrin

and chlorophyll metabolism.
B

C

A

FIGURE 2

Alteration of fecal-derived metabolites profiles in CAG_a patients. (A) PLS-DA indicated the difference of fecal metabolites between CAG_a and
HC_a healthy volunteers. (B) Alteration of fecal-derived metabolites profiles in CAG_a patients. (C) All differential metabolites enriched for
metabolic pathways based on KEGG analysis. Values were expressed as mean ± SD (n=30/HC_a, n=48/CAG_a) Data were analyzed by t-test or
Wilcoxon test based on whether the data were normally distributed between CAG_a group and HC_a group.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1064737
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Gai et al. 10.3389/fcimb.2022.1064737
Alteration of fecal-derived gut
microbiota profiles in CAG patients

Therefore, to clarify the change of fecal gut microbiota of

CAG patients, the diversity and composition of fecal-derived gut

microbiota were analyzed by Miseq sequencing. The Sobs index

and Shannon index were used to estimate a -diversity.

Sequencing of 16S rRNA gene V4-V5 region of gut microbiota

showed that there were no difference of Sobs index and Shannon

index in feces between HC_b group and CAG_b group (Figure

4A, B).

Linear discriminant analysis Effect Size (LEfSe) determines

the features (organisms, clades, operational taxonomic units,

genes, or functions) most likely to explain differences between

classes by coupling standard tests for statistical significance with

additional tests encoding biological consistency and effect

relevance. (Segata et al., 2011)
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Furthermore, in order to further distinguish the difference of

intestinal flora between HC_b group and CAG_b group, we used

the LEfSe to further analyze the bacterial flora markers with

significant difference between the CAG_b group and HC_b

group. The level of bacterial taxonomy chosen ranged from

phylum to genus, with the threshold value of LDA set at 2, and

linear discriminant analysis (LDA) was used to determine the

most likely explanation for the difference between the CAG_b

group and HC_b group. As demonstrated in Figure 4C and

Figure 5, there were 1 phylum (Tenericutes) and 27 genera with

significant difference between the CAG_b group and HC_b

group (Figure 5A).

In 27 genera, 2 genera namely Eggerthella and Scardovia belonged to

the phylum of Actinobacteria, 3 genera namely Paraprevotella, norank_f:

Bacteroidales_S24-7_group and Odoribacter belonged to the phylum of

Bacteroidetes; 17 genera namely [Eubacterium]_rectale_group,

Phascolarctobacterium, Subdoligranulum, Ruminococcaceae_UCG-002,
B
C

A

FIGURE 3

Alteration of fecal-derived metabolites profiles in CAG_c patients. (A) PLS-DA indicated the difference of fecal metabolites between CAG_c and
HC_c healthy volunteers. (B) Alteration of fecal-derived metabolites profiles in CAG_c patients. (C). All differential metabolites enriched for
metabolic pathways based on KEGG analysis. Values were expressed as mean ± SD (n=16/HC_c, n = 17/CAG_c). Data were analyzed by t-test
or Wilcoxon test based on whether the data were normally distributed between CAG_c group and HC_c group.
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Erysipelotrichaceae_UCG-003, Ruminococcaceae_NK4A214_group,

Veillonella, Flavonifractor, Erysipelatoclostridium, Coprococcus_3,

Caproiciproducens, Tyzzerella, Papillibacter, Terrisporobacter,

[Clostridium]_innocuum_group, Mitsuokella and Pseudobutyrivibrio

belonged to the phylum of Firmicutes, 3 genera namely Haemophilus,

unclassified_o:Rhizobiales and Sphingomonas belonging to the phylum of

Proteobacteria, 2 genera namelynorank_o:Mollicutes_RF9 andnorank_o:
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NB1-nbelonged to the phylumofTenericutes (Figure 4C). In genus level,

we found that 8 genera namely Phascolarctobacterium, Veillonella,

Haemophilus , Flavonifractor , Erysipelatoclostridium ,

Clostridium_innocuum_group, Eggerthella and Tyzzerella were

significantly increased in feces of CAG_b patients, compared with that

of HC_b people; however, there were 19 genera namely Papillibacter,

Pseudobutyrivibrio, Terrisporobacter, norank_o_NB1_n, Sphingomonas,
B

C

A D

FIGURE 4

Alteration of fecal-derived gut microbiota profiles in CAG_b patients. (A) Shannon index of OTU level indicated there is no difference of a-
diversity of gut microbiota in feces of CAG patients, compared with HC_b healthy volunteers. (B) Sobs index of OTU level indicated there is no
difference of a-diversity of gut microbiota in feces of CAG patients, compared with HC_b healthy volunteers. (C) Alteration of fecal-derived gut
microbiota profiles in CAG_b patients. (D) KEGG analysis indicated the pathways mediated by the differentiated fecal microbiota.
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Mitsuokella, Caproiciproducens, Coprococcus_3, Scardovia, Odoribacter,

u n c l a s s i fi e d _ o _ R h i z o b i a l e s , S u b d o l i g r a n u l um ,

Erysipelotrichaceae_UCG_003, Ruminococcaceae_NK4A214_group,

norank_f_Bacteroidales_S24_7_group, norank_o_Mollicutes_RF9,
Frontiers in Cellular and Infection Microbiology 10
Eubacterium_rectale_group, Ruminococcaceae_UCG_002, Paraprevotella

were significantly decreased in feces of CAG_b patients (Figure 5B).

Furthermore, as shown in Figure 4D, we further analyzed

the function of fecal-derived gut microbiota in CAG_b patients
B

A

FIGURE 5

Enriched gut microbiota profiles in feces of CAG_b patients and/or HC_b healthy volunteers. (A) Cladogram plot: red nodes indicated
significantly enriched bacterial colony with significant impact in CAG patients, and blue nodes indicated significantly enriched bacterial colony
with significant impact in HC_b healthy volunteers. Light yellow nodes indicated bacterial colony without significant difference in both CAG
patients and HC_b healthy volunteers. (B) LDA discriminant analysis histogram: red bar represented the bacterial colony enriched in CAG
patients; blue bar represented the bacterial colony enriched in the HC_b healthy volunteers.
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by PICRUSt2 analysis, the results indicated that gut microbiota

in CAG_b patients mainly involved in carbohydrate metabolism,

amino acid metabolism, energy metabolism, metabolism of

cofactors and vitamins, translation, replication and repair,

nucleotide metabolism, membrane transport, glycan

biosynthesis and metabolism, signal transduction, lipid

metabolism, cellular community-prokaryotes, biosynthesis of

other secondary metabolites, folding, sorting and degradation,

metabolism of other amino acids, drug resistance: antimicrobial,

metabolism of terpenoids and polyketides, cell growth and

death, etc.

Similar results were obtained in the feces of CAG_c and HC_c

samples. In order to further distinguish the difference of intestinal
Frontiers in Cellular and Infection Microbiology 11
flora between HC_c group and CAG_c group, LEfSe software was

used to further analyze the bacterial flora markers with significant

difference between the CAG_c group and HC_c group. The level of

bacterial taxonomy chosen ranged from phylum to genus, with the

threshold value of LDA set at 2, and linear discriminant analysis was

used to determine the most likely explanation for the difference

between the CAG_c group and HC_c group (Figure 6). The results

showed that there were 2 phylum (Fusobacteria, Lentisphaerae) and

29 genera with significant difference between the the CAG_c group

and HC_c group (Figure 6B). In 29 genera, 1 genus of Atopobium

belonged to the phylum of Actinobacteria, 2 genera namely

Paraprevotella, norank_f_ Bacteroidales_ S24-7_group belonged to

the phylum of Bacteroidetes, 1 genera of Fusobacterium belonged to
B C

A

FIGURE 6

Alteration of fecal-derived gut microbiota profiles in CAG_c patients. (A) Alteration of fecal-derived gut microbiota profiles in CAG_c patients.
(B) Cladogram plot: red nodes indicated significantly enriched bacterial colony with significant impact in CAG_c patients, and blue nodes
indicated significantly enriched bacterial colony with significant impact in healthy volunteers (HC_c). Light yellow nodes indicated bacterial
colony without significant difference in both CAG patients and healthy volunteers (HC_c). (C) LDA discriminant analysis histogram: red bar
represented the bacterial colony enriched in CAG_c patients; blue bar represented the bacterial colony enriched in the healthy volunteers
(HC_c).
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the phylum of Fusobacteria; 3 genera namely Escherichia-Shigella,

Oxalobacter, norank_f_Rhodospirillaceae belonged to the phylum of

Proteobacteria; 22 genera namely Sellimonas, Tyzzerella_3,

Marvinbryantia, Erysipelatoclostridium, Catenibacterium,

Lachnospiraceae_UCG-001, Coprococcus_2, Ruminiclostridium_6,

R um i n o c o c c a c e a e _ UCG - 0 1 4 , R um i n o c o c c u s _ 1 ,

Ruminococcaceae_UCG-003, Holdemanella, Fusicatenibacter,

Ruminococcaceae_NK4A214_group , Lachnospiraceae_

ND3007_group, [Eubacterium]_hallii_group, Erysipelotrichaceae_

UCG-003, [Eubacterium]_coprostanoligenes_group, Coprococcus_3,

[Ruminococcus]_gnavus_group, Lactobacillus, Flavonifractor

belonged to the phylum of Firmicutes (Figure 6A). There were 9

g en e r a i n c l u d i n g Ca t e n i b a c t e r i um , S e l l imona s ,

Erysipelatoclostridium, Atopobium, Flavonifractor, Fusobacterium,

Lactobacillus, Escherichia-Shigella, [Ruminococcus]_gnavus_group

were significantly enriched in the feces of CAG_c samples; and

20 genera namely Tyzzerella_3, Oxalobacter, Marvinbryantia,

Lachno sp i ra c eae_UCG-001 , Rumin i c l o s t r i d ium_6 ,

Erysipelotrichaceae_UCG-003, Coprococcus_2, Coprococcus_3,

[Eubacterium]_coprostanoligenes_group, [Eubacterium]

_hallii_group, norank_f:Rhodospirillaceae, Ruminococcaceae_UCG-

003, Lachnospiraceae_ND3007_group, Fusicatenibacter,

Ho ldemane l la , Ruminococcaceae_NK4A214_group ,
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norank_f_Bacteroidales _S24-7_group, Paraprevotella,

Ruminococcaceae_UCG-014, Ruminococcus_1 were significantly

enriched in the feces of HC_c samples (Figure 6C).
Feature selection using the RF and
evaluation using the ROC curves

Feature selection of 35 fecal metabolites on
the A sample set

As demonstrated in Figure 7, we used RF to calculate the

importance of 35 fecal metabolites and trained an SVM

classification model on the A sample set. We determined the

biomarkers of fecal metabolites according to the best accuracy of

classification model (details are shown in the “ Materials and

methods” section). When the features were 7 fecal metabolites,

the best accuracy of classification was 0.938 (Figure 7A). The

importance of 7 fecal metabolites in descending order was

heptadecanoic acid (0.079), azelaic acid (0.077), indoleacrylic

acid (0.071), indole-3-propionic acid (0.067), pentadecanoic acid

(0.055), palmitoleic acid (0.047), 2-phenylpropionate (0.043)

(Figure 7B). Then ROC curves were used to evaluate the

classification ability of the model. The results have shown that
B

C D

A

FIGURE 7

Feature selection of fecal metabolites by using the random forest (RF) and evaluation using the ROC curves. (A) The accuracy changes of
classification model on the A sample set. (B) The importance in descending order (7 fecal metabolites). (C) Evaluation using ROC curve on the A
sample set. (D) Evaluation using ROC curve on the C sample set.
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7 fecal metabolites could distinguish CAG patients from healthy

controls, as indicated by the AUC, which had a value up to 0.94

on the A set (Figure 7C). Moreover, we constructed SVM

classification model using 7 fecal metabolites on the C sample

set. The accuracy of classification model was 0.714. The AUC

was 0.71 (Figure 7D).

Feature selection of 27 gut microbes on the B
sample set

As demonstrated in Figure 8, we used RF to calculate the

importance of 27 gut microbes and trained a SVM classification

model on the B sample set. We determined the biomarkers of gut

microbes according to the best accuracy of classification model

(details are shown in the “ Materials and methods” section).

When the features were 4 gut microbes, the best accuracy of

classification was 0.923 (Figure 8A). The importance of 4 gut

microbes in descending order was g:Phascolarctobacterium

(0.115), g:Erysipelotrichaceae_UCG-003(0.077), g:Veillonella

(0.070), g:Haemophilus(0.064)(Figure 8B). Then ROC curves
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were used to evaluate the classification ability of the model. The

results have shown that 4 gut microbes could distinguish CAG

patients from healthy controls, which had a value up to 0.95 on

the A set (Figure 8C). Moreover, we constructed SVM

classification model using 4 gut microbes on the C sample set.

The accuracy of classification model was 0.857. The AUC was

0.88 (Figure 8D).

Classification model based on fecal
metabolites and gut microbes on the C
sample set

As shown in Figure 9, we used RF and SVM to calculate the

features importance (7 fecal metabolites and 4 gut microbes) and

trained a classification model on the C sample set. The

importance of 7 fecal metabolites and 4 gut microbes in

descending order was Heptadecanoic acid (0.152), g:

Erysipelotrichaceae_UCG-003(0.146), 3-Indolepropionic acid

(0.104), g:Veillonella(0.102), Pentadecanoic acid(0.100), Azelaic

acid(0.078), g:Phascolarctobacterium(0.070), 2-Phenylpropionate
B

C D

A

FIGURE 8

Feature selection of fecal gut microbes on the B sample set by using the random forest (RF) and evaluation using the ROC curves. (A) The
accuracy changes of classification model on the B sample set. (B) The importance in descending order(4 gut microbes). (C) Evaluation using
ROC curve on the A sample set. (D) Evaluation using ROC curve on the C sample set.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1064737
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Gai et al. 10.3389/fcimb.2022.1064737
(0.068), Indoleacrylic acid(0.061), Palmitoleic acid(0.061), g:

Haemophilus(0.056)(Figure 9A). The accuracy of classification

model was 0.857. And the AUC was 0.90 (Figure 9B). The

results have shown that 7 fecal metabolites and 4 gut microbes

could distinguish CAG patients from healthy controls.

Then we conducted the Spearman’ s rank correlation

analyses to discovery the correlation between 7 metabolites

and 4 gut microbiotas on the C sample set. Interestingly,

Heptadecanoic acid was significantly negatively correlated to

Erysipelotrichaceae_UCG-003 (Figure 9C, R=-0.347, P=0.048, p

< 0.05); Pentadecanoic acid was significantly negatively

correlated to Haemophilus (Figure 9C, R=-0.364, P=0.037, P

< 0.05);

The above result showed that 2 correlated fecal metabolites

and 2 correlated gut microbes maybe more imported for CAG

diagnosis. So, we constructed SVM classification model using 2
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correlated fecal metabolites and 2 correlated gut microbes on the

C sample set. The accuracy of classification model was 0.857.

The AUC was 0.88 (Figure 9D).
Discussion

Although gastroscopy with tissue biopsy is the most used

technology for CAG diagnosis (Chooi et al., 2012; Rodriguez-

Castro et al., 2018), it is always an uncomfortable experience for

CAG patients because of its invasive process, fasting, eating

laxatives, esophagus injury, nausea and vomiting as well as

psychological pressure. Therefore, new non-invasive effective

methods for CAG diagnosis in clinic is very urgent.

Disturbed metabolites in blood are often associated with

different diseases (Yu et al., 2011; Xu et al., 2017; Zu et al., 2020;
B

C D

A

FIGURE 9

Classification model based on fecal metabolites and gut microbes on the C sample set. (A) The importance in descending order (7 fecal
metabolites and 4 gut microbes). (B) Evaluation using ROC curve on the C sample set. (C) Spearman correlation heatmap, Spearman’s
correlation between 7 fecal metabolites and 4 gut microbes, the abscissa is 7 metabolites and the ordinate is 4 intestinal flora, the color scale
represents the spearman r value, with red and blue indicating positive and negative correlations, respectively, and *p< 0.05. (D) Evaluation using
ROC curve on the C sample set (2 fecal metabolites and 2 gut microbes).
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Coker et al., 2022; Wang et al., 2022). Previous researches

indicated that in blood plasma, fifteen identified metabolites

contributed most to the differentiating between CSG and GC,

and characterized different stages of GC. 2-hydroxybutyrate,

pyroglutamate, glutamate, asparagine, azelaic acid, ornithine,

urate, 11-eicosenoic acid, 1-monohexadecanoylglycerol and g-

tocopherol were increased, while creatinine, threonate were

decreased in GC patients, indicating that oxidative stress and

perturbed metabolism of amino acids and fatty acids might be

invovled in the pathological process of GC (Yu et al., 2011).

However, as to CAG, in CAG rats, 19 plasma metabolites and 18

urine metabolites were enrolled to construct the circulatory and

excretory metabolome of CAG rats, which was in response to

alterations of energy metabolism, inflammation, immune

dysfunction, as well as oxidative stress. Seven plasma

biomarkers and 7 urine biomarkers were screened to elucidate

the pathogenesis of CAG based on the further correlation

analysis with biochemical indexes. Finally, 3 plasma

biomarkers (arginine, succinate and 3-hydroxybutyrate) and 2

urine biomarkers (a-ketoglutarate and valine) highlighted the

potential to indicate risks of CAG in virtue of correlation with

pepsin activity and ROC analysis (Cui et al., 2017). However,

characteristic metabolites profiles of CAG in patients has not

been well-clarified yet. Moreover, metabolites profiles, gut

microbiota profiles as well as crosstalk between bacteria and

metabolites in feces of CAG patients has not been clarified yet. In

our present study, metabolites profiles, gut microbiota profiles as

well as the possible crosstalk between bacteria and metabolites in

feces of CAG patients were clarified, moreover, the biomarkers

including metabolites and gut microbiota for CAG patients were

also identified.

RF is a classifier containing multiple decision trees, each of

trees is a classifier. For an input sample, N trees will have N

classification results (Reynolds et al., 2019). RF integrates the

results of all the classification votes, designating the category

with the highest number of votes as the file output, which is

equivalent to sampling both the sample and the features, thus

enhancing generalization. The main advantages of the RF

algorithm are: the small variance of the trained module, its

generalization ability and its insensitivity to partially missing

features due to the use of random sampling (Noble, 2006). Then

ROC curves were used to evaluate the classification ability of

the model.

In the present study, we demonstrated that there were 35

metabolites significantly changed in the feces of CAG patients in

A sample set, compared with healthy volunteers. Using RF, 7 fecal

metabolites (heptadecanoic acid, azelaic acid, indoleacrylic acid,

indole-3-propionic acid, pentadecanoic acid, palmitoleic acid, 2-

phenylpropionate) were selected from A sample set, to classify

CAG from healthy people, as indicated by AUC on the A set. SVM

is very powerful classifiers in complex datasets compared to the

other many machine methods (Reynolds et al., 2019). It aims to
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create a decision boundary between two classes that enables the

prediction of labels from one or more feature vectors (Noble,

2006). SVM as a classifier has been used in cancer classification

(Reynolds et al., 2019; Huang et al., 2018) and biomarker selection

(Zhang et al., 2021), since the high throughput microarray gene

expression data was available in the early 2000’s. In our present

study, after constructing SVM classification model using 7 fecal

metabolites, the accuracy of classification model was 0.71, and the

AUC was 0.71 on the C sample set. Therefore, metabolites

disturbance indeed involves in the process of CAG, and could

clarify CAG from healthy volunteers.

Gut microbiota lives in the gastrointestinal tract, and

involving in modulating gastrointestinal function through

producing functional molecules and metabolites, and interacting

with the host metabolism (Morrison and Preston, 2016; Zhang

et al., 2018). Healthy gut microbiota transplantation could recover

inflammatory bowel diseases induced by gut microbiota

disturbance (Tung et al., 2011; Li et al., 2017). Intestinal

microbiota alteration in patients with CAG resulted in the

reduced secretion of gastric acid and also contributed to the

progression from IM to gastric cancer (Sharma et al., 1984; Park

et al., 2019; Zhang et al., 2019; Zhou et al., 2021). However, the

detailed relation of intestinal microbiota and CAG has been

poorly investigated. In present study, the abundance of many

fecal bacteria was significantly altered in CAG patients, compared

with healthy volunteers. Then we used RF to select features of fecal

bacteria for CAG patients. By using RF, 4 gut microbes

(g_Phascolarctobacterium, g_Erysipelotrichaceae_UCG-003,

g_Veillonella, g_Haemophilus) were selected as the features to

classify CAG from healthy volunteers in B sample set. After

constructing SVM classification model using 4 gut microbes,

and the accuracy of classification model was 0.857 and the AUC

was 0.88 on the C sample sets. Thus, fecal microbiota alteration

especially g_Phascolarctobacterium, g_Erysipelotrichaceae_UCG-

003, g_Veillonella, g_Haemophilus, could be as biomarkers for

CAG patients.

There is a crosstalk between gut microbiota and metabolites

(Wang and Zhao, 2018; Jia et al., 2021; Yang and Cong, 2021).

However, up to nowadays, there is no research demonstrating

the crosstalk between gut microbiota and metabolites in feces of

CAG patients. In present study, RF and SVM were used to

calculate the features importance (including the above 7 fecal

metabolites and the above 4 gut microbes) and trained a

classification model on the C sample sets. The accuracy of

classification model was 0.857, and the AUC was 0.90. The

results have shown that 7 fecal metabolites and 4 gut microbes

could distinguish CAG patients from healthy volunteers. And it

also indicated that it might be better to use features including

fecal gut microbiota and fecal metabolites, than that of only

using gut microbiota or metabolites to clarify CAG from healthy

people, indicating there might be a crosstalk between fecal-

derived microbiota and metabolites.
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Therefore, we further used Spearman’s rank correlation

analysis to predict the possible fecal-derived gut microbiota-

metabolites crosstalk in CAG patients in the C sample set.

Interestingly, in the selected above 7 fecal metabolites and the

above 4 gut microbes, heptadecanoic acid was significantly

negatively correlated to Erysipelotrichaceae_UCG-003; and

pentadecanoic acid was significantly negatively correlated to

Haemophilus, indicating a possible intricate relationship

between fecal microbiota and fecal metabolites, such as

heptadecanoic acid , Erys ipe lo tr i chaceae_UCG-003 ,

pentadecanoic acid, Haemophilus. We further constructed SVM

classification model using 2 correlated fecal metabolites and 2

correlated gut microbes on the C sample sets. The accuracy of

classification model was 0.857, and the AUC was 0.88. The

accuracy of classification model and AUC with heptadecanoic

acid, Erysipelotrichaceae_UCG-003, pentadecanoic acid,

Haemophilus, was similar with that with 4 gut microbiota and 7

metabolites, indicating there is possibly a crosstalk between

heptadecanoic acid and Erysipelotrichaceae_UCG-003, as well as

pentadecanoic acid andHaemophilus in the feces of CAG patients,

and fecal-derived microbiome-metabolites crosstalk possibly

involves in the pathological process of CAG, which should be

further clarified and confirmed with a microbiome-based study

based on shotgun metagenomics and metatranscriptomics.

Therefore, the microbiota and the microbial-associated

metabolites are possily potential diagnostic biomarkers and

therapeutic targets for CAG.

Erysipelotrichi belongs to the Firmicutes phylum, and the

bacterial family Erysipelotrichaceae which are immunogenic and

possibly inter-host variation, and highly increased in mouse

models of inflammatory bowel diseases (IBD) (Zhao et al., 2013;

Palm et al., 2014; Dinh et al., 2015; Kaakoush, 2015), but

significantly lowered in IBD patients (Dey et al., 2013; Gevers

et al., 2014). Interestingly, and in the lumen of gastrointestinal

tract of patients with colorectal cancer, the abundance level of

Erysipelotrichaceae was significantly enriched (Chen et al., 2012;

Zhu et al., 2014). Erysipelotrichi also appear to affect cholesterol

and lipid metabolism in the GI tract (Parmentier-Decrucq et al.,

2009). Distinct functional roles for the UCG-003 subtype have

not been reported (Singh et al., 2019). The FUT2 loss-of-

function mutations are very common and related with

inflammatory bowel disease (IBD). Researchers further found

that FUT2 loss-of-function mutations also increased CD8+

inducing Alistipe and Phascolarctobacterium and Th17

inducing Erysipelotrichaceae UCG-003 in IBD patients (Cheng

et al., 2021). In present study, interestingly, compared with

healthy volunteers, the abundance of Erysipelotrichaceae UCG-

003 was significantly lowered in feces of CAG patients,

indicating CAG might be a compensation condition against

GC progress, and Erysipelotrichaceae UCG-003 might be closely
Frontiers in Cellular and Infection Microbiology 16
related with CAG. However, the detailed underlying molecular

mechanism of Erysipelotrichaceae UCG-003 on CAG still needed

to be clarified.

Previous researches demonstrated that lipid metabolism

involving in GC progress (Yu et al., 2011). Both pentadecanoic

acid and heptadecanoic acid are multifaceted odd-chain fatty acids

(OCFA) (Pfeuffer and Jaudszus, 2016), pentadecanoic acid and

heptadecanoic acid can also be synthesized endogenously, for

example, from gut-derived propionic acid (3:0) (Pfeuffer and

Jaudszus, 2016), although most gut microbial propionic acid is

absorbed and mostly metabolized by the liver (Al-Lahham et al.,

2010). A number of studies have shown an inverse association

between OCFA concentrations in human plasma phospholipids

or RBCs and risk of type 2 diabetes and cardiovascular disease

(Hodge et al., 2007; Patel et al., 2010; Mozaffarian et al., 2013;

Santaren et al., 2014; Pfeuffer and Jaudszus, 2016). Heptadecanoic

acid was proved to inhibit cell proliferation in PC-9 non-small-cell

lung cancer cells with acquired gefitinib resistance in vitro (Xu

et al., 2019). Therefore, the increased heptadecanoic acid in the

feces of CAG patients might be associated with the decreased

absorption into host or helping host to defeat against the

pathological changes of stomach in CAG patients. However, up

to nowadays, the relation of heptadecanoic acid and

Erysipelotrichaceae_UCG-003, and pentadecanoic acid and

haemophilus, has not been clarified yet. And we will further

clarify the crosstalk between heptadecanoic acid and

Erysipelotrichaceae_UCG-003, and pentadecanoic acid and

haemophilus, and how to modulate the pathological process of

CAG in the next study.

In conclusion, heptadecanoic acid, Erysipelotrichaceae_UCG-

003, pentadecanoic acid, haemophilus were the potential

biomarkers for CAG diagnosis in clinic. And heptadecanoic acid

is the most potential biomarker for CAG diagnosis, and possibly

involving in the pathological process of CAG. Furthermore,

microbiome-metabolites crosstalk possibly involves in the

pathological process of CAG, which should be further clarified

and confirmed.
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