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Long non-coding RNAs (lncRNAs) are involved in almost the entire cell life

cycle through different mechanisms and play an important role in many key

biological processes. Mutations and dysregulation of lncRNAs have been

implicated in many complex human diseases. Therefore, identifying the

relationship between lncRNAs and diseases not only contributes to biologists’

understanding of disease mechanisms, but also provides new ideas and

solutions for disease diagnosis, treatment, prognosis and prevention. Since

the existing experimental methods for predicting lncRNA-disease associations

(LDAs) are expensive and time consuming, machine learning methods for

predicting lncRNA-disease associations have become increasingly popular

among researchers. In this review, we summarize some of the human

diseases studied by LDAs prediction models, association and similarity

features of LDAs prediction, performance evaluation methods of models and

some advanced machine learning prediction models of LDAs. Finally, we

discuss the potential limitations of machine learning-based methods for

LDAs prediction and provide some ideas for designing new prediction models.

KEYWORDS

lncRNA, human diseases, lncRNA-disease associations, machine learning methods,
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1 Introduction

Bioinformatics and transcriptomics analyses have shown that only a few genes in the

human genome that encode proteins, and that more than 98% of human genes have no

ability to encode proteins (Pertea, 2012). More and more studies have shown that non-

coding RNAs (ncRNAs), in particular, long non-coding RNAs (lncRNAs) with a length

of more than 200 nucleotides play an important role in physiological processes, such as

epigenetic regulation, cell differentiation, cell cycle regulation and immune response at
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various stages of life (Chen et al., 2017). In addition, the

disorders and mutations of lncRNAs are associated with many

complex human diseases, such as neurological diseases

(Johnson, 2012), cardiovascular diseases (Congrains et al.,

2012), Alzheimer’s disease (Faghihi et al., 2008), leukemia

(Calin et al., 2007) and various cancers (Pibouin et al., 2002;

Su et al., 2015; Wu et al., 2022). Therefore, identifying the

relationship between lncRNAs and diseases not only

contributes to biologists ’ understanding of disease

mechanisms, but also provides new ideas and solutions for

disease diagnosis, treatment, prognosis and prevention.

The identification of novel lncRNA-disease associations

(LDAs) has attracted more and more attention and become an

important topic in the field of medicine. At present, the

association between a large number of lncRNAs and human

diseases remains to be confirmed. Although biological

experiments and clinical methods are effective and reliable for

identifying LDAs, they are time-consuming, and expensive. In

order to solve these problems, high quality computational

methods have become the first choice for studying LDAs

prediction, and machine learning models have achieved good

results in LDAs prediction. There have been some reviews on

LDAs prediction. For example, Long non-coding RNAs and

complex diseases: from experimental results to computational

models (Chen et al., 2017). Chen et al. review the function of

lncRNAs, five important lncRNA-related diseases, five key

disease-related lncRNAs, and some important lncRNA-related

sequences, expressions, functions and other public databases,

and they also introduce machine learning-based models,

biological network-based models, and models that do not rely

on known lncRNA-disease associations. These reviews of

lncRNA-disease association prediction models are helpful for

researchers in related fields to better understand the association

between lncRNAs and diseases, and to design better models to

improve prediction performance based on previous research

basis and prospects for future research directions.

This review describes recent advances in machine learning

methods for predicting lncRNA and disease associations. Firstly,

some human diseases in LDAs prediction models are

summarized to help understand the mode of action of

lncRNAs in human diseases. Secondly, the association and

similarity characteristics of LDAs prediction are summarized,

which provide some methods for constructing input features for

prediction models. Thirdly, the performance evaluation method

of LDAs prediction model is briefly introduced. This paper

focuses on some advanced machine learning-based LDAs

prediction models in the past few years, these models are

divided into two categories: conventional machine learning-

Based models, deep learning-based models. The calculation

process of some methods is described in detail, and the
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advantages and disadvantages of these methods are briefly

explained. Finally, we discuss the potential limitations of

machine learning-based methods for predicting LDAs and

provide some ideas for designing new prediction models.
2 Associated diseases in
prediction models

Mutations and dysregulation of lncRNAs can lead to the

development of various complex human diseases, the

identification of LncRNA and disease associations helps to

understand the function of lncRNAs in diseases. In order to

help understand the mode of action of lncRNAs in human

diseases, some human diseases studied in LDAs prediction

models are introduced as follows.
2.1 Osteosarcoma

Osteosarcoma is one of the most common primary bone

malignant tumors originating, and it originates primarily the

metaphysis of the long bones. The incidence of osteosarcoma is

high in children and young people, which seriously threatens the

health and life of children and adolescents (Yang et al., 2020).

Although the clinical treatment of osteosarcomas such as

chemotherapy and surgery has been improved, the prognosis

of patients with osteosarcoma is still very poor, and the research

on the molecular mechanism of osteosarcoma is still lacking

(Hattinger et al., 2016). Therefore, it is urgent to study the

pathogenesis of osteosarcoma and improve its clinical treatment

effect. Studies have shown that many lncRNAs are involved in

the formation and development of osteosarcoma. For example,

LncRNA H19 inhibits the migration and invasion of human

osteosarcoma cells by inhibiting the nuclear factor-KB pathway

(Zhao and Ma, 2018). LncRNA PVT1 promotes osteosarcoma

cell apoptosis and inhibits cell proliferation by regulating the

expression of miR-195 (Zhou et al., 2016). GAS5 promotes the

expression of aplasia Ras Homologue member I (ARHI) and

inhibits the growth and Epithelial-Mesenchymal Transition of

osteosarcoma cells by regulating the expression of miR-22 as a

molecular sponger (Ye et al., 2017).
2.2 Lung cancer

Lung cancer is a kind of cancer, which has become the

leading cause of cancer death worldwide in recent years (Wang

et al., 2022c). In terms of histopathology, lung cancer is mainly

divided into non-small cell lung cancer (NSCLC, about 80%)
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and small cell lung cancer (SCLC, about 20%) (White et al.,

2014). Although chemotherapy and radiotherapy have certain

therapeutic effects on lung cancer patients, in recent years, the 5-

year survival rate of lung cancer after diagnosis is only about

15%, which is far lower than other types of cancer (Gutschner

et al., 2013). Recent studies have shown that lncRNAs are

involved in the key cellular processes of lung cancer, and are

also related to the prognosis and advanced pathological staging

of lung cancer patients (Loewen et al., 2014). LncRNA GAS5

inhibits the proliferation and metastasis of lung cancer cells

through miR-205/PTEN axis (Dong et al., 2019). LncRNA XIST

promotes the proliferation and migration of non-small cell lung

cancer cells by regulating the expression of sponge miR-16 and

CDK8 (Zhou et al., 2019). In addition, lncRNA UCA1 can

regulate the proliferation and invasion of lung cancer cells and

induce apoptosis, and UCA1 can be used as an important

therapeutic target to inhibit lung cancer (Jun et al., 2018).
2.3 Gastric cancer

Gastric cancer is one of the most common malignant tumors

in the world with high morbidity and mortality, which can be

caused by factors such as diet, age and genetics (Smyth et al.,

2020). There is more and more evidence that lncRNAs

involvement in the mechanism of gastric cancer is of great

significance for the early diagnosis, prognosis and treatment of

gastric cancer. LncRNA HOTAIR can significantly inhibit the

migration and invasion of gastric cancer cells (Xue et al., 2018).

Overexpression of lncRNA BCYRN1 can directly up-regulate

the expression of miR-204-5p and promote the development of

gastric cancer (Zhai and Li, 2019). Moreover, the expression of

HOTAIRM1 can inhibit the activity of GC cells by inhibiting the

PI3K/AKT pathway in gastric cancer (Lu et al., 2019).
2.4 Prostate cancer

Prostate cancer is a common epithelial malignant tumor of the

prostate in the urinary and reproductive systems. It is the most

common malignant tumor in the male population and the second

leading cause of cancer-related death in men (Saini, 2016). Studies

have shown that lncRNAs associated with prostate cancer may

contribute to the prevention and treatment of prostate cancer (Cui

et al., 2020). LncRNA TTTY15 is upregulated in most prostate

cancer tissues and can promote the development of prostate cancer

through sponge let-7 (Xiao et al., 2019). In addition, different

variants of CDKN2B-AS1 are associated with prostate cancer,

and CCAT2 expression is upregulated in prostate cancer patients

and affects prostate cancer development by altering the epithelial-

mesenchymal transition (Fehringer et al., 2016; Zheng et al., 2016).
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2.5 Breast cancer

Breast cancer is the most common cancer in women worldwide

and the second leading cause of cancer death in women (Donahue

and Genetos, 2013; Shi et al., 2022a). The traditional diagnosis of

breast cancer is based on the shape, size, and nature of the breast

mass as well as regional lymph node mass and other features.

Accumulating studies have shown that lncRNAs such as MALAT1

and ZFAS1 are closely related to breast cancer. For example,

MALAT1 leads to the epithelial-to-mesenchymal transition

program through a phosphatidylinositide-3 kinase-AKT pathway

in breast cancer, and thus MALAT1 is significantly downregulated

in breast cancer tissues and cell lines (Zhao et al., 2014). In addition,

ZFAS1 overexpression can significantly inhibit cell proliferation by

causing cell cycle arrest and inducing apoptosis in breast cancer cells

(Fan et al., 2018).
2.6 Cervical cancer

Early symptoms of cervical cancer are difficult to be detected,

and it is one of the gynecological tumors with the highest cancer-

related mortality worldwide (Adey et al., 2013). It is very

important to study the complex pathogenesis of cervical

cancer and diagnose its prognostic biomarkers. Many lncRNAs

have been proven to be novel regulators in various biological

processes, playing a crucial role in the occurrence and

progression of cervical cancer and other cancers (Peng et al.,

2016). For example, UCA1 up-regulates and inhibits the growth

of cervical cancer cells in cervical cancer, which is a potential

target for the treatment of cervical cancer cells (Yan et al., 2018).

In addition, serum PVT1 can accurately distinguish cervical

cancer patients from healthy controls (Yang et al., 2016).
2.7 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is a malignant tumor of liver

parenchymal cells with a poor prognosis. Since many HCC patients

are already in the advanced stage of cancer at the time of diagnosis,

it is urgent to understand the principle of HCC and improve the

ability for early diagnosis (Men et al., 2020; Shi et al., 2022b). Studies

have shown that lncRNAs have an important impact on human

HCC. LncRNA TP73-AS1 is upregulated in HCC tissues and cell

lines, competing with HMGB1 for Mir-200A binding to inhibit its

expression, and subsequently upregulating HMGB1/RAGE

expression to promote HCC cell proliferation (Li et al., 2017).

The up-regulation of lncRNA-SOx2-OT promotes the metastasis of

hepatocellular carcinoma, and the high expression of lncrNA-

SOX2-OT is related to histological grade, TNM stage and venous

invasion (Shi and Teng, 2015).
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2.8 Glioma

Glioma is one of the most common brains and central

nervous system tumors, accounting for about 80% of

malignant brain tumors, characterized by aggressive

vascularization (Khasraw et al., 2014). Despite the continuous

improvement of various treatment methods such as surgery,

radiotherapy and chemotherapy, the overall survival time of

glioma patients is only about 12-14 months after diagnosis

(Wang et al., 2015). Recent studies have shown that lncRNAs

play an important role in the pathogenesis of glioma (Bian et al.,

2015). The expression level of lncRNA MALAT1 is significantly

correlated with the overall survival of glioma patients, which can

be used as a persuasive prognostic biomarker for glioma patients

(Ma et al., 2015). XIST expression was significantly up-regulated

in glioma tissues, and negatively correlated with Mir-137

expression. This result revealed a new XIST-Mir-137-RAC1

pathway regulatory axis in the pathogenesis of glioma (Wang

et al., 2017). In addition, Gas5 increased the expression of glioma

inhibitor Bcl-2 modifier and Plexin C1 by directly targeting and

reducing the expression of Mir-222 (Zhao et al., 2015).
3 Association and similarity
characteristics

Association network/matrix and similarity network/matrix

are commonly used as input features in lncRNA-disease
Frontiers in Cellular and Infection Microbiology 04
association prediction models. Some models integrate multiple

association data, lncRNA and disease similarity features.

These association data and similarity features complement each

other, and more lncRNA/disease characteristic information can be

obtained. It will greatly improve the predictive performance of the

model. The association and similarity network and matrix

construction process used in the lncRNA-disease association

prediction model is shown in Figure 1.
3.1 Association characteristics

In addition to lncRNA-disease association data used in the

lncRNA-disease association prediction model, lncRNA-miRNA

association, lncRNA-gene association, lncRNA-Gene Ontology

(Gene Ontology, GO) association and lncRNA-protein

association are also the original association characteristic data

of lncRNAs. The original association characteristic data of

diseases include disease-miRNA association and disease-gene

association, etc (Li et al., 2021). The lncRNA-disease associations

can be downloaded from LncRNADisease (Bao et al., 2019) and

Lnc2Cancer (Gao et al., 2021). The known association of

lncRNA with miRNA, Gene, GO and protein can be

downloaded from StarBase v2 .0 (Li et a l . , 2014) ,

LncRNA2Target (Cheng et al., 2019), GeneRIF (Lu et al.,

2007) and NPInter v4.0 (Teng et al., 2020), respectively.

Disease associations with miRNAs and Gene can be

downloaded from HMDD (Huang et al., 2019) and DisGeNET
A B

FIGURE 1

The process of network and matrix construction of association and similarity: (A) Construct association network and matrix based on known
association data obtained from the database. In the construction of the association matrix. If a data pair is associated, the matrix element sets to
1, otherwise, 0. (B) The similarity network and matrix of LncRNA/disease were constructed by calculating the similarity score of LncRNA/disease.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1071972
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tan et al. 10.3389/fcimb.2022.1071972
(Piñero et al., 2017), respectively. After downloading the known

association data from databases, the corresponding association

networks and matrices can be constructed as the original

features of the lncRNA-disease association prediction model.
3.2 Similarity characteristics

Since lncRNAs with similar functions tend to exhibit similar

associations with diseases, calculating the similarity between

lncRNAs will help identify potential associations between

diseases and lncRNAs. Similar diseases exhibit similar

interaction patterns with lncRNAs, and the similarity between

diseases also provides important information for predicting

potential lncRNA-disease associations. Common lncRNA

similarities include lncRNA functional similarity, lncRNA

expression similarity , lncRNA sequence similarity ,

lncRNA Gaussian interaction profile kernel similarity and

lncRNA cosine similarity (van Laarhoven et al., 2011; Chen

and Yan, 2013; Chen, 2015; Xie et al., 2019; Yang and Li, 2021).

Commonly used disease similarity includes disease Gaussian

interaction profile kernel similarity, disease cosine similarity,

disease semantic similarity and disease functional similarity

(Schlicker et al., 2010; Wang et al., 2010; van Laarhoven et al.,

2011; Xie et al., 2019). These similarity calculation methods can

also be used by other studies, such as microbe-associated

diseases prediction (Yin et al., 2022) and miRNA-disease

association prediction (Chen et al., 2018b). The similarity

calculation methods in the lncRNA-disease association

prediction model are summarized as follows.

3.2.1 LncRNA function similarity
Previous studies established the LFSCM model (Chen, 2015)

based on the hypothesis that functionally similar lncRNAs tend

to interact with similar miRNAs, and similar miRNAs tend to be

associated with similar diseases. Disease semantic similarity

between diseases is calculated according to the direct acyclic

graphs (DAGs) of diseases. The disease data sets associated with

each miRNA were determined and the similarity between them

was calculated as miRNA functional similarity. The functional

similarity of lncRNA was calculated according to the interaction

between miRNA functional similarity and lncRNA functional

similarity. The lncRNA functional similarity matrix is FS, where

the element FS(i, j) in row i and column j is the functional

similarity between lncRNA l(i) and l(j) obtained by the LFSCM

similarity calculation model.

3.2.2 LncRNA expression similarity
The lncRNA expression profiles generated by RNA-seq

technology can be downloaded from ArrayExpress (Parkinson

et al., 2007). The expression similarity between two lncRNAs can

be obtained by calculating the Spearman correlation coefficient
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between expression profiles (Chen and Yan, 2013). The

expression similarity matrix of lncRNA is assumed to be ES,

where the element ES(i, j) in row i and column j is the expression

similarity between lncRNA l(i) and l(j) ranging from 0 to 1.

3.2.3 LncRNA sequence similarity
LncRNA sequence data can be downloaded from

LncRNADisease, and the Needleman-Wunsch alignment

method (NW) (Needleman and Wunsch, 1970) is used to

calculate the sequence similarity of lncRNA. SS is defined as

the sequence similarity matrix of lncRNA, then the sequence

similarity between lncRNA l(i) and l(j) is SS(i, j). SS(i, j) is the

element in row i and column j of SS.

3.2.4 Disease semantic similarity
Disease semantic similarity was calculated using disease

classification data in MeSH database (Wang et al., 2010). Each

disease is numbered according to its tree structure in the MeSH

database to form a directed acyclic graph (DAG). Each disease

can be transformed into a homologous directed acyclic graph

(DAG). For example, the DAG of disease d can be expressed as

DAG(d) = (Anc(d), E(d)),and Anc(d), and represents the node

set including nodes and their ancestors. E(d) is the edge directly

connected between the parent node and the child node, it shows

the correlation between different diseases. According to the

DAG graph of disease, the semantic value contribution of

disease d to other diseases and the semantic value of disease d

itself is calculated. The more ancestral diseases the two diseases

share in their DAG, the higher the semantic similarity value

they obtain.

3.2.5 Disease functional similarity
A computational model based on the directed acyclic graph

(DAG) was proposed to measure the semantic similarity of GO

(Wang et al., 2007). According to a large-scale functional

association network of human genes provided by predecessors

(Lee et al., 2011), it uses the correlation log-likelihood score

(LLS) for each edge to measure the strength of association

between any two genes. According to the log-likelihood score

of genes, the gene similarity network was established by simple

processing. In order to obtain a more accurate functional

similarity network of diseases, Jaccard similarity coefficient was

used to calculate the functional similarity of diseases from the

perspectives of disease-GO association and disease-gene

association (Xiao et al., 2018).

3.2.6 Gaussian interaction profile kernel
similarity for LncRNA and disease

Gaussian interaction profile kernel similarity is a common

feature of lncRNA and disease. The similarity of Gaussian

interaction profile kernel of disease was calculated as follows:

Firstly, an adjacency matrix was constructed using the
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association data between lncRNA and disease. The columns of

the matrix represent lncRNAs and the rows represent diseases.

Then, the Radial Basis Function (RBF) Gaussian kernel function

was applied to the adjacency matrix to obtain the similarity

matrix of the Gaussian interaction profile kernel of the disease

(van Laarhoven et al., 2011; Chen et al., 2018a). The kernel

similarity of Gaussian interaction profile of lncRNA was

calculated in the same way as that of disease. An adjacency

matrix was constructed using the association data between

lncRNA and disease. The columns of the matrix represent

diseases and the rows represent lncRNAs. Then, the Radial

Basis Function (RBF) Gaussian kernel function was applied to

the adjacency matrix to obtain the similarity matrix of the

Gaussian interaction profile kernel of lncRNA.

3.2.7 Cosine similarity for lncRNA and disease
According to previous studies, the KMDR calculation model,

proposed the cosine similarity measure in the collaborative

filtering recommendation algorithm (Adomavicius et al.,

2005), which was successfully applied to miRNA-disease

association prediction (Li et al., 2018). Inspired by the above

algorithm, SKF-LDA calculation model (Xie et al., 2019)

proposed and successfully applied cosine similarity to

lncRNA-disease association prediction. The basic assumption

of lncRNA cosine similarity is that if lncRNAs li and lj are similar

to each other, then A(i,:) and A(j,:) in lncRNA-disease

association matrix A are similar to each other. Where, A(i,:) is

the row i of lncRNA-disease association matrix A, which

contains the relationship between all diseases and lncRNA li,A

(j,:) is the row j of lncRNA-disease association matrix A, which

contains the relationship between all diseases and lncRNA li. Cos

(A(i,:)) represents the cosine similarity score between lncRNA li
and lncRNA lj. The above lncRNA hypothesis is also applicable

to diseases. If disease di and disease dj are similar to each other,

then A(: i) and A(: j) in lncRNA-disease association matrix A are

similar to each other. A(: i) represents the column i of lncRNA-

disease association matrix A, which contains the relationship

between all lncRNAs and disease di. A(: j) represents the column

j of lncRNA-disease association matrix A, which contains the

relationship between all lncRNAs and disease dj. Cos [A(: i), A(:

j)] represents the cosine similarity score between disease di
and dj.
4 Performance evaluation

The predictive performance of lncRNA-disease association

prediction models is usually evaluated by K-fold cross validation

(K-CV) or leave-one-out cross validation (LOOCV). K-CV

means that the original sample data is divided into K groups

on average, and each subset data is used as a validation set, and

the remaining subset data of K-1 group is used as the training set
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to obtain K models. The average classification accuracy of the

final validation set of these K models is used as the performance

index of the classifier under this K-CV. 5-CV and 10-CV are the

most commonly used. LOOCV takes one of the original N

sample data as the test set, and the remaining N-1 sample data

as the training set to obtain N models. Finally, the average

classification accuracy of the final validation set of these N

models is taken as the performance index of the classifier

under LOOCV. LOOCV makes full use of all the sample

information through N times prediction, and the result is the

closest to the expected value of training the whole test set.

Because of its high computational cost, it is not suitable for

large sample data.

The evaluation indexes of lncRNA-disease association

prediction model mostly used the receiver operating

characteristic (ROC) curve, the area under ROC curve (AUC),

Precision-Recall (PR) curve and the area under PR curve

(AUPR). Sensitivity and specificity are two key indexes used in

ROC curve. For the prediction of lncRNA-disease associations,

sensitivity represents the proportion of a test that is correctly

identified, while specificity represents the proportion of a test

that is incorrectly considered to have an association. In this way,

ROC curves are drawn using a true positive rate (sensitivity) and

a false positive rate (1-specificity) by continuously changing the

threshold. The area under the ROC curve is also commonly used

to test performance. In general, AUC = 0.5 means the effect is

random, and AUC = 1 means the effect is perfect. Precision and

recall are two key indexes used in PR curve. For the prediction of

lncRNA-disease association, the accuracy rate represents how

many of the samples with a positive prediction are truly positive

samples, while the recall rate represents how many of the

positive examples in the sample are predicted correctly. PR

curves are drawn using precision and recall by traversing

different thresholds for comparison, and the area under the PR

curve is also commonly used to test performance. Generally, the

larger the area under the PR curve, the better the

model performance.
5 Machine learning-based models

Several researchers have built a number of machine

learning-based models to predict LDAs. The model based on

machine learning trains the classifier according to the

characteristics of the training samples to get the classifier with

the function of predicting LDAs. These machine learning models

have achieved good results in predicting LDAs. Predicting LDAs

based on machine learning has attracted more and more

researchers’ attention. This section describes some of the

advanced machine learning-based LDAs prediction models,

detailing the computational process of some methods. In this

section, these machine learning-based LDAs prediction models
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are divided into two categories: conventional machine learning-

based models, deep learning-based models.
5.1 Conventional machine learning-
based models

Traditional machine-learning methods commonly used in

LDAs prediction mainly include support vector machine (SVM),

random forest (RF), extreme gradient boosting (XGBoost),

Adaptive boosting (Adaboost), K-Nearest Neighbors(K-NN),

Singular value decomposition (SVD), collaborative filtering

(CF) algorithm, Laplacian Regularized Least Squares algorithm

and some traditional matrix factorization and completion

algorithms, etc.

LRLSLDA (Chen and Yan, 2013) is the first lncRNA-disease

association prediction model. This model is a semisupervised

learning method developed in the Laplacian Regularized Least

Squares framework. This method integrates known lncRNA-

disease associations and lncRNA expression profiles to identify

potentially disease-related lncRNAs. The process of predicting

potential disease-associated lncRNAs based on LRLSLDA is

shown in Figure 2. It does not require negative samples and

can prioritize lncRNA-disease pairs for all diseases

simultaneously. This method obtained an AUC of 0.7760

under leave-one-out cross validation, and laid the solid

theoretical foundation for the study of lncRNA-disease

association prediction. The code of LRLSLDA is freely

available at: http://asdcd.amss.ac.cn/Software/Details/2.

Fu et al. propose a Matrix Factorization based LncRNA–

Disease Association prediction model (MFLDA) (Fu et al.,

2018). MFLDA decomposes data matrices of heterogeneous
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data sources into low-rank matrices via matrix tri-

factorization, then select and integrate the data sources by

assigning different weights to them. An iterative solution is

further introduced to simultaneously optimize the weights and

low-rank matrices. Finally, MFLDA uses the optimized low-rank

matrices to reconstruct the lncRNA–disease association matrix

and thus to identify potential associations. MFLDA achieves an

area under the receiver operating characteristic curve (AUC) of

0.7408. MFLDA can also be adopted to predict associations

between other biological entities. The source code for MFLDA is

available at: http://mlda.swu.edu.cn/codes.php?name¼ MFLDA.

WGRCMF model introduces graph regularization

constraints on the basis of collaborative matrix factorization to

fully integrate the internal geometric structure of the data, and

introduces a weight matrix to prevent unknown associations

from affecting the final prediction matrix (Liu et al., 2021). This

model can effectively predict potential lncRNA-disease

associat ions by integrating known lncRNA-disease

associations, lncRNA similarity matrix and disease similarity

matrix. This model achieved an AUC value of 0.8556 by

performing 30 times 10-fold cross-validation.

Lu et al. proposed SIMCLDA as an inductive matrix

completion based to predict lncRNA disease interactions (Lu

et al., 2018). Specifically, the method can be completed in five

steps as shown in Figure 3. The first step of this method, based

on the hypothesis that functionally similar lncRNA have similar

patterns of interaction with the disease, using Gkl∈Rm×m to

define the potential feature space of lncRNA containing the

feature matrix. Then, disease similarity was calculated using the

method called Jaccard. Step 3, using singular value

decomposition (SVD) to perform PCA to extract the primary

feature vectors from Gkl∈Rm×m andDis∈Rn×n , respectively. Step
FIGURE 2

The flowchart of LRLSLDA is shown here, including the basic steps to predict potential disease-related lncRNAs based on LRLSLDA.
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4, based on the hypothesis that similar lncRNA interact with

similar diseases, the interaction distribution of the new lncRNA

was calculated using the mean of its neighbors’ interaction

profiles. With the calculated interaction profiles, we were able

to combine the previous interaction patterns of such new

lncRNA neighbors and extract effective feature vectors. Finally,

SIMCLDA uses the primary feature vector to complete the

association matrix with inductive matrix completion and

construct the interaction profile:

min
Z∈ℜ fl�fd

l ∥Z ∥* +
1
2
∥ℜW LZDT − A

� �
∥2F (1)

where ∥Z∥∗ is the objective matrix to complete A which is

defined as the sum of the singular values. the column vectors in

A lie in the subspace spanned by the column vectors in L, and

the row vectors in A lie in the subspace spanned by the column

vectors in D. The computational results showed that SIMCLDA

can effectively predict lncRNA-disease correlations with higher

precision than previous methods. The results show that

SIMCLDA achieves an AUC of 0.8526. In addition, case

studies have shown that SIMCLDA can effectively predict

candidate lncRNA for kidney cancer, gastric cancer and

prostate cancer. The source code for SIMCLDA is available at:

https://github.com//bioinfomaticsCSU/SIMCLDA.

Wu et al. (Wu et al., 2022). introduced an integration model

called iLncDA-LTR for predicting diseases related to newly

detected lncRNAs (Figure 4). iLncDA-LTR is a model that

integrates multi-source information into LTR to predict

lncRNA-disease associations, including three steps: data
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processing, feature representation and candidate disease

ranking. The first step of this model is data processing, disease

semantic similarity, lncRNA sequence similarity and lncRNA-

disease association matrix are collected, the semantic similarity

between disease di and disease dj is defined as DSIM(di, dj), the

sequence similarity between lncRNA li and lncRNA li is defined

as LSIM(li, lj), and similarly, lncRNA-disease association matrix

is defined as YERnxm, where n denotes the number of lncRNAs

and m denotes the number of diseases. In the second step of this

model, Adaptive boosting (Adaboost), Extreme gradient

boosting (Xgboost) and k-nearest neighbor (k-NN) are

selected as component methods. Afterward, the features of

lncRNA-disease pairs are constructed, which can be

formulated. Then integrate the disease semantic attribute

features of DSIM(dj, :) into FLTR(li, dj), where FLTR(li, dj) is

the feature vector of pair between lncRNA li and disease dj.

Compared with the features of disease semantic attributes,

features obtained by various compositional methods integrate

more evidence. Finally, LambdaMart algorithm belonging to the

listwise approach of LTR is used to train the LTR model, and

Normalized Discounted Cumulative Gain (NDCG) and Mean

Average Precision (MAP) are integrated into the loss function of

LambdaMart to improve the ranking quality. For querying

lncRNAs, fed features into the trained LTR model, the

returned ranked list of diseases is the prediction results. The

method integrates various biological information into

the framework of LTR for identifying diseases associated with

newly detected lncRNAs. By comparing iLncDA-LTR with other

methods, iLncDA-LTR achieves an AUC of 0.951, which is
FIGURE 3

The workflow indicates that SIMCLDA predicts potential lncRNA–disease associations based on inductive matrix completion.
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higher than previous prediction methods, and obtains the best

performance. In the future, LTRs may also be used to predict

unknown disease-drug associations among other similar

problems. The web server of iLncDA-LTR is at: http://bliulab.

net/iLncDA-LTR/.

Wang et al. established a lncRNA−disease association

prediction model (ENCFLDA) combining elastic network,

matrix decomposition and collaborative filtering to predict the

association of unknown lncRNAs with diseases (Figure 5)

(Wang et al., 2022a). This method obtains the existing

miRNA-disease association datasets with lncRNA-disease

association datasets and lncRNA-miRNA association datasets,

then preprocesses the data to construct the miRNA-disease

adjacency matrix AMD and the lncRNA-miRNA adjacency

matrix ALM. Using AMD and ALM to calculate the lncRNA-

disease association matrix ALD. Afterward, the calculated

disease cosine similarity and lncRNA cosine similarity are

combined with ALD to make the matrix less sparse using the

weighted KNN. This is followed by the construction of the

ENCFLDA model: Firstly, decomposes ALD into two different

matrices using matrix decomposition, and then updates the

matrix by combining it with an elastic net algorithm. Finally,

the score matrix is calculated by the random gradient descent

method and the lncRNA-based collaborative filtering algorithm.

In addition, by using Leaving One Cross Validation (LOOCV) to

compare ENCFLDA with the current more advanced mode,

ENCFLDA achieved the highest AUC value of 0.9148. The

results indicate that ENCFLDA model outperformed the other

models in terms of prediction. The case study also verified

the accuracy of the model. ENCFLDA model not only

removes invalid features, but also has good stability, and has
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better results for sparse models with few weights. The source

code for ENCFLDA is available at: https://github.com/

arejay1998/ENCFLDA.
5.2 Deep learning-based models

Deep learning-based methods used in LDAs prediction

mainly include CNN, recurrent neural network (RNN), graph

embedding (GAE), Stacked Denoising Auto Encoder (SDAE),

Graph neural network (GNN) and graph convolution network

(GCN), etc.

Wu et al. proposed a machine learning-based classification

method (GAERF) to identify disease-associated lncRNAs by

graph embedding (GAE) and random forest (RF) (Wu et al.,

2021). Superior performance is achieved by GAERF. Firstly, the

LMD network is constructed based on the association,

interaction and similarity of integrated lncRNAs, diseases and

miRNAs, which can make full use of various data to characterize

potential LDAs. Secondly, the deep feature representation of

nodes in the network is extracted using graph embedding

method, which preserves the topology of nodes and internal

information of nodes in the network. GAERF achieves superior

performance due to the ensemble learning method.

VADLP is used to extract, encode, and adaptively integrate a

predictive model for multi-layer representation (Sheng et al.,

2021). A three-level heterogeneous graph with inter-layer and

intra-layer edges weighting is constructed to facilitate node

attribute embedding and pairwise topology extraction for

random wander ing , and the mode l defines three

representations, including node attributes, pairwise topology,
FIGURE 4

From the workflow, ilncDA-LTR integrating multi-source information into LTR to predict lncRNA-disease associations.
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and feature distributions. And an attentional representation-

level integration module is constructed to adaptively fuse these

three representations for lncRNA-disease association prediction.

The model has advantages in discovering true lncRNA-disease

associations and returning them as top-ranked candidates.

Zhou et al. propose a novel lncRNA-disease association

prediction method LDAformer based on topological feature

extraction and Transformer encoder (Zhou et al., 2022). This

method constructs the heterogeneous network by integrating the

associations between lncRNAs, diseases and micro RNAs

(miRNAs). After the similarity calculation, inter-class

associations and intra-class similarities are concatenated into

the lncRNA-disease-miRNA weighted adjacency matrix. Then

design a topological feature extraction process to capture multi-

hop pathway information. Finally adopt a predictor based on the

self-attention encoder to learn the interdependencies between

pathways globally. LDAformer can accurately discover potential

lncRNA–disease pairs in practical cases. The codes of

LDAformer are available at https://github.com/EchoChou

990919/LDAformer.

GCRFLDA is a prediction method based on graph

convolution matrix complementation (Fan et al., 2022). The

method constructs a graph using lncRNA-disease association

information. Then, an encoder consisting of a conditional

random field and an attention mechanism and a decoder layer

are constructed to learn the effective embedding of nodes and

score the lncRNA-disease association. Experimental results show

that because the GCRFLDA model uses the LNF (Fan et al.,

2020) method to fuse similarity information as edge information

of nodes and incorporates the attention mechanism, the model

has good potential relevance prediction and strong robustness.

The model achieved high AUC in four benchmark datasets. In a
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case study of four diseases, the model found that 70 out of 80

predicted associated lncRNAs were confirmed in the literature.

The code of GCRFLDA is available at https://github.com/

jademyC1221/GCRFLDA.

Lan et al. came up with a new method (Figure 6) called

LDICDL to identify lncRNA-disease associations (Lan et al.,

2022). LDICDL uses the stacked denoising autoencoder (SDAE),

which is a feedforward neural network widely used in

recommender systems to select lncRNA and disease features

and reduce these features to k dimensions. Meanwhile, the

method applies matrix factorization to predict lncRNA-disease

association. The specific methods are as follows: firstly, we need

to construct a hybrid model combining matrix decomposition

and stored denoising autoencoder, input lncRNA features and

disease features respectively. Then, we need to input Xinput l,

Xinput d into the layer for encoding to get Xencode l and Xencode d,

and finally enter the output layer to get Xout l and Xout d which is

the encoding matrix of lncRNA and disease. According to the

lncRNA feature matrix, the disease coding matrix, the disease

feature matrix and the lncRNA coding matrix, respectively to

predict the lncRNA-disease association scores. Finally, the final

score of the disease association was calculated by averaging the

scores. Based on collaborative deep learning, LDICDL

overcomes the limitations of the substrate decomposition

algorithm and builds hybrid models to predict the association

of new lncRNAs and diseases. LDICDL evaluated the

performance using ten-fold cross validation and obtained the

AUC of 0.9134. To demonstrate the ability of LDICDL in

identifying potential lncRNA-disease associations, a case study

on osteosarcoma was performed with good results. The results

show that LDICDL outperforms than other state-of-the-art

methods in prediction performance.
FIGURE 5

The flowchart of ENCFLDA to predict the association of lncRNAs with diseases based on elastic network, matrix decomposition and
collaborative filtering.
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Xuan et al. came up with a new method based on graph

convolutional networks and convolutional neural networks,

called GCNLDA, which is proposed for predicting lncRNA-

disease associations (Xuan et al., 2019). Figure 7 shows that

GCNLDA proposes a new framework for learning network and

local representation of lncRNA-disease pairs. The embedding

matrix of lncRNA-disease nodes is constructed based on the

biological premises of the analyzed lncRNAs, diseases, and

miRNAs. Firstly, a lncRNA-miRNA-disease heterogeneous

network named LncDisMirNet is constructed. the similarity of

two lncRNA nodes is calculated using the method of Chen et al.

When the similarity was > 0, an edge is used to connect the two

lncRNA nodes, and the weight of the edge is set as the similarity

value. The final calculated LncNet is denoted by L=[Li,j]∈RNl×Nl ,

where Lij is the similarity between li and ljand Nl is the number of

lncRNAs. The matrix M=[Mi,j]∈RNm×Nm was used to represent

the MirNet with Nm miRNA nodes. The matrix D=[Dij]∈Nd×Nd

is a representation of DisNet network, and Nd is the number of

diseases. The linkage matrix A=[Aij]∈RNl×Nd between LncNet

and DisNet nodes was established using known LncRNA-disease

correlation data, while the linkage matrix B=[Bij]∈RNl×Nm

between LncNet and MirNet and the linkage matrix C=

[Cij]∈RNd×Nm Between DisNet and MirNet were established

based on the data of LncRNA-miRNA interactions and miRNA-

disease associations. LncNet, DisNet and MirNet are combined

to form the heterogeneous network of LncDisMirNet.

LncDisMirNet consists of matrix

U=[Uij]∈RN×N :

U =

L A B

AT D C

BT CT M

2
664

3
775 (2)
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where N=Nl+Nd+Nm, and AT, BT, CT are transpose matrices

of A, B and C, respectively. Besides, ui is the topological feature

vector of the ith node in LncMirDisNet. Then an attention

mechanism is established to extract the important features of

LncRNA and disease nodes that can improve the association

prediction. Then, the heterogeneous network U is used as an

input to the graphical convolution ~U The network Zi of lncRNA

nodes and the network Zj of disease nodes obtained by

combining the graph convolutional neural network. Finally,

the prediction scores of the association between lncRNA and

disease were obtained. Construction of LncRNA-disease node

pair embedding matrix Pi,j. The local representation of li-dj is

learned by using the embedding matrix Pi,j of node pairs li-dj as

the input to the convolutional neural network for learning the

marginal information of Pi,j in the convolution process.

GCNLDA had the best performance for 405 diseases. The

AUC of the ROC curve was 0.959. Case studies of gastric

cancer, osteosarcoma and lung cancer confirm that GCNLDA

effectively identifies potential lncRNA-disease associations.

Zhao et al. proposed a novel heterogeneous graph attention

network framework based on meta-paths (HGATLDA) to

predict lncRNA-disease associations, inspired by a

heterogeneous graph attention network (HGAT) (Zhao et al.,

2022). As can be seen from Figure 8, lncRNA expression

similarity and lncRNA Gaussian interaction profile kernel

(GIP) (van Laarhoven et al. , 2011) similarity were

concatenated as lncRNA features. In the same way, disease

semantic similarity and disease GIP similarity were concatenated

as disease features. The lncRNA–disease bipartite topological

network was slightly integrated with the lncRNA similarity

network and disease similarity network which was generated by

k-NN graph based on the lncRNA features and disease features, to

generate heterogeneous graphs. HGATLDA is based on meta-

paths, which is defined as a path in the form of c1!
R1 c2!

R2
…

FIGURE 6

The flowchart of LDICDL for lncRNA-disease associations based on collaborative deep learning.
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!Rl cl+1, which denotes node type c1 and cl+1 is connected by a

composite relation R = R1 ∘ R2 ∘ · · · ∘ Rl ,whererepresents the

composition operator on relations. Specifically, the method first

decomposes the heterogeneous graph into multiple subgraphs,

homogeneous subgraphs and heterogeneous subgraphs were

obtained based on whether the first and last node types of a

meta-path are the same. GAT (Velickovic et al., 2017) is an

effective tool for learning graph representations by assigning

different weights to different neighbors. Then separately

implement the GAT layer with multihead attention, different

attention scoring ways were used for homogeneous subgraphs

and heterogeneous subgraphs. Then the importance of each

subgraph is learned and taking the semantic-specific node

embeddings from metapath-based subgraphs as input.

Subsequently, utilize NIMC (Li et al., 2020) to build a nonlinear

neural rating model to reconstruct LDA matrix. Ultimate, cost-

sensitive neural networks (Kukar and Kononenko, 1998) were

incorporated to address the imbalance problem prevalent in LDA

prediction, model learns parameters by minimizing a reshaped loss

function and minimizes the loss function by ADAM optimizer. By

comparing the HGATLDA method with some previous methods

such as SIMCLDA, LAGCN by utilizing two kinds of 5-fold cross-

validation (5-CV1 and 5-CV2). For 5-CV1, HGATLDA achieves

the highest AUC value of 0.9424, which are 1.4% higher than the

2nd best of LAGCN. For 5-CV2, HGATLDA also achieves the

highest AUC value of 0. 9262, which is 10.2% higher than the 2nd

best of LAGCN. Case studies proved that HGATLDA has a good

effect on LDA prediction. The advantages of HGATLDA include

better model performance and the ability to extract more
Frontiers in Cellular and Infection Microbiology 12
information from multiple biological data sources for

LDA prediction.

Most prediction models do not adopt a single machine

learning or deep learning method. Most models designed by

predecessors adopt the integration of multiple machine learning

methods or the integration of machine learning and deep

learning. The combination of different classifiers in these

integrated models and the different combination order of

classifiers will affect the classification effect of the models.
6 Results

Here we comprehensively compared SIMCLDA, GCNLDA,

LDICDL and other three models (Table 1). Table 2 shows the

top 5 lncRNA-disease associations that have been successfully

experimentally confirmed in case studies of these models. The

data sets used by the models being compared were downloaded

from different databases by different models and processed in

different ways. The data building process for the six models we

compared is included in a supplementary materials document.

Most of these models used lncRNA-disease associations

supplemented with other associations as input, such as:

lncRNA-miRNA associations, disease semantic similarity,

disease-miRNA associations and others. Input data is then

processed by GCN, KNN and other classifiers to predict the

association between lncRNA and disease. Most of the training

data of the models were obtained from the LncRNADisease

database and other databases such as lnc2cancer database and
FIGURE 7

From the workflow, GCNLDA based on a graph convolutional network and a convolutional neural network was developed to learn network and
local representations of the lncRNA-disease pairs.
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HMDD database, then using LOOCV,5-CV and 10-CV to

perform cross validation experiments on some widely used

data sources or self-built databases, the predictive performance

results of these models are provided. Most of the models obtain

good prediction results: GCNLDAmodel obtains the AUC value

of 0.9598, HGATLDA model obtains the AUC value of 0.9424.
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But SIMCLDA model obtain lower AUC values of 0.8526, which

may be due to the fact that only the LncRNADisease dataset was

used for training. All models are validated by case studies and

the results are favorable. Furthermore, a completely independent

test set should be constructed to objectively and comparatively

evaluate the performance of different models.
TABLE 1 Machine learning models for predicting lncRNA and disease associations.

Model Inputs Classifier Database Case Studies Evaluation
methods

Performance
(AUC)

SIMCLDA lncRNA sequence similarity +disease–gene
associations+ gene–GO associations+ the
incomplete lncRNA–disease association matrix

inductive
matrix
completion

LncRNADisease renal cancer, gastric cancer,
prostate cancer

LOOCV 0.8526

iLncDA-
LTR

lncRNA-disease associations+ disease semantic
similarity+ lncRNA sequence similarity

Adaboost+
Xgboost+
k-NN+LTR

LncRNADisease/
LncRNADisease
v2.0

astrocytoma, breast cancer,
hepatocellular carcinoma,
prostate cancer, colorectal
cancer

10-CV 0.9517

ENCFLDA lncRNA-miRNA association+ miRNA-disease
association

matrix
decomposition
+KNN

MNDRv2.0/
HMDD/Starbase
v2.0

breast cancer, lung cancer LOOCV 0.9148

LDICDL lncRNA-disease associations+ lncRNA-gene
function associations+ lncRNA-miRNA associations
+ disease-miRNA associations+ disease-gene
associations

stacked
denoising
autoencoder+
matrix
factorization

lncRNA2target
/GeneRIF
/starBase v2.0/
HMDD
/DisGeNET

osteosarcoma 10-CV 0.9134

GCNLDA lncRNA disease associations+ lncRNA-miRNA
interactions+ miRNA-disease correlations

GCN+CNN LncRNADisease
/lnc2cancer
/GeneRIF/
HMDD
/Starbase/
Dincrna

stomach cancer,
osteosarcoma, lung cancer

5-CV 0.9598

HGATLDA lncRNA-disease associations GCN LncRNADisease
v2.0/Lnc2Cancer
3.0

breast cancer, hepatocellular
carcinoma

5-CV1/5-CV2 0.9424/0.9262
FIGURE 8

The workflow of predicting lncRNA-disease associations by heterogeneous graph attention network framework based on meta-paths (HGATLDA).
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7 Discussion and conclusion

Studies have shown that lncRNAs are involved in many

important biological processes such as epigenetic regulation, cell

differentiation, cell cycle regulation and immune response. In

addition, mutations and dysregulation of lncRNAs are

associated with many complex human diseases. Therefore,

identifying lncRNA-disease associations (LDAs) has important

biomedical implications, not only helping biologists to

understand disease mechanisms, but also providing new ideas

and solutions for diagnosis, treatment and prevention of

diseases. Since traditional biological experimental and clinical

methods are time-consuming and costly for identifying LDAs,

scholars have shifted their research direction to efficient machine

learning methods. Machine learning can accurately discover

unknown LDAs and help guide future biomedical research.

However, current models still have some limitations. In

particular, the known data on lncRNA-disease associations are

limited and no standard negative sample data are available,

which leads to the construction of computational models that

can only train known small-scale datasets. In addition, some

machine learning algorithms are black-box learning algorithms

that do not explain well the set of operations performed in the

prediction process from a biological perspective. To overcome

these drawbacks, we propose the following considerations for the

construction of future prediction models for LDAs. First, a

comprehensive database of LDAs needs to be constructed and

a more suitable method for negative sample data construction

needs to be found. A large amount of lncRNA-disease

associations data and more reliable negative sample data will

help to improve the accuracy of the prediction model. Then,

more effective input features can be found to extract advanced

features from the raw data, and the sequence, structure and
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physicochemical information of lncRNAs, etc. and more

different heterogeneous network features can be tried to be

applied as input features in lncRNA-disease associations

prediction. In addition, most of the above prediction methods

use the area under the ROC curve (AUC) and the area under the

PR curve (AUPR) to evaluate the model performance, but these

evaluation metrics may not fully reflect the merits of the model

performance. Therefore, using more evaluation metrics can

evaluate the prediction performance of the model more

comprehensively, such as KS value, GINI coefficient, etc.

Finally, for some machine learning models, the integration and

feature selection of multiple biological data, the selection of

optimal parameters and the combination of classifiers will also

adjust the performance of the model. The above discussion will

help us establish the lncRNA-disease association prediction

model and provide ideas for us to design prediction models in

other directions.

In this review, we briefly summarize and outline some of the

popularly studied human diseases, association and similarity

features of LDAs prediction, and performance evaluation

methods of the models in LDAs prediction models. In

addition, we comprehensively review some computational

models based on machine learning methods that have been

successfully applied to predict lncRNA-disease associations. We

elaborate on the computational procedures of some methods

and briefly explain the advantages and disadvantages of these

methods. Finally, we discuss the potential limitations of machine

learning-based methods for predicting LDAs and provide some

other possible directions for designing reasonable prediction

models. Although there have been several reviews on related

topics, our review summarizes important diseases in LDAs

prediction models, generalizes various similarity feature

calculation methods, and introduces some new representative
TABLE 2 The top 5 lncRNA-disease associations that have been successfully experimentally confirmed in case studies of various machine
learning models.

Model lncRNA Disease

SIMCLDA H19, MALAT1, GAS5, MEG3, XIST renal cancer

MALAT1, DRAIC, PCAT29, GAS5, DISC2 gastric cancer

HOTAIR, XIST, UCA1, NEAT1, SRA1 prostate cancer

iLncDA-LTR NR2F1-AS1 astrocytoma, breast cancer, hepatocellular carcinoma, prostate cancer, colorectal cancer

DLEU2 breast cancer, hepatocellular carcinoma, astrocytoma, colorectal cancer, prostate cancer

ENCFLDA XIST, MALAT1, KCNQ1OT1,
OIP5-AS1, NEAT1

lung cancer

OIP5-AS1, SNHG16, SCAMP1, FGD5-AS1, LINC00657 breast cancer

LDICDL H19, PVT1, GAS5, NEAT1, KCNQ1OT1 osteosarcoma

GCNLDA MALAT1, NEAT1, MIR17HG, HOTTIP, TUG1 stomach cancer

H19, GAS5, PVT1, NEAT1, EWSAT1 osteosarcoma

KCNQ1OT1, HOTTIP, SPRY4-IT1, TP73-AS1, MIAT lung cancer

HGATLDA H19, MALAT1, MEG3, NEAT1, CDKN2B-AS1 breast cancer

H19, MALAT1, NEAT1, CDKN2B-AS1, TUG1 hepatocellular carcinoma
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machine learning-based prediction methods. The content of our

review complements the previously published review to some

extent. Although this review is limited, it does not summarize all

the studied diseases. It only introduces some machine learning-

based models in LDAs prediction model and does not introduce

models other than models that are not based on machine

learning. We still expect that our review will contribute to a

better understanding of lncRNA’s association with disease and

further development of better-performing predictive models.

At present, the research on lncRNA-disease association

prediction has attracted more and more attention, and the

prediction methods based on machine learning are also

increasing. However, there are still some challenges in lncRNA

and disease association prediction. It mainly includes the

following points:

(1) dataset. At present, there are limited data on the

association of lncRNAs with disease. Most models use

association matrix/network as input, and less known

association data will limit the performance of the model.

(2) The construction of negative samples. It is difficult to

know which lncRNA-disease pairs are not associated. The model

based on machine learning needs to build negative samples, and

can only build negative samples according to unknown

associations, which will reduce the accuracy of the model.

(3) Input features. The input features of current prediction

models are basically similarity features, and new similarity

feature algorithms which are helpful to improve the prediction

performance need to be developed. Designing new suitable

feature inputs is a difficult problem to be solved.

(4) Adjustment of model parameters. The performance of

the prediction model is closely related to the parameters of the

model classifier, and the parameters are set differently for

different data sets to obtain the optimal performance. At

present, many models use manual parameter adjustment, so it

is very important to find the method to obtain the

optimal parameter.

Based on the above, in future studies on lncRNA and disease

association prediction, we can start with data, association

network and new lncRNA and disease association studies. We

can mine more unknown disease-related lncRNAs by collecting

more known relational data. At present, most prediction models

need to build negative samples, and the negative samples built

based on unknown interactions will inevitably reduce the

prediction performance of the model. Therefore, it is a future

development direction to design better unsupervised or semi-

supervised training models that do not depend on negative
Frontiers in Cellular and Infection Microbiology 15
samples. For the construction of semi-supervised models, we

can refer to Chen et al. ‘s MiRNA-disease association prediction

model (Chen et al., 2021; Wang et al., 2022b). The current input

features are almost all the correlation matrix/network and

similarity features of lncRNA and disease. We can get ideas

from the prediction model of ncRNA-protein interaction (Wang

et al., 2021), and try to combine the sequence and structural

features of lncRNA, such as the one-hot coding features of

lncRNA sequence, k-mer coding features and improved k-mer

coding features are input to the prediction model together with

the associated features. In conclusion, we hope to use more

biological information and new machine learning models to

develop more effective methods to predict lncRNA-disease

associations in the future.
Author contributions

XL, LZ, and ZD collected literature and wrote this review

under the guidance of JT. JT, XL, LZ, and ZD were involved in

revising it critically. All authors contributed to the article and

approved the submitted version.
Funding

This work was supported by the Beijing Natural Science

Foundation (No. 2202002) and the National Natural Science

Foundation of China (21173014).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1071972
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tan et al. 10.3389/fcimb.2022.1071972
References
Adey, A., Burton, J. N., Kitzman, J. O., Hiatt, J. B., Lewis, A. P., Martin, B. K.,
et al. (2013). The haplotype-resolved genome and epigenome of the aneuploid
HeLa cancer cell line. Nature 500 (7461), 207–211. doi: 10.1038/nature12064

Adomavicius, G., Tuzhilin, A., and Engineering, D. (2005). Toward the next
generation of recommender systems: a survey of the state-of-the-art and possible
extensions. IEEE T KNOWL DATA EN. 17, 734–749.

Bao, Z., Yang, Z., Huang, Z., Zhou, Y., Cui, Q., and Dong, D. (2019).
LncRNADisease 2.0: an updated database of long non-coding RNA-associated
diseases. Nucleic Acids Res. 47 (D1), D1034–d1037. doi: 10.1093/nar/gky905

Bian, E. B., Li, J., Xie, Y. S., Zong, G., Li, J., and Zhao, B. (2015). LncRNAs: new
players in gliomas, with special emphasis on the interaction of lncRNAs with
EZH2. J. Cell Physiol. 230 (3), 496–503. doi: 10.1002/jcp.24549

Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., et al.
(2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias
and carcinomas. Cancer Cell 12 (3), 215–229. doi: 10.1016/j.ccr.2007.07.027

Chen, X. (2015). Predicting lncRNA-disease associations and constructing
lncRNA functional similarity network based on the information of miRNA. Sci.
Rep. 5, 13186. doi: 10.1038/srep13186

Cheng, L., Wang, P., Tian, R., Wang, S., Guo, Q., Luo, M., et al. (2019).
LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in
human and mouse. Nucleic Acids Res. 47 (D1), D140–d144. doi: 10.1093/nar/
gky1051

Chen, X., Li, T. H., Zhao, Y., Wang, C. C., and Zhu, C. C. (2021). Deep-belief
network for predicting potential miRNA-disease associations. Brief Bioinform. 22
(3), bbaa186. doi: 10.1093/bib/bbaa186

Chen, X., Wang, C. C., Yin, J., and You, Z. H. (2018a). Novel human miRNA-
disease association inference based on random forest. Mol. Ther. Nucleic Acids 13,
568–579. doi: 10.1016/j.omtn.2018.10.005

Chen, X., and Yan, G. Y. (2013). Novel human lncRNA-disease association
inference based on lncRNA expression profiles. Bioinformatics 29 (20), 2617–2624.
doi: 10.1093/bioinformatics/btt426

Chen, X., Yan, C. C., Zhang, X., and You, Z. H. (2017). Long non-coding RNAs
and complex diseases: from experimental results to computational models. Brief
Bioinform. 18 (4), 558–576. doi: 10.1093/bib/bbw060

Chen, X., Yin, J., Qu, J., and Huang, L. (2018b). MDHGI: Matrix decomposition
and heterogeneous graph inference for miRNA-disease association prediction. PloS
Comput. Biol. 14 (8), e1006418. doi: 10.1371/journal.pcbi.1006418

Congrains, A., Kamide, K., Oguro, R., Yasuda, O., Miyata, K., Yamamoto, E.,
et al. (2012). Genetic variants at the 9p21 locus contribute to atherosclerosis
through modulation of ANRIL and CDKN2A/B. Atherosclerosis 220 (2), 449–455.
doi: 10.1016/j.atherosclerosis.2011.11.017

Cui, Z., Liu, J. X., Gao, Y. L., Zhu, R., and Yuan, S. S. (2020). LncRNA-disease
associations prediction using bipartite local model with nearest profile-based
association inferring. IEEE J. BioMed. Health Inform 24 (5), 1519–1527.
doi: 10.1109/jbhi.2019.2937827

Donahue, H. J., and Genetos, D. C. (2013). Genomic approaches in breast cancer
research. Brief Funct. Genomics 12 (5), 391–396. doi: 10.1093/bfgp/elt019

Dong, L., Li, G., Li, Y., and Zhu, Z. (2019). Upregulation of long noncoding RNA
GAS5 inhibits lung cancer cell proliferation and metastasis via miR-205/PTEN
axis. Med. Sci. Monit 25, 2311–2319. doi: 10.12659/msm.912581

Faghihi, M. A., Modarresi, F., Khalil, A. M., Wood, D. E., Sahagan, B. G.,
Morgan, T. E., et al. (2008). Expression of a noncoding RNA is elevated in
alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase.
Nat. Med. 14 (7), 723–730. doi: 10.1038/nm1784

Fan, Y., Chen, M., and Pan, X. (2022). GCRFLDA: scoring lncRNA-disease
associations using graph convolution matrix completion with conditional random
field. Brief Bioinform. 23 (1), bbab361. doi: 10.1093/bib/bbab361

Fan, Y., Chen, M., Zhu, Q., and Wang, W. (2020). Inferring disease-associated
microbes based on multi-data integration and network consistency projection.
Front. Bioeng Biotechnol. 8. doi: 10.3389/fbioe.2020.00831

Fan, S., Fan, C., Liu, N., Huang, K., Fang, X., and Wang, K. (2018).
Downregulation of the long non-coding RNA ZFAS1 is associated with cell
proliferation, migration and invasion in breast cancer. Mol. Med. Rep. 17 (5),
6405–6412. doi: 10.3892/mmr.2018.8707

Fehringer, G., Kraft, P., Pharoah, P. D., Eeles, R. A., Chatterjee, N., Schumacher,
F. R., et al. (2016). Cross-cancer genome-wide analysis of lung, ovary, breast,
prostate, and colorectal cancer reveals novel pleiotropic associations. Cancer Res.
76 (17), 5103–5114. doi: 10.1158/0008-5472.Can-15-2980
Frontiers in Cellular and Infection Microbiology 16
Fu, G., Wang, J., Domeniconi, C., and Yu, G. (2018). Matrix factorization-based
data fusion for the prediction of lncRNA-disease associations. Bioinformatics 34
(9), 1529–1537. doi: 10.1093/bioinformatics/btx794

Gao, Y., Shang, S., Guo, S., Li, X., Zhou, H., Liu, H., et al. (2021). Lnc2Cancer 3.0:
an updated resource for experimentally supported lncRNA/circRNA cancer
associations and web tools based on RNA-seq and scRNA-seq data. Nucleic
Acids Res. 49 (D1), D1251–d1258. doi: 10.1093/nar/gkaa1006

Gutschner, T., Hämmerle, M., Eissmann, M., Hsu, J., Kim, Y., Hung, G., et al.
(2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis
phenotype of lung cancer cells. Cancer Res. 73 (3), 1180–1189. doi: 10.1158/0008-
5472.Can-12-2850

Hattinger, C. M., Biason, P., Iacoboni, E., Gagno, S., Fanelli, M., Tavanti, E., et al.
(2016). Candidate germline polymorphisms of genes belonging to the pathways of
four drugs used in osteosarcoma standard chemotherapy associated with risk,
survival and toxicity in non-metastatic high-grade osteosarcoma. Oncotarget 7
(38), 61970–61987. doi: 10.18632/oncotarget.11486

Huang, Z., Shi, J., Gao, Y., Cui, C., Zhang, S., Li, J., et al. (2019). HMDD v3.0: a
database for experimentally supported human microRNA-disease associations.
Nucleic Acids Res. 47 (D1), D1013–d1017. doi: 10.1093/nar/gky1010

Johnson, R. (2012). Long non-coding RNAs in huntington’s disease
neurodegeneration. Neurobiol. Dis. 46 (2), 245–254. doi: 10.1016/j.nbd.2011.12.006

Jun, T., Zheng, F. S., Ren, K. M., Zhang, H. Y., Zhao, J. G., and Zhao, J. Z. (2018).
Suppression of long non-coding RNA UCA1 inhibits proliferation and invasion
and induces apoptosis in human lung cancer cells. Eur. Rev. Med. Pharmacol. Sci.
22 (21), 7274–7281. doi: 10.26355/eurrev_201811_16263

Khasraw, M., Ameratunga, M. S., Grant, R., Wheeler, H., and Pavlakis, N.
(2014). Antiangiogenic therapy for high-grade glioma. Cochrane Database Syst.
Rev. 9), Cd008218. doi: 10.1002/14651858.CD008218.pub3

Kukar, M., and Kononenko, I. (1998) Cost-sensitive learning with neural
networks (ECAI) 15 (27, 88–94.

Lan, W., Lai, D., Chen, Q., Wu, X., Chen, B., Liu, J., et al. (2022). LDICDL:
LncRNA-disease association identification based on collaborative deep learning.
IEEE/ACM Trans. Comput. Biol. Bioinform. 19 (3), 1715–1723. doi: 10.1109/
tcbb.2020.3034910

Lee, I., Blom, U. M., Wang, P. I., Shim, J. E., and Marcotte, E. M. (2011).
Prioritizing candidate disease genes by network-based boosting of genome-wide
association data. Genome Res. 21 (7), 1109–1121. doi: 10.1101/gr.118992.110

Li, S., Huang, Y., Huang, Y., Fu, Y., Tang, D., Kang, R., et al. (2017). The long
non-coding RNA TP73-AS1 modulates HCC cell proliferation through miR-200a-
dependent HMGB1/RAGE regulation. J. Exp. Clin. Cancer Res. 36 (1), 51.
doi: 10.1186/s13046-017-0519-z

Li, J., Kong, M., Wang, D., Yang, Z., and Hao, X. (2021). Prediction of lncRNA-
disease associations via closest node weight graphs of the spatial neighborhood
based on the edge attention graph convolutional network. Front. Genet. 12.
doi: 10.3389/fgene.2021.808962

Li, J. H., Liu, S., Zhou, H., Qu, L. H., and Yang, J. H. (2014). starBase v2.0:
decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks
from large-scale CLIP-seq data. Nucleic Acids Res. 42 (Database issue), D92–D97.
doi: 10.1093/nar/gkt1248

Li, G., Luo, J., Xiao, Q., Liang, C., and Ding, P. (2018). Prediction of microRNA–
disease associations with a Kronecker kernel matrix dimension reduction model.
RSC Adv. 8 (8), 4377–4385. doi: 10.1039/C7RA12491K

Liu, J. X., Cui, Z., Gao, Y. L., and Kong, X. Z. (2021). WGRCMF: A weighted
graph regularized collaborative matrix factorization method for predicting novel
LncRNA-disease associations. IEEE J. BioMed. Health Inform 25 (1), 257–265.
doi: 10.1109/jbhi.2020.2985703

Li, J., Zhang, S., Liu, T., Ning, C., Zhang, Z., and Zhou, W. (2020). Neural
inductive matrix completion with graph convolutional networks for miRNA-
disease association prediction. Bioinformatics 36 (8), 2538–2546. doi: 10.1093/
bioinformatics/btz965%JBioinformatics

Loewen, G., Jayawickramarajah, J., Zhuo, Y., and Shan, B. (2014). Functions of
lncRNA HOTAIR in lung cancer. J. Hematol. Oncol. 7, 90. doi: 10.1186/s13045-
014-0090-4

Lu, Z., Cohen, K. B., and Hunter, L. (2007). GeneRIF quality assurance as
summary revision. Pac Symp Biocomput 2007, 269–280. doi: 10.1142/
9789812772435_0026

Lu, C., Yang, M., Luo, F., Wu, F. X., Li, M., Pan, Y., et al. (2018). Prediction of
lncRNA-disease associations based on inductive matrix completion. Bioinformatics
34 (19), 3357–3364. doi: 10.1093/bioinformatics/bty327
frontiersin.org

https://doi.org/10.1038/nature12064
https://doi.org/10.1093/nar/gky905
https://doi.org/10.1002/jcp.24549
https://doi.org/10.1016/j.ccr.2007.07.027
https://doi.org/10.1038/srep13186
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.1093/bib/bbaa186
https://doi.org/10.1016/j.omtn.2018.10.005
https://doi.org/10.1093/bioinformatics/btt426
https://doi.org/10.1093/bib/bbw060
https://doi.org/10.1371/journal.pcbi.1006418
https://doi.org/10.1016/j.atherosclerosis.2011.11.017
https://doi.org/10.1109/jbhi.2019.2937827
https://doi.org/10.1093/bfgp/elt019
https://doi.org/10.12659/msm.912581
https://doi.org/10.1038/nm1784
https://doi.org/10.1093/bib/bbab361
https://doi.org/10.3389/fbioe.2020.00831
https://doi.org/10.3892/mmr.2018.8707
https://doi.org/10.1158/0008-5472.Can-15-2980
https://doi.org/10.1093/bioinformatics/btx794
https://doi.org/10.1093/nar/gkaa1006
https://doi.org/10.1158/0008-5472.Can-12-2850
https://doi.org/10.1158/0008-5472.Can-12-2850
https://doi.org/10.18632/oncotarget.11486
https://doi.org/10.1093/nar/gky1010
https://doi.org/10.1016/j.nbd.2011.12.006
https://doi.org/10.26355/eurrev_201811_16263
https://doi.org/10.1002/14651858.CD008218.pub3
https://doi.org/10.1109/tcbb.2020.3034910
https://doi.org/10.1109/tcbb.2020.3034910
https://doi.org/10.1101/gr.118992.110
https://doi.org/10.1186/s13046-017-0519-z
https://doi.org/10.3389/fgene.2021.808962
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1039/C7RA12491K
https://doi.org/10.1109/jbhi.2020.2985703
https://doi.org/10.1093/bioinformatics/btz965%JBioinformatics
https://doi.org/10.1093/bioinformatics/btz965%JBioinformatics
https://doi.org/10.1186/s13045-014-0090-4
https://doi.org/10.1186/s13045-014-0090-4
https://doi.org/10.1142/9789812772435_0026
https://doi.org/10.1142/9789812772435_0026
https://doi.org/10.1093/bioinformatics/bty327
https://doi.org/10.3389/fcimb.2022.1071972
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tan et al. 10.3389/fcimb.2022.1071972
Lu, R., Zhao, G., Yang, Y., Jiang, Z., Cai, J., Zhang, Z., et al. (2019). Long
noncoding RNA HOTAIRM1 inhibits cell progression by regulating miR-17-5p/
PTEN axis in gastric cancer. J. Cell Biochem. 120 (4), 4952–4965. doi: 10.1002/
jcb.27770

Ma, K. X., Wang, H. J., Li, X. R., Li, T., Su, G., Yang, P., et al. (2015). Long
noncoding RNAMALAT1 associates with the malignant status and poor prognosis
in glioma. Tumour Biol. 36 (5), 3355–3359. doi: 10.1007/s13277-014-2969-7

Men, J. R., Tan, J. J., and Sun, H. L. (2020). The identification and analysis of a
miRNA risk score model for hepatocellular carcinoma prognosis. Prog. In Biochem.
And Biophysics 47 (4), 344–360. doi: 10.16476/j.pibb.2019.0286

Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48
(3), 443–453. doi: 10.1016/0022-2836(70)90057-4

Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson,
R., Farne, A., et al. (2007). ArrayExpress–a public database of microarray
experiments and gene expression profiles. Nucleic Acids Res. 35 (Database issue),
D747–D750. doi: 10.1093/nar/gkl995

Peng, L., Yuan, X., Jiang, B., Tang, Z., and Li, G. C. (2016). LncRNAs: key players
and novel insights into cervical cancer. Tumour Biol. 37 (3), 2779–2788.
doi: 10.1007/s13277-015-4663-9

Pertea, M. (2012). The human transcriptome: an unfinished story. Genes (Basel)
3 (3), 344–360. doi: 10.3390/genes3030344

Pibouin, L., Villaudy, J., Ferbus, D., Muleris, M., Prospéri, M. T., Remvikos, Y.,
et al. (2002). Cloning of the mRNA of overexpression in colon carcinoma-1: a
sequence overexpressed in a subset of colon carcinomas. Cancer Genet. Cytogenet.
133 (1), 55–60. doi: 10.1016/s0165-4608(01)00634-3

Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J.,
Centeno, E., et al. (2017). DisGeNET: a comprehensive platform integrating
information on human disease-associated genes and variants. Nucleic Acids Res.
45 (D1), D833–d839. doi: 10.1093/nar/gkw943

Saini, S. (2016). PSA and beyond: alternative prostate cancer biomarkers. Cell
Oncol. (Dordr) 39 (2), 97–106. doi: 10.1007/s13402-016-0268-6

Schlicker, A., Lengauer, T., and Albrecht, M. (2010). Improving disease gene
prioritization using the semantic similarity of gene ontology terms. Bioinformatics
26 (18), i561–i567. doi: 10.1093/bioinformatics/btq384

Sheng, N., Cui, H., Zhang, T., and Xuan, P. (2021). Attentional multi-level
representation encoding based on convolutional and variance autoencoders for
lncRNA-disease association prediction. Brief Bioinform. 22 (3), bbaa067.
doi: 10.1093/bib/bbaa067

Shi, Y., Huang, X., Du, Z., and Tan, J. (2022a). Analysis of single-cell RNA-
sequencing data identifies a hypoxic tumor subpopulation associated with poor
prognosis in triple-negative breast cancer. Math Biosci. Eng. 19 (6), 5793–5812.
doi: 10.3934/mbe.2022271

Shi, Y., Men, J., Sun, H., and Tan, J. (2022b). The identification and analysis of
MicroRNAs combined biomarkers for hepatocellular carcinoma diagnosis. Med.
Chem. 18 (10), 1073–1085. doi: 10.2174/1573406418666220404084532

Shi, X. M., and Teng, F. (2015). Up-regulation of long non-coding RNA Sox2ot
promotes hepatocellular carcinoma cell metastasis and correlates with poor
prognosis. Int. J. Clin. Exp. Pathol. 8 (4), 4008–4014.

Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C., and Lordick, F. (2020).
Gastric cancer. Lancet 396 (10251), 635–648. doi: 10.1016/s0140-6736(20)31288-5

Su, Y. J., Yu, J., Huang, Y. Q., and Yang, J. (2015). Circulating long noncoding
RNA as a potential target for prostate cancer. Int. J. Mol. Sci. 16 (6), 13322–13338.
doi: 10.3390/ijms160613322

Teng, X., Chen, X., Xue, H., Tang, Y., Zhang, P., Kang, Q., et al. (2020). NPInter
v4.0: an integrated database of ncRNA interactions. Nucleic Acids Res. 48 (D1),
D160–d165. doi: 10.1093/nar/gkz969

van Laarhoven, T., Nabuurs, S. B., and Marchiori, E. (2011). Gaussian
Interaction profile kernels for predicting drug-target interaction. Bioinformatics
27 (21), 3036–3043. doi: 10.1093/bioinformatics/btr500

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., and Bengio, Y. J.
A. (2017). Graph attention networks.

Wang, J. Z., Du, Z., Payattakool, R., Yu, P. S., and Chen, C. F. (2007). A new
method to measure the semantic similarity of GO terms. Bioinformatics 23 (10),
1274–1281. doi: 10.1093/bioinformatics/btm087

Wang, C. C., Li, T. H., Huang, L., and Chen, X. (2022b). Prediction of potential
miRNA-disease associations based on stacked autoencoder. Brief Bioinform. 23 (2),
bbac021. doi: 10.1093/bib/bbac021

Wang, B., Liu, R., Zheng, X., Du, X., and Wang, Z. (2022a). lncRNA-disease
association prediction based on matrix decomposition of elastic network and
collaborative filtering. Sci. Rep. 12 (1), 12700. doi: 10.1038/s41598-022-16594-5
Frontiers in Cellular and Infection Microbiology 17
Wang, J., Su, H. K., Zhao, H. F., Chen, Z. P., and To, S. S. (2015). Progress in the
application of molecular biomarkers in gliomas. Biochem. Biophys. Res. Commun.
465 (1), 1–4. doi: 10.1016/j.bbrc.2015.07.148

Wang, D., Wang, J., Lu, M., Song, F., and Cui, Q. (2010). Inferring the human
microRNA functional similarity and functional network based on microRNA-
associated diseases. Bioinformatics 26 (13), 1644–1650. doi: 10.1093/
bioinformatics/btq241

Wang, M., Wang, K. X., Tan, J. J., and Wang, J. J. (2022c). Identification of gene
signatures associated with lung adenocarcinoma diagnosis and prognosis based on
WGCNA and SVM-RFE algorithm. Prog. In Biochem. And Biophysics 49 (2), 381–
394. doi: 10.16476/j.pibb.2021.0010

Wang, Z., Yuan, J., Li, L., Yang, Y., Xu, X., and Wang, Y. (2017). Long non-
coding RNA XIST exerts oncogenic functions in human glioma by targeting miR-
137. Am. J. Transl. Res. 9 (4), 1845–1855.

Wang, J., Zhao, Y., Gong, W., Liu, Y., Wang, M., Huang, X., et al. (2021).
EDLMFC: an ensemble deep learning framework with multi-scale features
combination for ncRNA-protein interaction prediction. BMC Bioinf. 22 (1), 133.
doi: 10.1186/s12859-021-04069-9

White, N. M., Cabanski, C. R., Silva-Fisher, J. M., Dang, H. X., Govindan, R., and
Maher, C. A. (2014). Transcriptome sequencing reveals altered long intergenic
non-coding RNAs in lung cancer. Genome Biol. 15 (8), 429. doi: 10.1186/s13059-
014-0429-8

Wu, D., Li, R., Liu, J., Zhou, C., and Jia, R. (2022). Long noncoding RNA
LINC00467: Role in various human cancers. Front. Genet. 13. doi: 10.3389/
fgene.2022.892009

Wu, Q. W., Xia, J. F., Ni, J. C., and Zheng, C. H. (2021). GAERF: predicting
lncRNA-disease associations by graph auto-encoder and random forest. Brief
Bioinform. 22 (5), bbaa391. doi: 10.1093/bib/bbaa391

Xiao, Q., Luo, J., Liang, C., Cai, J., and Ding, P. (2018). A graph regularized non-
negative matrix factorization method for identifying microRNA-disease
associations. Bioinformatics 34 (2), 239–248. doi: 10.1093/bioinformatics/btx545

Xiao, G., Yao, J., Kong, D., Ye, C., Chen, R., Li, L., et al. (2019). The long
noncoding RNA TTTY15, which is located on the y chromosome, promotes
prostate cancer progression by sponging let-7. Eur. Urol 76 (3), 315–326.
doi: 10.1016/j.eururo.2018.11.012

Xie, G., Meng, T., Luo, Y., and Liu, Z. (2019). SKF-LDA: Similarity kernel fusion
for predicting lncRNA-disease association. Mol. Ther. Nucleic Acids 18, 45–55.
doi: 10.1016/j.omtn.2019.07.022

Xuan, P., Pan, S., Zhang, T., Liu, Y., and Sun, H. (2019). Graph convolutional
network and convolutional neural network based method for predicting lncRNA-
disease associations. Cells 8 (9), 1012. doi: 10.3390/cells8091012

Xue, M., Chen, L. Y., Wang, W. J., Su, T. T., Shi, L. H., Wang, L., et al. (2018).
HOTAIR induces the ubiquitination of Runx3 by interacting with Mex3b and
enhances the invasion of gastric cancer cells. Gastric Cancer 21 (5), 756–764.
doi: 10.1007/s10120-018-0801-6

Yang, Q., and Li, X. (2021). BiGAN: LncRNA-disease association prediction
based on bidirectional generative adversarial network. BMC Bioinf. 22 (1), 357.
doi: 10.1186/s12859-021-04273-7

Yang, J. P., Yang, X. J., Xiao, L., and Wang, Y. (2016). Long noncoding RNA
PVT1 as a novel serum biomarker for detection of cervical cancer. Eur. Rev. Med.
Pharmacol. Sci. 20 (19), 3980–3986.

Yang, S., Ye, Z., Wang, Z., and Wang, L. (2020). High mobility group box 2
modulates the progression of osteosarcoma and is related with poor prognosis.
Ann. Transl. Med. 8 (17), 1082. doi: 10.21037/atm-20-4801

Yan, Q., Tian, Y., and Hao, F. (2018). Downregulation of lncRNA UCA1 inhibits
proliferation and invasion of cervical cancer cells through miR-206 expression.
Oncol. Res. 8 (11, 1855–1865. doi: 10.3727/096504018x15185714083446

Ye, K., Wang, S., Zhang, H., Han, H., Ma, B., and Nan, W. (2017). Long
noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal
transition in osteosarcoma by regulating the miR-221/ARHI pathway. J. Cell
Biochem. 118 (12), 4772–4781. doi: 10.1002/jcb.26145

Yin, M. M., Liu, J. X., Gao, Y. L., Kong, X. Z., and Zheng, C. H. (2022). NCPLP: A
novel approach for predicting microbe-associated diseases with network
consistency projection and label propagation. IEEE Trans. Cybern 52 (6), 5079–
5087. doi: 10.1109/tcyb.2020.3026652

Zhai, H., and Li, Y. (2019). BCYRN1 is correlated with progression and
prognosis in gastric cancer. Biosci. Rep. 39 (11), BSR20190505. doi: 10.1042/
bsr20190505

Zhao, Z., Chen, C., Liu, Y., and Wu, C. (2014). 17b-estradiol treatment inhibits
breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA
level. Biochem. Biophys. Res. Commun. 445 (2), 388–393. doi: 10.1016/
j.bbrc.2014.02.006
frontiersin.org

https://doi.org/10.1002/jcb.27770
https://doi.org/10.1002/jcb.27770
https://doi.org/10.1007/s13277-014-2969-7
https://doi.org/10.16476/j.pibb.2019.0286
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1093/nar/gkl995
https://doi.org/10.1007/s13277-015-4663-9
https://doi.org/10.3390/genes3030344
https://doi.org/10.1016/s0165-4608(01)00634-3
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1007/s13402-016-0268-6
https://doi.org/10.1093/bioinformatics/btq384
https://doi.org/10.1093/bib/bbaa067
https://doi.org/10.3934/mbe.2022271
https://doi.org/10.2174/1573406418666220404084532
https://doi.org/10.1016/s0140-6736(20)31288-5
https://doi.org/10.3390/ijms160613322
https://doi.org/10.1093/nar/gkz969
https://doi.org/10.1093/bioinformatics/btr500
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.1093/bib/bbac021
https://doi.org/10.1038/s41598-022-16594-5
https://doi.org/10.1016/j.bbrc.2015.07.148
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.16476/j.pibb.2021.0010
https://doi.org/10.1186/s12859-021-04069-9
https://doi.org/10.1186/s13059-014-0429-8
https://doi.org/10.1186/s13059-014-0429-8
https://doi.org/10.3389/fgene.2022.892009
https://doi.org/10.3389/fgene.2022.892009
https://doi.org/10.1093/bib/bbaa391
https://doi.org/10.1093/bioinformatics/btx545
https://doi.org/10.1016/j.eururo.2018.11.012
https://doi.org/10.1016/j.omtn.2019.07.022
https://doi.org/10.3390/cells8091012
https://doi.org/10.1007/s10120-018-0801-6
https://doi.org/10.1186/s12859-021-04273-7
https://doi.org/10.21037/atm-20-4801
https://doi.org/10.3727/096504018x15185714083446
https://doi.org/10.1002/jcb.26145
https://doi.org/10.1109/tcyb.2020.3026652
https://doi.org/10.1042/bsr20190505
https://doi.org/10.1042/bsr20190505
https://doi.org/10.1016/j.bbrc.2014.02.006
https://doi.org/10.1016/j.bbrc.2014.02.006
https://doi.org/10.3389/fcimb.2022.1071972
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tan et al. 10.3389/fcimb.2022.1071972
Zhao, J., and Ma, S. T. (2018). Downregulation of lncRNA H19 inhibits
migration and invasion of human osteosarcoma through the NF-kB pathway.
Mol. Med. Rep. 17 (5), 7388–7394. doi: 10.3892/mmr.2018.8746

Zhao, X., Wang, P., Liu, J., Zheng, J., Liu, Y., Chen, J., et al. (2015). Gas5 exerts
tumor-suppressive functions in human glioma cells by targeting miR-222. Mol.
Ther. 23 (12), 1899–1911. doi: 10.1038/mt.2015.170

Zhao, X., Zhao, X., and Yin, M. (2022). Heterogeneous graph attention network
based on meta-paths for lncRNA-disease association prediction. Brief Bioinform.
23 (1), bbab407. doi: 10.1093/bib/bbab407

Zheng, J., Zhao, S., He, X., Zheng, Z., Bai, W., Duan, Y., et al. (2016). The up-
regulation of long non-coding RNA CCAT2 indicates a poor prognosis for prostate
Frontiers in Cellular and Infection Microbiology 18
cancer and promotes metastasis by affecting epithelial-mesenchymal transition.
Biochem. Biophys. Res. Commun. 480 (4), 508–514. doi: 10.1016/j.bbrc.2016.08.120

Zhou, Q., Chen, F., Zhao, J., Li, B., Liang, Y., Pan, W., et al. (2016). Long non-coding
RNA PVT1 promotes osteosarcoma development by acting as a molecular sponge to
regulate miR-195. Oncotarget 7 (50), 82620–82633. doi: 10.18632/oncotarget.13012

Zhou, Y., Wang, X., Yao, L., and Zhu, M. (2022). LDAformer: predicting
lncRNA-disease associations based on topological feature extraction and
transformer encoder. Brief Bioinform. bbac370. doi: 10.1093/bib/bbac370

Zhou, X., Xu, X., Gao, C., and Cui, Y. (2019). XIST promote the proliferation and
migration of non-small cell lung cancer cells via sponging miR-16 and regulating
CDK8 expression. Am. J. Transl. Res. 11 (9), 6196–6206.
frontiersin.org

https://doi.org/10.3892/mmr.2018.8746
https://doi.org/10.1038/mt.2015.170
https://doi.org/10.1093/bib/bbab407
https://doi.org/10.1016/j.bbrc.2016.08.120
https://doi.org/10.18632/oncotarget.13012
https://doi.org/10.1093/bib/bbac370
https://doi.org/10.3389/fcimb.2022.1071972
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

	Recent advances in machine learning methods for predicting LncRNA and disease associations
	1 Introduction
	2 Associated diseases in prediction models
	2.1 Osteosarcoma
	2.2 Lung cancer
	2.3 Gastric cancer
	2.4 Prostate cancer
	2.5 Breast cancer
	2.6 Cervical cancer
	2.7 Hepatocellular carcinoma
	2.8 Glioma

	3 Association and similarity characteristics
	3.1 Association characteristics
	3.2 Similarity characteristics
	3.2.1 LncRNA function similarity
	3.2.2 LncRNA expression similarity
	3.2.3 LncRNA sequence similarity
	3.2.4 Disease semantic similarity
	3.2.5 Disease functional similarity
	3.2.6 Gaussian interaction profile kernel similarity for LncRNA and disease
	3.2.7 Cosine similarity for lncRNA and disease


	4 Performance evaluation
	5 Machine learning-based models
	5.1 Conventional machine learning-based models
	5.2 Deep learning-based models

	6 Results
	7 Discussion and conclusion
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


