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Introduction: The alterations of gut microbiota have been associated with

multiple diseases. However, the relationship between gut microbiota and

adverse outcomes of hyperlipidemic stroke patients remains unclear. Here

we determined the gut microbial signature to predict the poor outcome of

acute ischemic stroke (AIS) with hyperlipidemia (POAH).

Methods: Fecal samples from hyperlipidemic stroke patients were collected,

which further analyzed by 16s rRNA gene sequencing. The diversity,

community composition and differential gut microbiota were evaluated. The

adverse outcomes were determined by modified Rankin Scale (mRS) scores at

3 months after admission. The diagnostic performance of microbial

characteristics in predicting adverse outcomes was assessed by receiver

operating characteristic (ROC) curves.

Results: Our results showed that the composition and structure of gut

microbiota between POAH patients and good outcome of AIS with

hyperlipidemia (GOAH) patients were different. The characteristic gut

microbiota of POAH patients was that the relative abundance of

Enterococcaceae and Enterococcus were increased, while the relative

abundance of Lachnospiraceae, Faecalibacterium, Rothia and Butyricicoccus

were decreased. Moreover, the characteristic gut microbiota were correlated

with many clinical parameters, such as National Institutes of Health Stroke

Scale (NIHSS) score, mean arterial pressure, and history of cerebrovascular

disease. Moreover, the ROC models based on the characteristic microbiota or

the combination of characteristic microbiota with independent risk factors

could distinguish POAH patients and GOAH patients (area under curve is 0.694

and 0.971 respectively).
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Conclusions: These findings revealed the microbial characteristics of POAH,

which highlighted the predictive capability of characteristic microbiota in

POAH patients.
KEYWORDS

acute ischemic stroke, hyperlipidemia, post-stroke poor outcome, gut microbiota,
ROC curve
Introduction

Acute ischemic stroke (AIS) was a leading cause of death and

chronic disability worldwide. Stroke survivors frequently had

various complications, such as cognitive impairment and

physical disability, which had a great impact on the quality of

life (Duncan et al., 2021; Paul and Candelario-Jalil, 2021). Recent

studies have shown that some risk factors including age,

smoking and hyperlipidemia could affect the functional

outcome after stroke (Meschia and Brott, 2018; Diener and

Hankey, 2020). Hyperlipidemia could result in the

neuroinflammation of brain and aggravated ischemic brain

injury (Kim et al., 2014), and half of stroke patients were

found to have hyperlipidemia (Rother et al., 2008).

Hyperlipidemic stroke patients might suffer from functional

deterioration after AIS. Kim et al. reported that the elevated

plasma cholesterol levels were positively correlated with stroke

severity in the hyperlipidemic mice (Kim et al., 2020). Elevated

low-density lipoprotein cholesterol (LDL-C) was independently

associated with severe stroke in patients with chronic kidney

disease (Zhang et al., 2021). Currently, early detection of poor

outcome of AIS with hyperlipidemia (POAH) was often

challenging. Therefore, it is very urgent to find early

biomarkers to evaluate the prognosis of hyperlipidemic

stroke patients.

Recent studies have emphasized that the characteristic gut

microbiota (GM) are associated with AIS. It was reported that

stroke patients showed significant dysbiosis of bacteria with

enriched short-chain fatty acids (SCFAs) (Li et al., 2019). Our

previous studies showed that Proteobacteria was highly

increased in the post-stroke cognitive impairment patients

compared with the post-stroke noncognitive impairment

patients (Ling et al., 2020). More and more evidence showed

that GM have important influences on the occurrence,

development and severity of stroke. Zhu et al. reported that

GM directly impact cerebral infarct size and adverse outcomes

fo l lowing s t roke through GM-der ived metabo l i te

trimethylamine-N-oxide (Zhu et al., 2021). GM have been

increasingly recognized as vital determinants involved in the
02
development of stroke and hyperlipidemia (Ling et al., 2022).

The patients with hyperlipidemia showed abnormal GM

composition (Gargari et al., 2018), which would aggravate

dyslipidemia (Deng et al., 2019; Gu et al., 2020), while

regulating GM could alleviate the abnormality of serum lipid

in animal models (Yan et al., 2022). These findings

demonstrated that GM might be an important regulator of the

prognosis of hyperlipidemic stroke patients.

Recent evidences demonstrate that GM could be regarded as

a diagnosis biomarker for many diseases. Our previous studies

showed that patients with post-stroke comorbid cognitive

impairment and depression exhibited an increased abundance

of Proteobacteria, and a decreased abundance of several SCFAs-

producing bacteria (Ling et al., 2020). It was reported that the

abundance of Alcaligenaceae and Acinetobacter could

remarkably distinguish autism spectrum disorders from the

healthy group (Li et al., 2019). GM could distinguish stroke

patients from healthy controls and the level of SCFAs appeared

to effectively predict the severity and prognosis of stroke to some

extent (Sun et al., 2021; Tan et al., 2021). The increased relative

abundance of Finegoldia magna, Bifidobacterium dentium, and

Clostridium clostridioforme could be used as a predictor of aging

(Chen et al., 2022). Although the diagnostic application of GM

has been well studied, the characteristic microbiota in POAH

patients remains unclear.

Therefore, the present study was performed to investigate

the characteristic GM of POAH patients. We further confirmed

the correlation between characteristic GM and clinical

parameters, as well as determined the gut microbial signature

to predict POAH.
Materials and methods

Study patients

This study was conducted in the Department of Neurology

of the Second Affiliated Hospital of Wenzhou Medical

University, from September 2020 to July 2021. Inclusion
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criteria: patients diagnosed with AIS; admission within 72 hours

after stroke onset; previously diagnosed with hyperlipidemia or

triglyceride (TG) > 2.28 mmol/L or total cholesterol (TC) > 6.2

mmol/L or high-density lipoprotein (HDL) < 0.91 mmol/L or

low-density lipoprotein (LDL) > 3.4 mmol/L. Exclusion criteria:

application of antibiotics or probiotics within three months,

restriction of diet, concurrent pregnancy, schizophrenia, bipolar

disorder, or other serious life-threatening illnesses (heart failure,

respiratory failure, or severe renal dysfunction). The modified

Rankin Scale (mRS) was applied to assess the post-stroke

functional outcome of each patient in a 90-day follow-up after

the stroke onset. The included AIS with hyperlipidemia were

divided into the good functional outcome group (mRS score < 3)

and the poor functional outcome group (mRS score ≥ 3).
Clinical data collection

All hyperlipidemic stroke patients were collected basic

information at enrollment, including sex, age, years of

education, history of smoking and drinking, presence of

hypertension and diabetes, and history of cerebrovascular

disease. Hypertension was considered as blood pressure ≥ 140/

90 mmHg. Diabetes was defined as fasting blood glucose ≥ 7.0

mmol/L or 2 h blood glucose ≥ 11.1 mmol/L in an oral glucose

tolerance test. The blood samples were extracted on an empty

stomach after fasting overnight and centrifuged at 1300xg for 10

minutes. The biochemical indicators analyzed included TG, TC,

HDL, LDL, creatinine, vitamin B12, folic acid (FOA), uric acid

(UA), homocysteine (Hcy), C-reactive protein (CRP),

hypersensitive C-reactive protein (hs-CRP), fasting blood

glucose (FPG), glycosylated hemoglobin, thyrotropin, free

triiodothyronine (FT3), free tetraiodothyronine (FT4), mean

arterial pressure (MAP), D-dimer, alanine transaminase

(ALT), aspartate transaminase (AST) and troponin. Moreover,

computed tomography (CT) and magnetic resonance imaging

(MRI) were used to identify new lesions of patient. Stroke

severity was evaluated based on the National Institutes of

Health Stroke Scale (NIHSS) by professional physicians within

24 hours of admission. Sleep condition was also quantified

th rough P i t t sbu rgh S l e ep Qua l i t y Index (PSQI )

during hospitalization.
GM analysis

Fresh stool samples (200 mg) were obtained, and fed into a

labeled 2 ml sterile centrifuge tube and quickly stored in a -80°C

freezer. The bacterial DNA was isolated by E.Z.N.A. ®Manual of

soil Kit (Omega Bio-tek, Norcross, GA, U.S.), and the

concentration and purity of which were detected with
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NanoDrop2000 UV-vis spectrophotometer (Thermo Scientific,

Wilmington, USA). The hypervariable regions of the 16s rRNA

gene were amplified using PCR with primers 338F:

A C T C C T A C G G G A G G C A G C A G a n d 8 0 6 R :

GGACTACHVGGGTWTCTAAT. Next, PCR products were

recycled by 2% agarose gel, and paired-end sequenced (2 ×

300) on an Illumina MiSeq platform (Illumina, San Diego,USA).

Alpha diversity was analyzed through Shannon and ACE.

Principal coordinates analysis (PCoA) on the Bray-Curtis

dissimilarity index was used for beta diversity analysis. The

intestinal typing analysis was performed at the genus level by

clustering samples with similar dominant microbiota structures

into a class. Moreover, we identified the significant differences in

relative abundance at levels of phylum, class, order, family,

genus, and species by Wilcoxon rank sum tests based on the

obtained community abundance data. Linear discriminant

analysis (LDA) effect size (LEfSe) was applied to find

significantly enriched taxa and their influence between the two

groups using nonparametric Kruskal Wallis (KW) sum rank test,

with thresholds of LDA score > 2.
Statistical analysis

Statistical analysis was carried out by SPSS V.22.0 (SPSS,

Chicago, USA). Chi-square test and multivariate logistic analysis

were used to analyze the categorical variable data. Odds ratio

(OR) and 95% confidence interval (95% CI) were figured out.

The values of continuous variables were represented as median

with quartile or mean with standard deviation (SD) based on the

fact whether they were normally distributed, and compared by

rank sum test or t-test respectively. The P value < 0.05 was

considered to be of significance.
Results

Baseline characteristics of the
recruited patients

According to the follow-up mRS results, 231 hyperlipidemic

stroke patients were divided into two groups: 58 POAH patients

and 173 good outcomes of AIS with hyperlipidemia (GOAH)

patients. As showed in Table 1, POAH patients had significantly

elevated levels of age, history of cerebrovascular disease, CRP,

hs-CRP, NIHSS score, D-dimer and mRS score compared with

GOAH patients. Additionally, a reduction of FT3, MAP and

ALT was observed in POAH versus GOAH. There were no

statistical differences in demographic data, including gender,

educational level, history of smoking and drinking, diabetes,

hypertension, and hyperlipemia between the two groups. As
frontiersin.org
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shown in Table 2, the multivariate logistic regression analysis of

demographic and clinical parameters with significant differences

described above. The results indicated that a history of

cerebrovascular disease (OR = 4.669, p = 0.008), increased

NIHSS score (OR = 1.524, P < 0.001), and decreased MAP

(OR = 0.842, P < 0.001) were the independent risk factors

of POAH.
Analysis of GM diversity of POAH

Alpha diversity was evaluated by the Ace index (p = 0.4627,

Figure 1A) and Shannon index (p = 0.1218, Figure 1B), exhibited no

significant difference between the two groups. b diversity of the
Frontiers in Cellular and Infection Microbiology 04
POAH differed from the GOAH according to the PCoA scatterplot

(p = 0.018, Figure 1C). The Venn and the Bar diagrams exhibited

the number of ASVs in the two groups, with 1656 shared ASVs

(Figure 1D). The number of unique ASVs in GOAH group was

3097, which was higher than the number 839 in POAH.
Analysis of microbial composition
of POAH

As shown in Figure 2, the microbial population of phylum level

was mainly composed of Firmicutes, Bacteroidota, Proteobacteria

and Actinobacteriota (Figure 2A). The proportion of Proteobacteria

was 55% in the GOAH group. At the family level, the bacterial
TABLE 1 Baseline characteristics of the recruited patients.

Parameter GOAH group POAH group P

(n=173) (n=58)

Male (%) 117 (67.6) 35 (60.3) 0.473

Age (years old) 64.03 ± 12.28 70.91 ± 10.77 <0.001

Educational level 0.175

Illiteracy 32 16

Primary school 64 20

Junior high school 53 17

High school and above 24 5

Smoking 67 (38.7) 17 (29.3) 0.198

Drinking 57 (32.9) 13 (22.4) 0.132

Hypertension 130 (75.1) 46 (79.3) 0.520

Diabetes 67 (38.7) 29 (50.0) 0.133

Hyperlipemia 126 (72.8) 44 (75.9) 0.651

Cerebrovascular disease 28 (16.2) 24 (41.4) <0.001

Creatinine (mmol/L) 66.30 (55.45-78.65) 62.25 (52.03-76.33) 0.099

Vitamin B12 (pg/mL) 339 (224–436) 350.5 (238-533.25); 0.286

Folic acid (ng/mL) 8.82 (6.77-11.40) 8.65 (5.88-10.53); 0.397

Uric acid (mmol/L) 323.0 (261.0-386.5) 313.5 (241.3-391.5) 0.301

Hcy (mmol/L) 11.40 (9.60-13.99) 11.30 (8.88-14.00) 0.500

CRP (mg/L) 3.30 (2.98-6.05); 4.40 (3.13-13.35) 0.005

Hs-CRP (mg/L) 1.70 (0.94-4.83); 4.39 (1.80-10.00) <0.001

Triglycerides (mmol/L) 1.68 (1.27-2.23) 1.56 (1.04-2.24) 0.200

Total cholesterol (mmol/L) 4.52 (3.57-5.27) 4.78 (3.61-5.69) 0.263

LDL (mmol/L) 2.94 (2.15-3.67) 3.32 (2.32-3.81) 0.203

HDL (mmol/L)) 0.87 (0.77-1.04) 0.91 (0.77-1.19) 0.364

Fasting plasma glucose (mmol/L) 5.49 (4.84-6.64) 5.75 (4.91-7.14) 0.317

Glycosylated hemoglobin (%) 6.11 (5.60-7.02) 6.03 (5.63-7.83) 0.342

Thyrotropin (mIU) 1.91 (1.19-3.02) 1.99 (1.12-2.77) 0.793

FT3 (pg/mL) 2.98 (2.76-3.25) 2.76 (2.53-2.91) <0.001

FT4 (ng/dL) 1.17 (1.05-1.30) 1.14 (1.07-1.24) 0.959

NIHSS score 2.0 (1.0-3.5) 4.50 (2.75-9.00) <0.001

PSQI score 5.0 (3.0-8.0) 6.14 (4.0-6.14); 0.105

MAP (mmHg) 139.61 ± 17.03 109.24 ± 11.27 <0.001

D-dimer (mg/L) 0.35 (0.26-0.52) 0.48 (0.33-0.75) 0.003

ALT (m/L) 17 (13–26) 15.00 (11-21.25) 0.028

AST (m/l) 18 (15-23) 18.00 (13.75-24) 0.669

Troponin (mmol/L) 0.012 (0.012-0.013) 0.012 (0.012-0.019) 0.396

mRS score 1 (0-2) 3 (3-4) <0.001
frontiers
POAH, poor outcomes AIS with hyperlipidemia; GOAH, good outcomes AIS with hyperlipidemia; Hcy, homocysteine; CRP, C-reactive protein; Hs-CRP, hypersensitive C-reactive protein;
LDL, low-density lipoprotein; HDL, high-density lipoprotein; FT3, free triiodothyronine; FT4, free thyroid hormone; NIHSS, National Institutes of Health Stroke Scale; PSQI, Pittsburgh
Sleep Quality Index; MAP, mean arterial pressure; ALT, alanine transaminase; AST, aspartate transaminase; mRS, modified Rankin scale.
in.org

https://doi.org/10.3389/fcimb.2022.1073113
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fcimb.2022.1073113
composition was primarily dominated by Lachnospiraceae,

Ruminococcaceae , Bacteroidaceae , Enterobacteriaceae,

Lactobacillaceae, Streptococcaceae, Bifidobacteriaceae, Preotellaceae,

Enterococcaceae, Veillonellaceae (Figure 2B). And the abundant of

the top ten genera that occupied the most of the total microbiota

were Bacteroides, Lactobacillus, Streptococcus, Blautia, Escherichia-

Shigella, Faecalibacterium, Bifidobacterium, Klebsiella, Enterococcus,

Subdoligranulum (Figure 2C).
Frontiers in Cellular and Infection Microbiology 05
Analysis of characteristic microbiota
of POAH

As shown in Figure 3A, significant bacterial differences in the

taxa of the two groups, mainly including Enterococcaceae,

Enterococcus, Alistipes, Rikenellaceae, RF_39, Turicibacter,

Acetanaerobacterium, Ethanoligenenaceae, Hungateiclostridiaceae,

Sanguibacteroides, Staphylococcaceae, Staphylococcus in POAH,
TABLE 2 Multivariate logistic regression analysis.

Parameter B (SE) P-value OR 95%CI

Age 0.02 (0.024) 0.271 1.026 0.980-1.075

Cerebrovascular disease 1.541 (0.022) 0.008 4.669 1.486-14.672

Hs-CRP 0.08 (0.085) 0.325 1.087 0.921-1.284

CRP -0.01 (0.015) 0.245 0.983 0.955-1.012

FT3 0.343 (0.733) 0.639 1.410 0.335-5.925

NIHSS score 0.42 (0.110) <0.001 1.524 1.228-1.892

MAP -0.17 (0.029) <0.001 0.842 0.795-0.892

ALT -0.01 (0.014) 0.348 0.987 0.961-1.014
fro
Hs-CRP, hypersensitive C-reactive protein; CRP, C-reactive protein; FT3, free triiodothyronine; NIHSS, National Institutes of Health Stroke Scale; MAP, mean arterial pressure; ALT,
alanine transaminase; OR, odds ratio; 95%CI, 95% confidence interval.
D

A B

C

FIGURE 1

Analysis of gut microbiota diversity of POAH. (A, B) Alpha diversity indices, including Ace index and Shannon index. (C) Principal coordinate
analysis (PCoA) diagram of gut microbiota based on the distance matrix of Bray Curtis (PC1 = 14.24%, PC2 = 10.07%). (D) Venn and Bar diagrams
showed the number of unique ASVs in GOAH group (green) and POAH group (light red) and their shared ASVs (dark red).
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and Proteobacteria, Gammaproteobacteria, Enterobacteriaceae,

Enterobacterales , Escherichia-Shigella , Negativicutes ,

Faecalibacterium, unclassified_f_Lachnospiraceae, Fusobacteriota,

Fusobacteriales, Fusobacteriaceae, Fusobacteriia, Butyricicoccaceae,

Butyricicoccus, Pasteurellaceae, Fusobacterium, Pasteurellaceae,

Haemophi lu s , Lachnosp i raceae_NK4A136 , Bac i l l i ,

Lachnospiraceae_UCG-010, norank_f_Lachnospiraceae ,

Micrococcaceae, Rothia and Micrococcales in GOAH. As shown
Frontiers in Cellular and Infection Microbiology 06
in Figures 3B–D, the relative abundance of Enterococcaceae,

Alistipes, Turicibacter, Enterococcus and RF39 were higher in the

POAH group than GOAH group, while the relative abundance of

Proteobacteria, Fusobacteriota, Enterobacteriaceae, Escherichia-

Shigella, Faecalibacterium, Lachnospiraceae, Butyricicoccus,

Haemophilus, Lachnospiraceae_NK4A136_group, Fusobacterium,

Bacilli, Lachnospiraceae_UCG-010 and Rothia were lower in

POAH group than GOAH group.
A

B

C

FIGURE 2

Analysis of microbial composition of POAH. (A) Microbial composition at the phylum level. The red bands represent the proportion of phyla in
the POAH group. The green bands represent the proportion of phyla in the GOAH group. (B) Microbial composition at the family level.
(C) Microbial composition at the genus level.
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Analysis of correlation between GM and
mRS scores

As shown in Figure 4, Lachnospiraceae (P < 0.01),

Faecalibacterium (P < 0.01) and Butyricicoccus (P < 0.05)

were negatively correlated with the mRS score, while Enterococcus

was positively correlated with the mRS score (P < 0.05). Spearman

correlation heatmap (Figure 5A) indicated significant associations

between the three independent risk factors and GM. A history of

cerebrovascular disease (CVD) was negatively correlated

wi th Escher i ch ia -Sh ige l la , Lachnoc lo s t r id ium and

Ruminococcus_gnavus_group. An elevated NIHSS score was also

associated with a reduction of unclassified_f_Lachnospiraceae,

Ruminococcus and Haemophilus. Furthermore, a positive

relation was observed in MAP with the abundance of

Faecalibacterium, unclassified_f_Lachnospiraceae, Roseburia,
Frontiers in Cellular and Infection Microbiology 07
Ruminococcus_torques_group, Megamonas, Phascolarctobacterium,

Fusicatenibacter, and Butyricicoccus, and a negative relation with

the abundance of Lactobacillus, Enterococcus.
Analysis of correlation between GM and
independent risk factors

We screened out the five genera as biomarkers according to

the LDA value, including unclassified_f_Lachnospiraceae,

Enterococcus, Faecalibacterium, Lachnospiraceae_UCG-010, and

norank_f_Lachnospiraceae, achieving AUC values of 0.694

(Figure 5B, P < 0.001, 95% CI 0.618 - 0.770). Moreover, the

predictive model combined with the five genera and the three

independent risk factors could also distinguish POAH from

GOAH (Figure 5B, P < 0.001, AUC = 0.971, 95% CI 0.952 - 0.989).
D

A B

C

FIGURE 3

Analysis of characteristic microbiota of POAH. (A) Distribution diagram of linear discriminant analysis (LDA) scores of gut microbiota. (LDA > 2).
(B–D) The extended error bar plot showed significant differences in gut microbial abundance at the level of phylum, family and genus. *: P < 0.05,
**: P< 0.01, ***: P < 0.001.
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Discussion

This study revealed that GM feature of POAH was that the

abundance of Enterococcus increased while the abundance of

bacteria producing SCFAs decreased, which was closely related

to independent risk factors, such as cerebrovascular history,

NIHSS score, and MAP. Moreover, the characteristic microbiota

and microbiota plus with the three independent risk factors

could establish a distinction for predicting POAH. These results

indicated that GMmight provide novel microbial biomarkers for

predicting POAH.

Our results showed that the composition and structure of

microbiota were different between POAH and GOAH. Previous

studies revealed that gut microbial communities in the group

with adverse prognosis after stroke were distinct from those in

the group with good prognosis, accompanied by an increase in

the abundance of Bacteroidota, and Actinobacteriota, and the

decreased abundance of Proteobacteria and the Bacteroidetes to
Frontiers in Cellular and Infection Microbiology 08
Firmicutes ratio (B/F) (Benakis et al., 2016; Singh et al., 2016;

Shimizu et al., 2019; Guo et al., 2021). The diversity of GM was

affected by many factors, such as lipid homeostasis (Schoeler and

Caesar, 2019). The decreased B/F induced dyslipidemia, leading

to more severe outcomes, such as obesity and liver steatosis

(Hussain et al., 2020). Our results showed that the abundance of

Enterococcus in POAH was enriched, and positively related to

the mRS score, indicating that the abundance of Enterococcus

might be related to the risk of POAH. It was reported that

Enterococcus was an opportunistic pathogen in the

gastrointestinal tract, and the risen level of Enterococcus was

relevant to many neurological and metabolic diseases, such as

Parkinson’s disease, Alzheimer’s disease and diabetes (Underly

et al., 2015; Li et al., 2017). Enterococcus appeared in subjects of

the adverse outcome group, manifested as the post-stroke

cognitive impairment (PSCI) and post-stroke affective disorder

(Huang et al., 2021), which was consistent with our studies.

Enterococcus could induce the secretion of proinflammatory
D

A B

C

FIGURE 4

Analysis of correlation between gut microbiota and mRS scores. Correlations of mRS scores with the relative abundance of (A) Lachnospiraceae,
(B) Faecalbiacteruim, (C) Butyricicoccus, and (D) Enterococcus. p: probability; r: Spearman’s rank correlation.
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cytokines, such as IL-6 (Garcıá-Solache and Rice, 2019), and

further contribute to systemic inflammation (Stanley et al., 2016;

Chen et al., 2019), which led to POAH (Suda et al., 2018).

Evidence showed that Enterococcus faecalis disturbed the lipid

metabolism (Huang et al., 2018; Zhu et al., 2021). Hu X et al.

revealed that a higher abundance of Enterococcus had a closely

related to poor prognosis of hypertriglyceridemia-related acute

pancreatitis leading to poor prognosis in hypertriglyceridemia

patients (Hu et al., 2021), suggesting that Enterococcus might be

involved in the prognosis of hyperlipidemic stroke patients.

In this study, there was a significantly lower relative abundance

of SCFAs-producing bacteria in POAH group, such as

Lachnospiraceae, Faecalibacterium, Rothia and Butyricicoccus.

Moreover, Lachnospiraceae, Faecalibacterium, and Butyricicoccus

were associated with lower mRS score. Lachnospiraceae, a primary

producer of butyrate, was related to the functional prognosis of
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diseases (Sorbara et al., 2020). Many studies showed that the

abundance of Lachnospiraceae was significantly decreased in

stroke patients and animal models (Zeng et al., 2019; Lin et al.,

2021). The abundance of Lachnospiraceae in patients with post

stroke cognitive impairment (Ling et al., 2020) and patients with

nervous neurocritical illness (Xu et al., 2019) was less. In addition,

lower blood lipid could increase the abundance of Lachnospiraceae

and levels of SCFAs in hyperlipidemia model animals (Gui et al.,

2019; Liu et al., 2021). In addition, our results showed that the

relative abundance of Faecalibacterium in POAH group was

significantly lower. Faecalibacterium is a butyrate-producing

bacteria, belonging to Lachnospiraceae family. Previous studies

showed that the relative abundance of Faecalibacterium had a

lower relative abundance in patients with stroke (Silveira-Nunes

et al., 2020), transient ischemic attack (Yin et al., 2015) and PSCI

(Huang et al., 2021) was lower. Lee et al. reported that
A

B

FIGURE 5

Analysis of correlation between gut microbiota and independent risk factors. (A) Heatmap of gut microbiota and independent risk factors for
POAH. The colors of grids represent the correlation value of Spearman’s rank correlation analysis. Green grids mean positive correlations, and
red grids mean negative correlations. The deeper green or red indicates higher correlation values. *: P < 0.05; **: P < 0.01; ***: P < 0.001. (B)
The green ROC model indicated the predicted value of the composite of five characteristic gut microbiota. The red ROC model was built to
evaluate the accuracy based on the complex of five characteristic gut microbiota and three independent risk factors.
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Faecalibacterium prausnitzii ameliorated post-stroke neurological

deficits and elevated concentrations of intestinal SCFAs in aged

mice with stroke (Lee et al., 2020). Faecalibacterium prausnitzii was

decreased in fecal samples of hyperlipidemia adolescents (Gargari

et al., 2018), and the abundance of Faecalibacterium prausnitzii in

patients with mild hypercholesterolemia was significantly negatively

correlated with TC and LDL (Xu et al., 2021). Furthermore,

Faecalibacterium was observably elevated in the hyperlipidemia

rats after probiotic intake, which could prevent the progression of

hyperlipidemia (Shao et al., 2017). Enriched Faecalibacterium could

reverse the increase of plasma TG level (Tong et al., 2018), and was

positively correlated with plasma concentrations of butyric acid

(Khan et al., 2018). Butyricicoccus, a butyrate-producing clostridial

cluster genus, was related to reduced incidence of hyperlipidemia or

hypercholesteremia in patients with colorectal cancer (Han et al.,

2019). The abundance of Butyricicoccus was negatively correlated

with the serum levels of LDL, TG and TC of obese patients, which

could be used as a biomarker to predict obesity related lipid

metabolism abnormalities (Zeng et al., 2019). Recent multiple

studies have shown that SCFAs were closely linked to stroke and

dyslipidemia. AIS patients, especially those with more severe stroke

(Ling et al., 2020), showed a lack of SCFAs-producing bacteria and

decreased levels of fecal SCFAs levels, which led to increased risks of

post-stroke infection (Haak et al., 2021) and poor functional

outcomes (Tan et al., 2021). Furthermore, the feces of young rats

transplantation could effectively increase the concentration of

SCFAs, and attenuate the neurological deficit and inflammation

after stroke in elderly stroke mice (Lee et al., 2020) and in middle

cerebral artery occlusion (MCAO) model rats (Chen et al., 2019). In

addition, compared with control, subjects with hypercholesterolemia

had a lower level of butyrate, which was negatively correlated with

LDL (Granado-Serrano et al., 2019). SCFAs played an important role

in reducing the risk of cholesterol and coronary heart disease, and

valeric acid was negatively correlated with HDL-C in patients with

mild hypercholesterolemia (Xu et al., 2021). These results indicated

that decreased SCFAs-producing bacteria, such as Lachnospiraceae,

Faecalibacterium, Rothia and Butyricicoccus and their metabolites

SCFAs might participate in the occurrence of POAH.

Our results showed that the characteristic bacteria in POAH

patients were closely related to independent risk factors, such as

increased, decreased MAP, and history of cerebrovascular disease.

The higher NIHSS scores, the greater the risk of disability, the more

serious the neurological impairment, and the larger the area of

ischemic lesions (Cucchiara et al., 2019; Cucchiara et al., 2020;Wang

et al., 2021). A study showed that stroke patients with a history of

hyperlipidemia were associated with a higher NIHSS score on day 7

and were less likely to have neurological improvements (Restrepo

et al., 2009). Higher MAP could maintain cerebral perfusion and

cerebral blood flow velocity in stroke patients.MAPwas found to be

positively associated with adverse functional outcomes and
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recurrence risk in stroke patients. It was reported that there was a

positive correlation between MAP and the adverse functional

outcome and recurrence risk of stroke patients (Ma et al., 2019).

Moreover, GM also had a close connection to the clinical

parameters . Our results showed that the decrease

of unclassified_f_Lachnospiraceae was associated with the increase

of NIHSS score, and MAP was positively correlated with the

abundance of Faecalibacterium, unclassified_f_Lachnospiraceae,

and Butyricicoccus, while negatively correlated with Enterococcus.

LEfSe was used to support the construction of POAH diagnostic

model based onfive characteristic genera. In addition, the prediction

model based on the combination of five characteristics and three

independent risk factors could predict the occurrence of POAH.

Therefore, these finding revealed the close relationship between

POAH and GM, and the characteristic GM could be used as a

biomarker for early prediction of POAH.

However, several limitations of this study should be

mentioned. First, this was a small sample observational study

conducted in a single center. Meanwhile, we collected fecal sample

of patients at a single time point, so we could not observe the

dynamic changes of the interaction between GM and these

parameters. In addition, the information on the concentration

of microbial metabolites, such as SCFAs, was lacked, which was

difficult to find out the causal relationship between GM and

POAH. Despite these limitations, our study firstly described the

Characteristic GM of POAH, which was helpful to understand the

role of microbial biomarkers in predicting POAH.

In conclusion, these findings revealed the microbial

characteristics of POAH, which were closely related to clinical

parameters. The characteristic GM might facilitate the diagnosis of

POAH,whichhighlighted thepotential predictionofGMonPOAH.
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