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coronaviruses in possible
target cells in humans
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1Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China, 2School
of Life Sciences, Tsinghua University, Beijing, China, 3Zhili College, Tsinghua University, Beijing, China,
4Department of Mathematical Sciences, Tsinghua University, Beijing, China
Comprehensive identification of possible target cells for viruses is crucial for

understanding the pathological mechanism of virosis. The susceptibility of cells

to viruses depends on many factors. Besides the existence of receptors at the

cell surface, effective expression of viral genes is also pivotal for viral infection.

The regulation of viral gene expression is a multilevel process including

transcription, translational initiation and translational elongation. At the

translational elongation level, the translational efficiency of viral mRNAs

mainly depends on the match between their codon composition and cellular

translational machinery (usually referred to as codon adaptation). Thus, codon

adaptation for viral ORFs in different cell types may be related to their

susceptibility to viruses. In this study, we selected the codon adaptation index

(CAI) which is a common codon adaptation-based indicator for assessing the

translational efficiency at the translational elongation level to evaluate the

susceptibility to two-pandemic viruses (HIV-1 and SARS-CoV-2) of different

human cell types. Compared with previous studies that evaluated the infectivity

of viruses based on codon adaptation, the main advantage of our study is that

our analysis is refined to the cell-type level. At first, we verified the positive

correlation between CAI and translational efficiency and strengthened the

rationality of our research method. Then we calculated CAI for ORFs of two

viruses in various human cell types. We found that compared to high-

expression endogenous genes, the CAIs of viral ORFs are relatively low. This

phenomenon implied that two kinds of viruses have not been well adapted to

translational regulatory machinery in human cells. Also, we indicated that

presumptive susceptibility to viruses according to CAI is usually consistent

with the results of experimental research. However, there are still some

exceptions. Finally, we found that two viruses have different effects on

cellular translational mechanisms. HIV-1 decouples CAI and translational

efficiency of endogenous genes in host cells and SARS-CoV-2 exhibits
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increased CAI for its ORFs in infected cells. Our results implied that at least in

cases of HIV-1 and SARS-CoV-2, CAI can be regarded as an auxiliary index to

assess cells’ susceptibility to viruses but cannot be used as the only evidence to

identify viral target cells.
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1 Introduction

Pandemics of several kinds of RNA viruses including human

immunodeficiency virus-1 (HIV-1) (Maartens et al., 2014) and severe

acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (Uddin

et al., 2020) are one of the most important public health issues of

our time. Diseases including acquired immunodeficiency syndrome

(AIDS) and coronavirus disease 2019 (COVID-19) caused by these

viruses have become major threats to the health of people all around

the world. Because of the high transmission capacity, the huge

number of infected patients and the lack of effective vaccines,

attempts to control pandemics of these viruses are pretty difficult.

Research on the pathological mechanism of related diseases and the

development of effective antiviral drugs will become important

strategies to fight against these viruses.

To understand the pathological process of diseases caused by viruses,

the identification of target cells that are susceptible to them in humans is

crucial. It is currently known that both HIV-1 and SARS-CoV-2 can

infect different types of target cells in humans. For HIV-1, CD4+ T cells

which aid the activity of other immune cells in the adaptive immune

response are believed to be its major targets (Maartens et al., 2014). The

decrease of CD4+ T cells is considered to be the major cause of immune

deficiency in AIDS patients and a major prognostic marker for HIV-1

infection (Mellors et al., 1997). However, other types of cells have been

reported to be susceptible to HIV-1. As an example, immune cells which

belong to the monocyte-macrophage system (This term refers to a large

group of cells that have the same origin during development and exhibit

strong phagocytosis and antigen presentation ability during the immune

response and other biological processes (Guilliams et al., 2014). Typical

examples of this cell group include macrophage and dendritic cells in

various tissues (Guilliams et al., 2014), Langerhans cells in the skin

(Guilliams et al., 2014), osteoclasts in the bone (Kubatzky et al., 2018) and

microglias in the central nervous system (Kim and Cho, 2016)) have been

identified as target cells for HIV-1 (Coleman and Wu, 2009). Except for

immune cells, other types of cells can also be infected by HIV-1. For

instance, gastrointestinal symptoms like diarrhea and gastric hypoacidity

are common in AIDS patients (Liu et al., 2013; Maartens et al., 2014).

Besides the indirect effect of immune system dysfunctions, direct HIV-1

infection to gastric epithelial cells is also a possible reason for these

symptoms (Liu et al., 2013).

For SARS-CoV-2, the problem of its target cells is more complex.

Although COVID-19 is originally thought to be a respiratory infectious

disease characterized by pneumonia, its symptoms can appear in various

organs of the human body (Gupta et al., 2020). In the lung, type II

alveolus epithelial (AT2) cells which are responsible for maintaining
02
alveolus homeostasis are major target cells of SARS-CoV-2 in humans

(Mason, 2020). Target cells of SARS-CoV-2 in other organs have been

also identified, e.g. renal tubular epithelial cells and podocytes in the

kidney (Chen et al., 2021). Infection of these cells can lead to acute kidney

injury (Chen et al., 2021). In some organs, possible target cells of SARS-

CoV-2 are still controversial. For instance, COVID-19 patients can

exhibit symptoms associated with the central neural system (CNS) like

depression and hyposmia. However, the mechanisms of these symptoms

are still not clear. In the humanized mouse model and human brain

organoid model, neurons in CNS are susceptible to the SARS-CoV-2

virus and their infection can lead to cell death (Song et al., 2021).

However, in animal models based on non-human primates, detected

SARS-CoV-2 infection in CNS is limited to the epithelium of vasculature

but not neurons (Rutkai et al., 2022). For another clinical study,

hyposmia associated with COVID-19 is attributed to viral infection of

sustentacular cells in olfactory mucosae (Khan et al., 2021). Also, no

SARS-CoV-2 infection in olfactory bulbs is detected in samples from

patients in this study (Khan et al., 2021).

Normally, infection of viruses to target cells depends on the existence

of specific receptors at the cell surface. For HIV-1, the T cell surface

receptor CD4 is themajor receptor and two chemokine receptors CXCR4

and CCR5 are known coreceptors at the surface of CD4+ T lymphocytes

(Berger et al., 1999). And for SARS-CoV-2, angiotensin-converting

enzyme 2 (ACE2) has been identified as the major receptor at the

surface of AT2 cells (Lan et al., 2020). Hence, a common method to

identify viral target cells is to measure the expression level of known viral

receptors in different cell types. If a type of cell expresses viral receptors

with a high level, it is to be expected that viruses will infect it efficiently.

However, this method has several deficiencies. First, it is possible that in

addition to known receptors, there are other unidentified receptors that

can mediate viral entry into cells. In the example of SARS-CoV-2,

neuropilin-1 (Nrp1) has been identified as another viral receptor

(Cantuti-Castelvetri et al., 2020). Besides, the existence of receptors is

not the only determinant for cells’ susceptibility to a virus. Some viruses

can enter cells without specific receptors. For HIV, cell-to-cell contact

structures including nanotubes, filopodia and virological synapses can

mediate intercellular transmission of viruses (Bracq et al., 2018). Another

example is the antibody-dependent enhanced entry (ADE) effect for

dengue virus (DENV). During the secondary infection of DENV which

belongs to a different serotype, virus-antibody complexes composed of

viral particles and non-neutralizing antibodies can bind Fc receptors at

the cell surface and mediate viruses’ entry into cells (Flipse et al., 2013).

On the other hand, after entering cells, the completion of viral replication

cycles requires efficient expression of various protein products encoded

by its genome. Hence, the efficiency of virus replication in different cells
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can be different according to different regulatory mechanisms of gene

expression. Regulation of gene expression is a multi-level process

including epigenomic, transcriptional, post-transcriptional, translational

and post-translational mechanisms. For translational regulatory

mechanisms, if viral mRNAs cannot be translated efficiently in a

specific cell type, this type of cell can be insensitive to infection of this

virus (Stern-Ginossar et al., 2019). In fact, restriction of viral mRNA

translation has been reported as a common cellular antiviral mechanism

(Stern-Ginossar et al., 2019).

Except for experimental research, biostatistical methods including

several statistical indicators have been proposed to evaluate the

efficiency of viral mRNA translation. In this paper, for providing

indirect evidence for the susceptibility of different human cell types to

HIV-1 and SARS-CoV-2, we utilized the codon adaptation index

(CAI) as a measure of viral ORFs’ translational efficiency at the

translational elongation level in these cell types (SHARP and LI,

1987). This parameter utilizes the codon usage frequency of the

concerned RNA and ORFs in a background gene set composed of

genes with high expression levels in the concerned biological system

(can be a species, an organ or a cell type) as the only evidence to assess

the translational efficiency of mRNAs (SHARP and LI, 1987).

According to this indicator, the expression efficiency of protein

products encoded by the viral genome and the replication ability of

the virus in a specific biosystem can be evaluated at the translational

level. Currently, most studies that utilized CAI constructed a single

high-expression gene set for a species and regarded it as the

background gene set mentioned above (Ruiz et al., 2006; Tello

et al., 2013; Khandia et al., 2019). This method is appropriate in the

research of most prokaryotic organisms like E. Coli and single-cell

eukaryotic organisms like yeast, but it is not suitable for assessing the

translational efficiency of mRNAs in different cell types of complex

multicellular eukaryotic organisms like humans because it does not

consider the differences of gene expression patterns in different

organs and cell types. For evaluating the translational efficiency of

viral mRNAs in different human cell types, the background gene set

should be constructed separately in the corresponding cell type.

Hereby, in this paper, we selected bulk and single-cell

transcriptomic datasets of dozens of human cell types which were

reported to be susceptible to HIV-1 and SARS-CoV-2 or locate in

major target organs of these viruses according to previous studies.

Then we calculated the CAIs of ORFs in genomes of these viruses in

these cell types separately and performed downstream analysis.

Additionally, we also tried to analyze the effect of viral infection on

viral ORFs’ translational efficiency by comparing the CAI between

control and infected cells. Finally, we compared the infectious

capacity of different kinds of SARS-CoV-2 related coronaviruses in

human cells according to the CAIs.
2 Methods

2.1 Calculation of the codon
adaptation index

For a specific RNA in a specific cell type with corresponding high-

expression protein-coding (Unless otherwise stated, the term ‘gene’

below only refers to protein-coding genes) gene set, the expression of
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the original version of CAI while it was proposed (SHARP and LI,

1987) is:

CAI = (
YL

k=1

pk
qk
)
1
L

‘L’ is the number of sense codons (except ATG, the only codon for

Met, and TGG, the only codon for Trp) in the ORF of concerned

RNA. ‘pk’ is the usage frequency of the k-th sense codon (from the

initiation codon to the last sense codon before the termination codon)

in the ORF of concerned RNA in all synonym codons of the high-

expression gene set. ‘qk’ is the max usage frequency of the synonym

codon of the k-th codon in the ORF of concerned RNA in all

synonym codons of the high-expression gene set.

The original version of CAI was used widely to evaluate the

translational efficiency of mRNA. However, it has two major

problems (Xia, 2007). First, if the usage frequency of a specific

codon from the concerned RNA in the high-expression gene set is

zero, the CAI of this RNA will be zero regardless of the composition of

its other codons (Xia, 2007). Then the function of CAI in evaluating

translation efficiency will be lost. For avoiding this condition, we can

convert pk and qk in the CAI expression to pk+0.01 and qk+0.01.

Second, for three kinds of amino acids with six corresponding codons

(Ser, Arg and Leu), their codons can be divided into two smaller

groups according to the first two bases. In these conditions, the same

amino acid coded by different groups of codons can be considered as

different amino acids in the calculation of CAI (Xia, 2007). For the

CAI calculation in our study, both two improvements mentioned

above were adopted.
2.2 Constructing the high-expression gene
set of each concerned cell type

2.2.1 Collection of the human RNA-seq data of
concerned cell types.

For constructing high-expression gene sets, measuring the

expression level of genes in different cell types is necessary.

Transcriptomic techniques, e.g. bulk and single-cell RNA-seq, are

the main methods to measure gene expression levels in tissues or cells

currently (Stark et al., 2019). In our study, human RNA-seq datasets

of different cell types (shown in Table 1) from the NCBI GEO

database (https://www.ncbi.nlm.nih.gov/geo/ ) were selected for

constructing corresponding datasets. The detailed process for

selecting datasets is mentioned in Supplemental Methods (Li et al.,

2009; Liao et al., 2014; Kim et al., 2019). Finally, 19 bulk RNA-seq

datasets (including 2 datasets with corresponding Ribo-seq data)

corresponding to different types of cells and 2 single-cell RNA-seq

datasets corresponding to major target ‘organs’ of SARS-CoV-2 and

HIV-1 (lung and PBMC respectively) were selected.
2.2.2 Gene-level expression analysis
of RNA-seq datasets

To determine gene expression levels by RNA-seq, a series of

processes are needed to convert raw sequencing data into a

normalized gene-level expression matrix (FPKM). The pipeline of

this process is mentioned in Supplemental Methods. (Li et al., 2009;
frontiersin.org
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TABLE 1 Concerned human cell types and corresponding RNA-seq datasets in this study.

Groups Cell types

GSE ID of
corresponding

datasets
analyzed in this

study

Types

Bulk RNA-seq datasets of unstimulated
human monocyte-macrophage system

Blood monocytes
GSE159249
(Morante-Palacios
et al., 2021)

Bulk
RNA-seq

Dermal macrophages
GSE166639 (Rhodes
et al., 2021)

Bulk
RNA-seq

I+ dermal dendritic cells
GSE166639 (Rhodes
et al., 2021)

Bulk
RNA-seq

I- dermal dendritic cells
GSE166639 (Rhodes
et al., 2021)

Bulk
RNA-seq

Langerhans cells
GSE166639 (Rhodes
et al., 2021)

Bulk
RNA-seq

In vitro differentiated dendritic cells
GSE166639 (Rhodes
et al., 2021)

Bulk
RNA-seq

In vitro differentiated macrophages
GSE193336 (Li et al.,
2022 )

Bulk
RNA-seq

In vitro differentiated osteoclasts
GSE166535
(Larrouture et al.,
2021)

Bulk
RNA-seq

Kupffer cells (Hepatic macrophages) GSE123661
Bulk
RNA-seq

Colonic macrophages GSE124350
Bulk
RNA-seq

Microgolias from occipital cortex
GSE111972 (van der
Poel et al., 2019)

Bulk
RNA-seq

Microgolias from corpus callosum
GSE111972 (van der
Poel et al., 2019)

Bulk
RNA-seq

Bulk RNA-seq datasets of subtypes of
unstimulated human CD4+ T
lymphocytes

Naive CD4+ T lymphocytes
GSE179613 (Giles
et al., 2022)

Bulk
RNA-seq

Nonnaive CD4+ T lymphocytes
GSE179613 (Giles
et al., 2022)

Bulk
RNA-seq

Tfh CD4+ T lymphocytes
GSE179613 (Giles
et al., 2022)

Bulk
RNA-seq

Treg CD4+ T lymphocytes
GSE179613 (Giles
et al., 2022)

Bulk
RNA-seq

Bulk RNA-seq datasets of subtypes of
unstimulated reported SARS-CoV-2
target and untargeted cells in human
kidney

Podocytes
GSE185292 (Ren
et al., 2021)

Bulk
RNA-seq

Mesangial cells
GSE185293 (Ren
et al., 2021)

Bulk
RNA-seq

Bulk RNA-seq datasets of unstimulated
major cell types in key metabolic organs
(liver and adipose tissue)

Hepatocytes
GSE201169 (Sullivan
et al., 2021)

Bulk
RNA-seq

CD133+ cholangiocytes
GSE155498 (Hallett
et al., 2022)

Bulk
RNA-seq

CD133- cholangiocytes
GSE155498 (Hallett
et al., 2022)

Bulk
RNA-seq

Hepatic satellite cells
GSE179395 (Gart
et al., 2021)

Bulk
RNA-seq

Adipocytes
GSE201908 (Friesen
et al., 2022)

Bulk
RNA-seq

(Continued)
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Liao et al., 2014; Kim et al., 2019) For single-cell RNA-seq data, the R

package Seurat (version: 4.1.1) was used to preprocess, cluster and

visualize cells according to their gene expression patterns. Cell types

were annotated according to the corresponding literature of the

dataset. Only cell types with more than ten cells in each single-cell

RNA-seq dataset were used for CAI calculation and further analysis.

Gene-level expression data (raw counts and FPKM) for all RNA-

seq datasets used in this study is provided in Github (https://github.

com/Renruohan/CAIvirus). For two single-cell RNA-seq datasets, the

corresponding relationship between cells and cell types/large groups

was also listed in Github. Also, intermediate results of single-cell

RNA-seq datasets by Seurat including cell clustering and visualization

in low-dimension space, ratio or number of cells belonging to each

cell type/large group and markers to identify each cell type/large

group were shown in Supplemental Figures 1, 2.
Frontiers in Cellular and Infection Microbiology 05
2.2.3 Select high-expression genes in each
concerned cell type

According to the concept of CAI, the definition of the high-

expression gene set is arbitrary. In previous studies, typical

housekeeping genes like ribosomal genes and histone genes are

usually utilized to construct the high-expression gene set. The lack

of cell type-specificity made this strategy unsuitable for our study. For

highlighting differences in gene expression patterns in various cell

types, we selected the top 200 protein-coding genes (contain both

housekeeping genes and genes with tissue/cell-specific expression)

with the highest mean FPKM level in biological repetitions (for bulk

RNA-seq datasets) or cells (for single-cell RNA-seq datasets) for a cell

type to construct the high-expression gene set of this cell type. Also,

we found that expression levels of some genes changed significantly in

different biological repetitions or cells of the same cell type. Hence,
TABLE 1 Continued

Groups Cell types

GSE ID of
corresponding

datasets
analyzed in this

study

Types

Smart-seq2 based single-cell RNA-seq
dataset of human lung

16 Cell types:
AT1 epithelium, AT2 epithelium, B cells, CD4+ T cells, CD8 T cells, Ciliated cells, Dendritic
cells, Endothelial cells, Fibroblasts, Granulocytes, macrophages, Mast cells, Monocytes, NK
cells, Other epithelial cells, Other T cells 3 large groups: Epithelial cells, T cells, Myeloid cells

No GSE ID;
BioProject:
PRJNA591860
(Maynard et al.,
2020)

Single-
cell
RNA-seq

Smart-seq2 based single-cell RNA-seq
dataset of human peripheral blood
mononuclear cells (PBMCs)

7 Cell types:
B cells, CD4+ T cells, CD8+ T cells, CD14+ monocytes, CD16+ monocytes, NK cells,
platelets

GSE132044 (Deng
et al., 2020)

Single-
cell
RNA-seq

Bulk RNA-seq datasets of infected or
cytokine stimulated and control human
cells

HEK293T-hACE2 cell, control and infected with SARS-CoV-2
GSE169158 (Sun
et al., 2021)

Bulk
RNA-seq

A549 cell, control and infected with SARS-CoV-2
GSE147507
(Daamen et al.,
2021)

Bulk
RNA-seq

A549-hACE2 cell, control and infected with SARS-CoV-2
GSE147507
(Daamen et al.,
2021)

Bulk
RNA-seq

Calu3 cell, control and infected with SARS-CoV-2
GSE147507
(Daamen et al.,
2021)

Bulk
RNA-seq

NHBE cell, control and infected with SARS-CoV-2
GSE147507
(Daamen et al.,
2021)

Bulk
RNA-seq

Organoid formed by primary human lung epithelium, control and infected with SARS-CoV-
2

GSE160435 (Mulay
et al., 2021)

Bulk
RNA-seq

Human primary proximal tubule (HPPT) cells were stimulated with IFNa, IFNb, IFNg and
IL-1b

GSE161916
(Jankowski et al.,
2021)

Bulk
RNA-seq

Bulk RNA-seq and paired Ribo-seq
datasets of infected or control human
cells

Volunteer-derived primary CD4+ T cells. Control (cultured for 4 and 96h) and infected with
HIV-1 (for 4 and 96h)

GSE158930 (Puray-
Chavez et al., 2022)

Bulk
RNA-seq
and
Ribo-seq

HBEC cells, control (cultured for 4 and 96h) and infected with SARS-CoV-2 (for 4, 24, 48,
72, 96h)

GSE158930 (Puray-
Chavez et al., 2022)

Bulk
RNA-seq
and
Ribo-seq
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before selecting high-expression genes as mentioned above, we

removed genes whose standard deviations of the expression levels

are large than the average value. The selected top 200 high-expression

gene sets and their normalized expression level (FPKM) for all RNA-

seq datasets used in this study are provided in Supplemental File 1. To

characterize the functional characteristics of high-expression gene

sets in different cell types, we performed GO-BP and KEGG

enrichment analysis on them by R package clusterProfiler (Wu

et al., 2021) (version: 4.0.5) and Org.Hs.eg.db (version: 3.13.0).

Results of enrichment analysis for three representative datasets

(bloodmonocytes, CD4+ Tfh in bulk RNA-seq datasets and

dendritic cells in scRNA-seq datasets) are provided in Supplemental

File 2.

2.2.4 Alternative splicing analysis of the
high-expression genes

Different from prokaryotic genes, mRNAs transcripted from

eukaryotic genes usually experience complex processing including

splicing. Because of the existence of alternative splicing, the same

mRNA precursor can be processed to different mature mRNAs and

translated to different protein products. As a result, it is necessary to

discriminate different splicing isoforms of genes in the high-

expression gene set. The process of calculating the approximate

expression level of splicing isoforms of high-expression genes is

mentioned in Supplemental Methods. For each gene, only the

isoform with the highest approximate expression level of each gene

was utilized to construct the codon usage frequency table of the high-

expression gene set, then pk and qk in this expression of CAI could be

acquired from this table. CDS sequences of the isoform with the

highest approximate FPKM of each gene in high-expression gene sets

for all RNA-seq datasets used in this study are provided in

Supplemental File 3.

2.2.5 Verifying the relationship between CAI and
translational efficiency of endogenous genes

For verifying if CAI can represent genes’ translational efficiency,

we calculated the CAI of the top 5000 highly expressed genes (except

genes that are not detected in Ribo-seq experiments) in two groups of

paired RNA-seq and Ribo-seq datasets of control cells and cells

infected with HIV-1 or SARS-CoV-2 for a certain time. Also, we

calculated the translational efficiency by dividing their normalized

expression values (FPKM) in Ribo-seq datasets by values in RNA-seq

datasets of these genes and then took the logarithm. Then we

performed a linear regression analysis between genes’ CAI and

translational efficiency in each cell type. Furthermore, for verifying

if the CAI of endogenous genes calculated by cell type-specific

background gene sets correlated better with translational efficiency

than CAI based on commonly used nonspecific background gene sets,

we constructed a nonspecific background gene set reference to

previously mentioned methods. First, typical housekeeping genes-

ribosomal protein genes were selected. Then, we filtered them

according to expression patterns, preserving only the ribosomal

genes that were present in the top 200 highly expressed genes of at

least one cell type (except cells infected by virus or stimulated by

cytokines and paired control groups in the same dataset). The CAI of

endogenous genes based on this nonspecific background gene set and
Frontiers in Cellular and Infection Microbiology 06
the correlation between this ‘nonspecific’ CAI and translational

efficiency is calculated in the same way as above. In CAI

calculation, for each gene in the nonspecific background gene set,

one isoform from all isoforms that appear in the top 200 highly

expressed gene set of at least one cell type was selected randomly and

utilized in the construction of the codon usage frequency table.

Data processing for Ribo-seq datasets is mentioned in

Supplemental Methods (Dobin et al., 2012).

Gene-level expression data (raw counts and FPKM) for all Ribo-

seq datasets used in this study is provided on the Github page. The

CAIs and the translational efficiency of the top 5000 highly-expressed

genes for all RNA-seq/Ribo-seq pair datasets in this study are

provided in Supplemental File 4.
2.3 Collecting genomic and ORF
sequences of HIV-1, SARS-CoV-2 and
other coronaviruses

For HIV-1, genomic sequences were collected from the HIV

sequence database (Kuiken et al., 2003) (https://www.hiv.lanl.gov/

content/sequence/HIV/mainpage.html). There are 21 known

subtypes (A1, A2, A3, A4, A6, A7, A8, B, C, D, F1, F2, G, H, J, K,

L, N, O, P, U) for HIV-1. Because all genome sequences of subtype K

in the database do not meet our standards, this subtype of viruses was

not collected and included in the analysis below. For every other

subtype, 2-3 genomic sequences were collected to remove random

bias. Finally, 58 genomic sequences of HIV-1 were collected for

further analysis. Because some collected HIV-1 genomic sequences

do not contain all functional ORFs, we exclude some ‘problematic’

ORFs in CAI calculation and further analysis (the detailed process is

mentioned in Supplemental Methods). Major information (patient

ID, accession ID, name, subtype, country and year for separation,

completeness and length for genomic sequence and annotation for

specific conditions) and ORFs’ sequences for all 58 HIV-1 strains used

in this study are provided in Supplemental File 5. If one ORF is

regarded as ‘problematic’ according to the above standards and

excluded in CAI calculation, this ORF will be marked as

“nonfunction” in the table.

For SARS-CoV-2, the genomic sequence of the original strain in

Wuhan was collected from the NCBI nucleotide database (https://

www.ncbi.nlm.nih.gov/nuccore ) and five variants of concerns

(Alpha, Beta, Gamma, Delta and Omicron) identified by the World

Health Organization (WHO) were collected from GISAID influenza

virus and SARS-CoV-2 sequences database (https://www.gisaid.org ).

For each variant of concern, 5 genomic sequences were collected to

remove random bias. There are six ORFs for essential primary protein

products (ORF1a, ORF1ab, S, E, M, N. The relationship between

ORF1ab and ORF1a is similar to the relationship between gag-pol and

gag in the example of HIV-1) and six ORFs for non-essential primary

protein products (ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF10) in

SARS-CoV-2 genomes (Al-Qaaneh et al., 2021b). Although the

deficiency of non-essential ORFs is common in genomes of some

SARS-CoV-2 strains, all ORFs are complete and functional in SARS-

CoV-2 genomic sequences collected by our studies. Therefore, all

twelve ORFs of these sequences are involved in downstream analysis.
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Major information (accession ID, name, VOCs, country and time for

separation) and ORFs’ sequences for all 26 SARS-CoV-2 strains used

in this study are provided in Supplemental File 6.

For six other coronavirus species (SARS-CoV, MERS-CoV,

HCoV-OC43, HCoV-NL63, HCoV-HKU1, HCoV-229E) that can

infect humans, genomic sequences were collected from the NCBI

nucleotide database. For each species, only the reference genomic

sequence was collected. For each of these sequences, all ORFs

annotated in corresponding species are functional and are involved

in downstream analysis. ORFs’ sequences for all six other

coronaviruses used in this study are provided in Supplemental File 7.
2.4 Calculation and downstream analysis of
viral ORFs’ CAI

After sequence collection, the CAI of ORFs of all HIV-1, SARS-

CoV-2 and other coronavirus strains above was calculated according

to Part 1 in Methods. Results for three groups of viruses are provided

in Supplemental Files 8-10 separately. The relative usage frequency of

synonymous codons (relative synonymous codon usage, RSCU) of

the top 200 high-expressed genes in all cell types which is needed for

CAI calculation is in Supplemental File 11.

For HIV-1, we compared the CAIs of their ORFs in several groups

of different cell types (1) 16 cell types and 3 large groups in the lung.

(2) 7 cell types of peripheral blood mononuclear cells (PBMC) (3) 12

cell types of the monocyte-macrophage system (4) 4 subtypes of CD4

+ T lymphocytes (5) 5 cell types from two key metabolic organs. To

test if the CAI can reflect the evolutionary relationship of different

viral strains, hierarchical clustering algorithms were utilized to cluster

HIV-1 viral strains based on their ORFs’ standardized (z-score) CAIs

in different cell types. For visualizing the results of our analysis, the R

package ggplot2 (version: 3.3.6) was utilized.

For SARS-CoV-2 subtypes and six other coronavirus species, we

compared the CAIs of their ORFs in the lung dataset (16 cell types

and 3 large groups in the lung). We also showed the CAI distribution

of SARS-CoV-2 in glomerulus-podocytes and mesangial cells because

the kidney was reported as an affected organ of COVID-19 (Chen

et al., 2021). In addition, we hoped to explore the change of CAI to

observe the change of cell state after viral infection. Therefore, we also

calculated the CAIs of SARS-CoV-2 ORFs in the Bulk RNA-seq

datasets of infected and control human cells. For visualizing the

results of our analysis, the R package ggplot2 (version: 3.3.6)

was utilized.
3 Results

3.1 Descriptive analysis of endogenous
genes: Enrichment analysis, CAI distribution
and quantitative relationship between CAI
and translational efficiency

The first part of our study was constructing high-expression gene

sets for different cell types. As discussed in the ‘Methods’ part above,

for comparing the translational efficiency of viruses in different cell

types, except for housekeeping high-expression genes (e.g. ribosomal
Frontiers in Cellular and Infection Microbiology 07
protein genes), these gene sets should include enough cell type-

specific genes which can represent unique gene expression patterns

of these cell types. To verify if the high-expression gene sets we

constructed met these conditions, we performed GO-BP (biological

pathway) and KEGG enrichment analysis which can reflect which

biological processes these genes are involved in. Results of the dataset

corresponding to three types of cells (bloodmonocyte (Morante-

Palacios et al., 2021), CD4+ Tfh (Giles et al., 2022) in bulk RNA

datasets and dendritic cells in lung scRNA-seq datasets (Maynard

et al., 2020)) are exhibited (Figures 1A-F). According to these results,

except for ribosome or cytosolic translation-related pathways, several

pathways related to immune response (e.g. immune system process in

BP or COVID-19 and other infectious diseases in KEGG) which is the

major function of these cell types are also significantly enriched. In

conclusion, high-expression gene sets constructed for each concerned

cell type in this study met our requirement.

Also, we calculated the CAIs of the top 5000 highly expressed

genes in bulk RNA-seq datasets corresponding to CD4+ Tfh (Giles

et al., 2022), Kupffer cells and Langerhans cells (Rhodes et al., 2021).

The distributions of the CAIs of the top 5000 and the top 200 highly

expressed genes in these cells are shown in Figure 2. Among these cell

types, the CAI of most endogenous genes is mainly between 0.6-0.85.

Also, the mean CAI of the top 5000 or the 200 genes is separately

0.736/0.763, 0.714/0.744, 0.664/0.697 in three types of cells. This

result reveals significant differences in CAI distribution for

endogenous genes in different cell types: the overall trend of

endogenous genes’ CAIs in Langerhans cells is significantly lower

than in the other two types of cells. On the other hand, we found there

is a statistically significant but slightly positive correlation (r=0.102,

0.0763, 0.0468; p=5.10e-13, 6.48e-08, 0.000939) between gene

expression levels (FPKM value) and CAIs in the top 5000 highly

expressed genes of all three cell types. These results may reflect the

complex relationship between translational efficiency and mRNA

expression level.

As mentioned in the introduction part, the regulatory mechanism

of cellular translation is a complex process. Both the initialization and

elongation of translation are tightly regulated to maintain the normal

physiological activity of cells. However, CAI or similar indicators

based on codon adaptation can only reflect the regulation at the

translational elongation level. Thus, the effectiveness of CAI in

evaluating translational efficiency still needs to be verified. For

establishing the relationship between CAI and translational

efficiency and for verifying the rationality of representing genes’

translational efficiency through calculating CAI, we perform the

linear regression analysis between CAI and translational efficiency

for the top 5000 highly expressed genes in each paired RNA-seq and

Ribo-seq datasets. Results are shown in Figure 3. In Human Bronchial

Epithelial Cells (HBEC) and patient-derived primary CD4+ T cells

without viral infection, there was a significant positive correlation

between CAI and translational efficiency of mRNAs regardless of viral

infection or cultured time. In patient-derived primary CD4+ T cells

infected with HIV, the correlation between CAI and translational

efficiency of mRNA is significantly slightly. This phenomenon can be

attributed to the modulation of the tRNA pool in host cells by HIV-1

infection (Anna et al., 2011). The rationality of CAI is based on the

hypothesis that highly expressed genes are optimized at the codon

level and translated with high efficiency. However, this assumption is
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true only when the endogenic tRNA pools are utilized for translation.

If the tRNA pools are modulated by viruses, cellular preference for

codons in translational elongation will change. Then the translational

efficiency of highly expressed genes may decrease and the relationship

between CAI and translational efficiency will be decoupled. Because

HIV-1 can manipulate cellular translational regulatory machinery by
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modulating tRNA pools, we can postulate CAI of HIV-1 ORFs mainly

reflects the potency of the establishment but not the maintenance of

HIV-1 infection. On the other hand, infection of SARS-CoV-2 does

not weaken the correlation between CAI and translational efficiency

significantly, which implies its effect on cellular translational

regulatory machinery is weaker. Thus, we can postulate that the
D
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FIGURE 1

Barplot of GO-BP (A–C) and KEGG (D–F) enrichment analysis results of bloodmonocytes (A, D), CD4+ Tfh (B, E) in bulk RNA-seq datasets and dendritic
cells (C, F) in lung scRNA-seq datasets. For each analysis, the top 30 enriched pathways according to p-value are shown.
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CAI of ORFs can reflect the potency of both the establishment and the

maintenance of SARS-CoV-2 infection.

An important feature of our study was to calculate CAI according

to cell type-specific background gene sets. For verifying the

advantages of this strategy, we constructed nonspecific background

gene sets. The detailed process of constructing can be seen in the

method above. According to this gene set, we calculated the CAI of

the top 5000 high-expression coding genes in previously mentioned

RNA-seq datasets of HBEC with or without SARS-CoV-2 infection

and analyzed the correlation between CAI and translational efficiency

subsequently. The results are shown in Figure 3. We found that for

each condition with paired RNA-seq/Ribo-seq dataset, compared to

CAI calculated by cell type-specific background gene sets (Figures 3A-

G), the translational efficiency of endogenous genes exhibits a lower

correlation coefficient and decreased significance (larger p-value) with

CAI calculated by nonspecific background gene sets (Figures 3J-P).

For example, the correlation coefficient (rho-value) in Figure 3J

(showing HBEC cells cultured for 4h; ‘nonspecific’ CAI) is lower

than that in Figure 3A (showing HBEC cells cultured for 4h; ‘cell type-

specific’ CAI), while the p-value in Figure 3J is much larger than that

in Figure 3A. Thus, at least for endogenous genes, cell type-specific

CAI is a better indicator for assessing translational efficiency and the

advantage of our method is verified.
3.2 CAI of HIV-1 virus

3.2.1 General situation of HIV-1 ORFs’ CAIs
In this section, we mainly focus on the CAIs of HIV-1 in different

human cell types. We calculated the CAIs of ORFs for 58 HIV-1

genomic sequences in all collected unstimulated cell types/subtypes/

large groups (some cell types like monocytes can be repetitive between
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bulk and single-cell RNA-seq datasets) according to the previous

mentioned bulk RNA-seq datasets and scRNA-seq datasets. As

discussed earlier, because HIV-1 can modulate cellular tRNA pools

and improve the translational efficiency of its ORFs (Anna et al.,

2011), results in this part mainly reflect the capacity of the

establishment but not the maintenance of HIV-1 infection. Figure 4

shows the overall CAI distribution of ORFs from all collected HIV-1

sequences in all studied cell types (from either bulk RNA-seq or

scRNA-seq datasets). For all analyzed strains, the CAI of a single ORF

varies from 0.346 to 0.765. The average CAI among strains and cell

types for each ORF fluctuates from 0.500 (vpu) to 0.658 (tat). ORFs

tat and rev have the highest CAI, which is consistent with a previous

study (Supinya et al., 2018). Compared to the CAIs of endogenous

genes exhibited in Figure 2, in general, HIV-1 ORFs exhibited

significantly lower CAI than high-expressed endogenous genes.

Results of CAI calculation based on scRNA-seq datasets (see below)

are also consistent with this point. As a result, we can postulate that

the translational efficiency of ORFs in the HIV-1 genome is lower

than most endogenous genes and HIV-1 has been still not well

adapted to translation-level regulatory mechanisms of gene

expression in unstimulated human cells, at least in cell types we

studied. This result may explain why HIV-1 should modulate the

cellular tRNA pool to improve its ORFs’ translational efficiency

(Anna et al., 2011).

3.2.2 Comparing HIV-1 ORFs’ CAIs in
different cell types

The damage of viruses to cells can be comprehensively measured

from two aspects, one is their ability to enter cells, and the other is

their destructive ability after entering cells. Thus, we also hoped to use

the CAI to indirectly reflect the adaptation of the virus to the

translation system of the host cell and the ability of the virus to
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FIGURE 2

Density plot for the distribution of CAIs in the top 5000 (A–C)/200 (D–F) highly expressed genes of bulk RNA-seq datasets corresponding to CD4+ Tfh
(A, D), Kupffer cells (B, E) and Langerhans cells (C, F).
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express proteins and damage host cells after entering. We compared

HIV-1 ORFs’ CAIs in several groups of cell types. First, we analyzed

HIV-1 ORFs’ CAIs in several types of monocyte-macrophage system

cells from bulk RNA-seq data (Figure 5). Among these cell types, the

highest CAI appears in Kupffer cells (hepatic macrophages) and I+

dendritic cells. On the other hand, the lowest CAI appears in

macrophages differentiated from monocytes in vitro. The second

lowest CAI appears in Langerhans cells which are tissue-resident

specialized macrophages of the skin. However, it has been reported

that in vitro differentiated macrophage is susceptible to HIV-1 and in

vitro HIV-1 infection models based on this cell type have been

established (Deshiere et al., 2017). Also, during sexual transmission,

Langerhans cells are one of the first groups of HIV-1 target cells and
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FIGURE 3

Linear relationship, spearman correlation coefficient and corresponding p-value between CAI and translational efficiency for the top 5000 highly
expressed genes (except genes which are not detected in Ribo-seq experiments) in each paired RNA-seq and Ribo-seq datasets. a-g. HBEC cells
(cultured for 4 or 96h for A, B; infected with SARS-CoV-2 for 4, 24, 48, 72, 96h for C-G), normal CAI (cell-specific highly expressed gene set as the
background gene set); H, I. patient-derived primary CD4+ T cells (control for H; infected with HIV-1 for I), normal CAI (cell-specific highly expressed
gene set as the background gene set); J-P. HBEC cells (cultured for 4 or 96h for J, K; infected with SARS-CoV-2 for 4, 24, 48, 72, 96h for L-P),
‘nonspecific’ CAI (constructed nonspecific gene set as the background gene set).
FIGURE 4

The overall CAI value distribution of different HIV-1 ORFs in all
unstimulated cell types/subtypes/large groups from bulk RNA-seq
datasets and scRNA-seq datasets shown by violin plot. Each violin
shows the overall CAI value distribution of a specific HIV-1 ORF in all
cell types/subtypes/large groups (containing genomes of 58 HIV-1
strains belonging to 20 subtypes).
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their migrations to lymphatic nodes mediate viruses’ infection to CD4

+ T cells (Botting et al., 2017). Hence, this result is not consistent with

the actual pathogenesis of HIV-1 infection, which provides evidence

for the decoupling of CAI and translational efficiency by HIV-1

continuous infection. In addition, according to Figure 5, we found

that the variation of CAI of three ORFs for essential primary protein

products (gag, gag-pol and env) is significantly lower than the other

six ORFs for non-essential primary protein products (nef, rev, tat, vif,

vpr and vpu). This result can be attributed to different mutation rates

of genes that encode essential and non-essential protein products in

HIV genomes.

The second group we analyzed is a Smart-seq2 based single-cell

RNA-seq dataset of the lung (Maynard et al., 2020) which contains 16

types and 3 large groups of cells as mentioned in the ‘Methods’ part

(Figure 6). In this dataset, the highest overall CAI of HIV-1 ORFs

appears in the group of ‘other T cells’. This group refers to T cells with

no detected expression of CD4 and CD8. According to the result of

Louvain clustering algorithms performed by Seurat, this group locates

in the same group with CD4+ T cells. Hereby, most cells in this group

are likely CD4+ T cells whose CD4 expression was not detected for

some technical reasons. On the other hand, the CAI of HIV ORFs in

all T cells is the second highest and in CD4+ T cells is the third highest

among all cell types and large groups. These results are consistent

with the conventional opinion that CD4+ T cells are major host cells

of HIV-1 in humans. On the other hand, several types of epithelial

cells which are not major HIV-1 target cells exhibit relatively low

CAIs. However, the CAI of another well-studied target type of cells of

HIV-1 (macrophages) is similar to epithelial cells. Finally, it should be

noted that different cell types belonging to the hematopoietic lineage
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exhibit significant variance in HIV-1 ORFs’ CAI. Thus, two cell types

originating from the same developmental lineage do not mean that

HIV-1 exhibits similar ORFs’ CAI in them.

For another single-cell RNA-seq dataset of PBMC (Deng et al.,

2020), postulated susceptibility of cell types based on CAI is also not

consistent with previous experiment studies (Figure 7). For HIV-1

ORFs of various strains, their mean CAIs in B cells but not CD4+ or

other subtypes of T cells are highest. Also, in two subtypes of

monocyte in the blood which have been reported to be host cells of

HIV-1, HIV-1 ORFs exhibit the lowest CAI in all cell types. These

results imply that CAI is not a good indicator for evaluating cell types’

susceptibility to HIV-1 in peripheral blood.

Then we compared HIV-1 ORFs’ CAIs in four different subtypes

of CD4+ T cells in peripheral blood (Figure 8). In this comparison, the

overall trend of CAIs for HIV-1 ORFs in these subtypes is Tfh>Treg>

CD4+ T nonnaive> CD4+ T naive. The highest HIV-1 ORFs’ CAI in

Tfh is consistent with several recent studies which identify Tfh as a

highly susceptible subtype for HIV-1 and a major site for HIV-1

replication and production during untreated infection (Perreau et al.,

2013). However, it should be noted that the differences in HIV-1

ORFs’ CAI between these subtypes are small (<0.03 for the average

CAI of each ORF in different subtypes, corresponding translational

efficiency differences less than 1.04 times according to the linear

relationship between CAI and translational efficiency of endogenous

genes in patient-derived CD4+ T cells from Figure 3H). In

conclusion, these results show that CAI can be used as a reference

but is not conclusive evidence to evaluate cells’ susceptibility to

HIV-1.

Finally, we focused on two organs that play important roles in

metabolic regulation-liver and adipose tissue. We selected four types

of nonimmune cells (hepatocytes, CD133+ and CD133-

cholangiocytes and hepatic satellite cells) in the liver and adipocytes

(the major type of cell that stores lipids in adipose tissue) for CAI

calculation and further analysis (Figure 9). Some studies have

explored the role of these key metabolic organs in the pathology of

AIDS. For adipose tissue, its dysfunction related to HIV-1 infection is

common in patients with AIDS (Koethe, 2017) and it has been

proposed as a reservoir for HIV-1 (Couturier and Lewis, 2018).

Nevertheless, direct infection of HIV-1 to adipocytes has been not

reported (Couturier and Lewis, 2018). For the liver, the susceptibility

of its components to HIV-1 has been studied. Both in vivo and in vitro

studies have shown the ability of HIV-1 to infect hepatocytes (Xiao

et al., 2008; Kong et al., 2012; Zerbato et al., 2022). An in vitro study

verified that HIV-1 can infect hepatic satellite cells (Tuyama et al.,
FIGURE 5

The CAI value distribution of different HIV-1 ORFs in each
unstimulated cell type belonging to the monocyte-macrophage
system from bulk RNA-seq datasets shown by violin plot. Each violin
shows the CAI value distribution of a specific HIV-1 ORF in a specific
cell type.
FIGURE 6

The CAI value distribution of different HIV-1 ORFs in each cell type/large group from the Smart-seq2 based lung scRNA-seq dataset shown by violin plot.
Each violin shows the CAI value distribution of a specific HIV-1 ORF in a cell type/large group.
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2010). However, no studies yet have shown that cholangiocytes can be

infected by HIV-1. Surprisingly, hepatocytes and adipocytes exhibit

high HIV-1 ORFs’ CAI. In fact, hepatocytes exhibit the highest overall

CAI in all cell types analyzed in this study. On the other hand, hepatic

satellite cells which can be infected by HIV-1 in vitro exhibit relatively

lower HIV-1 ORFs’ CAI. This result seems to indicate that the low

susceptibility of adipocytes to HIV-1 is due to the lack of receptors

rather than unsuited translational regulatory mechanisms.

3.2.3 Evolutionary analysis of HIV-1 strains based
on CAI

During the evolution of viruses, their infectious capacity to

different target cells changes gradually. These changes may be

manifested in the adaptation of the translational regulatory system

of host cells. It was reported that patterns of codon usage can reflect

basic features of molecular evolution (Sharp and Matassi, 1994).

Therefore, it is possible that ORFs’ CAIs of different HIV-1 strains

can reflect the phylogenetic relationship between them. For verifying

this hypothesis, we performed a hierarchical clustering analysis of

HIV-1 strains based on their ORFs’ standardized CAIs in different cell

types (Figure 10). However, in the hierarchical clustering analysis,

several groups of HIV-1 strains which belong to the same subtype

(e.g. L, G, U) are not grouped together. These results indicate that

ORFs’ CAIs of HIV-1 strains cannot reflect their phylogenetic history

efficiently. This phenomenon may imply that the codon adaptation of

HIV-1 ORFs is not selected strongly during the evolution and the

adaptation to humans of HIV-1. Thus, it seems efficient translational
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elongation is not a major limiting factor for HIV-1 infection

in humans.
3.3 CAI of SARS-CoV-2 and related
coronaviruses

3.3.1 The CAIs of different SARS-CoV-2 subtypes
We are now focusing on SARS-CoV-2, the pathogen of the

COVID-19 pandemic. We calculated the CAI values of SARS-CoV-

2 with five VOCs (Alpha, Beta, Gamma, Delta, Omicron) and a

reference (original virus identified in Wuhan) in the lung scRNA-seq

dataset (Maynard et al., 2020). As discussed earlier, because SARS-

CoV-2 infection does not interfere with the relationship between CAI

and translational efficiency, this part may reflect both the

establishment and the maintenance of SARS-CoV-2 infection.

Figure 11 shows the overall CAI distribution of each ORF of

different SARS-CoV-2 subtypes in different lung cells. We can

know that, on the whole, the CAI value of the N gene is the highest

and the CAI values of E, ORF10 and ORF6 genes are the lowest.

However, most of the other ORFs have similar CAIs in the middle.

This is basically consistent with the SARS-CoV-2 coding capacity

experiment (Finkel et al., 2021), which indicates that the translation

efficiency of different ORFs in SARS-CoV-2 is similar. This shows that

CAI may be a good indicator of the translation efficiency in SARS-

CoV-2. In addition, the overall CAI values of SARS-CoV-2 are lower

than most endogenous genes in the previously mentioned three cell

types. This result shows the codon adaptation for SARS-CoV-2 in

human cells is not sufficient now.

We also found an interesting relationship. Among the essential

genes transcribed from subgenome mRNA (sg mRNA), the N gene

has the highest expression level, while the E gene has the lowest

expression level in the conclusion drawn from the SARS-CoV-2

coding capacity experiment (Finkel et al., 2021). What’s more, the

ORF10 and ORF6 genes also show very low expression levels in the

coding capacity experiment. Although it is generally believed that CAI

does not directly reflect expression levels, these results have an

interesting correspondence with CAI results.

In addition, we also counted the relative levels of CAI values

corresponding to ORFs of different SARS-CoV-2 subtypes in the lung

dataset. The results are shown in Figure 12. Overall, compared with

the reference sequence, the CAI values of other subtypes show a

downward trend, which likely indicates that the damage of the virus

to the host decreases during the passage. This is consistent with many

existing research results (Huang et al., 2021; Barh et al., 2022;
FIGURE 7

The CAI value distribution of different HIV-1 ORFs in each cell type from the Smart-seq2 based PBMC scRNA-seq dataset shown by violin plot. Each
violin shows the CAI value distribution of a specific HIV-1 ORF in a cell type.
FIGURE 8

The CAI value distribution of different HIV-1 ORFs in each
unstimulated cell subtype of CD4+ T lymphocytes from bulk RNA-seq
datasets shown by violin plot. Each violin shows the CAI value
distribution of a specific HIV-1 ORF in a specific CD4+ T lymphocyte
subtype.
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McMahan et al., 2022), further proving that CAI can indirectly reflect

the damage of the virus. Nevertheless, it should be noted that the

mutation of the virus is relatively small now, and its future trend

needs further observation. Additionally, in the statistical results, we

also find an abnormal situation, that is, the CAI value corresponding

to the Omicron ORF7b is significantly higher than that of the

reference sequence and other subtypes. The increase in CAI value
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corresponding to ORF7b may be related to the current pandemics of

the Omicron subtype, which needs more experimental research.

Despite significant pulmonary symptoms, COVID-19 is regarded

as a systematic disease with symptoms in various organs. For instance,

infection of SARS-CoV-2 to the kidney and related acute kidney

injury have been reported (Chen et al., 2021). However, renal-related

symptoms are less common in COVID-19 than respiratory

symptoms. Besides the difficulty of the virus in reaching the

kidneys, is there any other explanation for this phenomenon? We

analyzed ORFs’ CAI of the original SARS-CoV-2 strain in two cell

types from glomerulus (podocytes and mesangial cells; Figure 13).

Among them, an in vitro study has proved that podocytes can be

infected by SARS-CoV-2 with the help of ACE2 and BSG/CD147 at

their cell surface (Kalejaiye et al., 2022) but no studies have reported

that mesangial cells can be infected by SARS-CoV-2. We found that

the ORFs of SARS-CoV-2 have very low CAIs in both two types

relative to other cell types. Especially, the lowest overall CAIs of

SARS-CoV-2 ORFs appear in podocytes among all analyzed cell

types. This fact may indicate the difficulty of SARS-CoV-2 to infect

these cell types and help to explain why renal-related symptoms are

not as common as respiratory symptoms in COVID-19.
3.3.2 The change of SARS-CoV-2 CAIs
after viral infection

As discussed in the introduction, the inhibition of viral gene

translation is a major part of the anti-virus immune response of

animal cells (Stern-Ginossar et al., 2019). Therefore, we postulated

that the translational efficiency of viral mRNA will be significantly

different between uninfected and infected cells. This change may be

reflected through CAIs. On the other hand, compared to uninfected

cells, CAIs in infected cells can represent the condition in real patients

with infectious diseases caused by viruses better. For HIV-1, the

correlation between CAI and translational efficiency of endogenous

genes is interfered with by viral infection (Figures 3H and I), so we did
FIGURE 9

The CAI value distribution of different HIV-1 ORFs in four major cell
types (adipocyte, hepatocytes, CD133+/CD133- cholangiocytes and
hepatic satellite cells) from two key metabolic organs (liver and
adipose tissue) from bulk RNA-seq datasets shown by violin plot. Each
violin shows the CAI value distribution of a specific HIV-1 ORF in a
specific cell type.
FIGURE 10

The hierarchical clustering of different HIV-1 strains based on their
nine ORFs’ standardized CAIs in all unstimulated cell types/subtypes/
large groups from bulk RNA-seq datasets and scRNA-seq datasets.
Only strains whose CAIs of all ORFs were calculated were involved in
the analysis. Each row represents an ORF in a specific cell type/
subtype/large group and each column represents an HIV-1 strain.
FIGURE 11

The overall CAI value distribution of different SARS-CoV-2 ORFs in all
cell types/large groups from the lung scRNA-seq dataset shown by
violin plot. Each violin shows the CAI value distribution of a specific
SARS-CoV-2 ORF in all cell types/large groups from the dataset
(containing the reference genome and 25 genomes belonging to 5
variants of concern).
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not analyze the change of viral ORFs’ CAIs after HIV-1 infection.

However, the correlation between CAI and translational efficiency is

maintained in cells infected with SARS-CoV-2. Thus, for studying the

effect of viral infection on the translational elongation of SARS-CoV-2

mRNAs, we selected the gene expression datasets of the cells in the

control state and the virus-infected state (Daamen et al., 2021; Mulay

et al., 2021; Sun et al., 2021; Puray-Chavez et al., 2022), and calculated

the CAI values of the SARS-CoV-2 genomes in the corresponding cell
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datasets. The relative changes of CAI values in the control group and

experimental group (virus infection) are consistent in different SARS-

CoV-2 subtypes, and the relative positions of CAI values

corresponding to ORFs are unchanged. Therefore, using the ORFs

of the reference genome for calculation is enough to show the change

of cell state after virus infection. It can be seen from Figure 14 that in

more cells, the change of CAI is larger than zero (meaning that the

CAI of the experimental group is higher than that of the control

group), which indicates that maybe after virus infection, the gene

expression of cells changes to be more conducive to virus translational

elongation. Additionally, in the dataset of HBEC cells (Puray-Chavez

et al., 2022), the CAI values basically increase with the infection time

and the CAI values in infected cells are all larger than control cells

after 48 hours of infection. This is also strong evidence for the

above conclusion.

3.3.3 Comparison of SARS-CoV-2 and other
related coronaviruses

Except for SARS-CoV-2, there are six other coronavirus species

that can infect humans and cause disease. Among them, HCoV-229E,

HCoV-OC43, HCoV-NL63 and HCoV-HKU1 can only infect human

cells and just cause mild diseases, while MERS-CoV, SARS-CoV and

SARS-CoV-2 are zoonotic in origin and cause severe respiratory

illness and fatalities (Hasöksüz et al., 2020). To investigate whether

the CAIs of ORFs of these viruses can reflect their difference in

pathogenicity and target cells, we calculated the CAIs of their ORFs in

cell types from the lung scRNA-seq dataset according to the

procedure mentioned earlier.

In Figure 15, the CAI statistics of 6 essential genes in different cells

are shown by boxplots. Similar to SARS-CoV-2, the overall CAI

values of these coronaviruses are lower than most endogenous genes

in the three cell types mentioned before. This result implies these

viruses have not optimized their codon usage for efficient

translational elongation in host cells. From Figure 15, we can also

know that on the whole, the CAI level of MERS-CoV is higher than

that of SARS-CoV, and the CAI level of SARS-CoV is higher than that

of SARS-CoV-2, which is consistent with the actual pathogenic level

of the three (Rabaan et al., 2020). Among the four other human

coronaviruses, the overall CAI levels of HCoV-229E and HCoV-

OC43 are higher than those of HCoV-NL63 and HCoV-HKU1,

which is basically consistent with their actual pathogenic levels

(Bouvier et al., 2018). It can be seen that the overall CAI value can

reflect the translation level of the virus in the host to a certain extent,

and then reflect its pathogenic level. However, we also found that

although SARS-CoV-2 can cause pandemics and acute pneumonia, its

overall CAI level is slightly lower than HCoV-229E, which means the

pandemic and acute pneumonia caused by SARS-CoV-2 may be

because of its higher levels of infection and entry ability. But it is also

possible that direct comparisons are not appropriate because the

viruses infect the host differently (zoonotic/specifically infects

humans). In addition, if we compare the relationship among

coronaviruses with the same receptor (ACE2: HCoV-NL63, SARS-

CoV and SARS-CoV-2; 9-O-acetylsialic acids: HCoV-OC43 and

HCoV-HKU1 (Guruprasad, 2021; V'kovski et al., 2021)), the level

of CAI value can also perfectly reflect its pathogenic level (overall CAI

and pathogenic level: SARS-CoV > SARS-CoV-2 > HCoV-NL63;

HCoV-OC43 > HCoV-HKU1).
FIGURE 13

The CAI value distribution of different ORFs of the original SARS-CoV-
2 strain in two cell types in the glomerulus (mesangial cells and
podocytes) from bulk RNA-seq datasets shown by box plot. Each box
shows the CAI value distribution of SARS-CoV-2 reference ORFs in a
specific cell type.
FIGURE 12

The overall CAI value distribution of SARS-CoV-2 ORFs for different
variants of concern (VOCs) in all cell types/large groups from the lung
scRNA-seq dataset shown by box plot. Each box shows the CAI value
distribution of a specific SARS-CoV-2 ORF for a specific VOC in all cell
types/large groups from the dataset.
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It can be seen from the previous conclusions that in SARS-CoV-2,

the CAI is a suitable way to indirectly measure the translation

efficiency. Therefore, we tried to verify if the same conclusion was

suitable for other coronaviruses by analyzing the CAI distribution of

these coronaviruses in different cell types in the lung. The result is

shown in Figure 16 and the data is still derived from 6 shared essential

genes. It can be seen that the absolute CAIs of the seven coronaviruses

in different cells are somewhat different, but the relative magnitude of

the CAI values of each virus for different types of cells is basically

stable, which shows the translational adaptation patterns of

coronaviruses in human lung cells are likely to be similar.

In addition, we can also find that the CAI values of T cells

(lungOtherTcell, lungTcell, lungCD4+T, lungCD8+T), NK cells, and

mast cells in lung immune cells are relatively high, suggesting that the

destructive power of the coronaviruses inside such cells may be high.

This is likely due to the co-evolution of virus and host defense

mechanisms during natural evolution. Some existing experimental

results can confirm this result, such as SARS-CoV-2, SARS-CoV and
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MERS-CoV can cause a large decrease in lymphocytes (Gu et al.,

2005; Chu et al., 2016; Guan et al., 2020). Infection of host T

lymphocytes by SARS-CoV-2 (Shen et al., 2022) and rapid

induction of host T lymphocyte apoptosis by MERS-CoV (Chu

et al., 2016) have been observed. In SARS-CoV-2 related studies,

the damage to host cells is T cell > NK cell > B cell, and for T cell, CD4

+ T cell > CD8+ T cell. These results are consistent with the level of

their CAI values (Shen et al., 2022). In addition, in the study of MERS-

CoV, the virus infection is T cell > NK cell > Monocytes > B cell,

which is also consistent with the relative level of CAI values (Chu

et al., 2016). Some experiments about SARS-CoV can also support our

results, which claim that from their samples, the infected T cells are

more than NK cells and B cells (Gu et al., 2005).

However, in the CAI value results, the CAI value of lung AT2 cells

is relatively low. And we know that AT2 is one of the main host cells

of SARS-CoV-2 and SARS-CoV. This shows that AT2 is their main

host cell, probably because the virus can enter such cells more easily.

However, its translation efficiency and destruction ability in AT2 cells

are probably not higher than those in other cells. In addition, some

experiments have shown that T cells are resistant to SARS-CoV

infection (Chu et al., 2016). However, in other experiments, SARS-

CoV is also found in T cells (Gu et al., 2005). From our results, it is

likely that SARS-CoV can adapt to the translation system in T cells

better than other cell types. In general, CAI can be used as an auxiliary

indicator, together with other indicators, to comprehensively evaluate

the ability of the virus to infect and destroy specific cells.

If we evaluate the pathogenic ability of different coronaviruses

from the overall CAI value in Figure 16, we can draw the conclusion

similar to Figure 15. This can also indicate that both overall CAI value

and CAI for specific ORFs can reflect the translation level of the virus

in the host to a certain extent, and then reflect its pathogenic level.
4 Discussion and conclusion

In this study, we tried to utilize the CAI to evaluate the infection

ability of HIV-1 and SARS-CoV-2 in different cell types. The core

hypothesis of this study is if a virus has a higher CAI in a certain type

of cell, then it is likely to be better adapted to the translation system of

that type of cell. This assumption has been verified by the significantly

positive correlation between CAI and translational efficiency of

endogenous genes. Compared to the top 5000 highly expressed

endogenous genes, the relatively low CAI of viral ORFs indicates

that both two viruses have been not well adapted to endogenous

translational regulatory machinery in human cells. We also tried to

compare the infectious capacity of two kinds of viruses to different

human cell types according to CAI. Although many results show that

the putative susceptibility to viruses based on CAI is consistent with

the results of previous reports, there are still some exceptions. Hence,

it seems that at least in the example of HIV-1 and SARS-CoV-2, CAI

can provide some clues about cells’ susceptibility to viruses but cannot

be used as a single indicator to postulate viral target cells. We also

analyzed the effect of viral infection on the cellular translational

mechanism and found significant differences between the two viruses.

For HIV-1, its infection can decouple CAI and the translational

efficiency of endogenous genes. While for SARS-CoV-2, the CAI of its

ORFs increases after the establishment of infection. It is expected that
A

B

FIGURE 14

The distribution of the change of CAI values of the SARS-CoV-2
reference genome in different cell datasets shown by box plot.
CAI_Change is calculated by CAI in infected cells minus CAI in control
cells. (A) Each box shows the CAI_Change distribution of all ORFs in a
specific cell type (293T, a549, a549ace, calu3, lung, nhbe). (B) Each
box shows the CAI_Change distribution of all ORFs in infected HBEC
cells with different times after infection. The control cells are cultured
for 4 hours.
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both mechanisms are beneficial for the virus to overcome the defects

in codon adaptation in human cells and achieve effective

gene expression.

Compared with previous studies that evaluated the infectivity of

viruses based on codon adaptation, the main advantage of our study is

that our analysis is refined to the cell-type level. First, previous studies

usually selected a predefined set of highly expressed genes (usually

housekeeping genes, such as ribosomal genes) (Ruiz et al., 2006; Tello

et al., 2013; Khandia et al., 2019) as the background gene set to assess

the susceptibility of a species to viruses. However, for multicellular

organisms such as humans, the gene expression patterns of different cell

types and their regulatory mechanisms, including translation extension,
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are significantly different, so it would be unreasonable to use the same

set of background genes. A few studies (Mogro et al., 2022) went deeper

into the organ level and selected the corresponding background gene

sets according to the gene expression patterns of different organs in an

attempt to analyze the susceptibility of different organs to viruses based

on this. However, animal organs are not uniform and compose of a

large number of cells with different functions and gene expression

patterns. Different types of cells in the same organ have different

susceptibilities to viruses. For example, alveolar type II epithelial cells

with a high expression level of ACE2 are the main target cells of SARS-

CoV-2 in the lung. Therefore, an analysis based on isolated specific cell

types may provide a more reasonable assessment of viral infection

patterns in vivo than the analysis based on whole organs. In our study,

we quantitatively analyzed the gene expression levels of different cell

types in the human body based on bulk RNA-seq and single-cell RNA-

seq data and obtained the specific high-expression gene sets to each cell

type for CAI analysis. Thus, compared with previous similar studies,

our study may reveal the translational elongation activity of the viral

ORFs in different human cell types and estimate the susceptibility of

these cell types to viruses.

There are several reasons which may explain why codon

adaptation cannot be used as a single indicator to postulate viral

target cells. First, as we discussed in the ‘Results’ part, the translational

efficiency may not be the limiting factor for these two viruses to infect

human cells. For example, in our analysis of the scRNA-seq dataset of

PBMC, HIV-1 ORFs exhibit the highest CAI in B cell which is not

susceptible to HIV-1. This contradiction can be simply attributed to

the lack of CD4 or other possible HIV-1 receptors at B cell surfaces.

Second, regulation of gene expression is due to complex factors in

multilevel. It is possible that differences in regulatory mechanisms of

gene expression in different human cell types are mainly manifested

in pre-translation (epigenomic or transcriptional) and translation

initiation levels. However, CAI mainly reflects the regulation at the

translational elongation (codon adaptation) level so it cannot

summarize all regulatory mechanisms which can affect the

expression of ORFs in the virus genome. Third, viruses can

manipulate the translation machinery of cells e.g., through

modulating cellular tRNA pools (Anna et al., 2011). This process

can improve the translational efficiency of viral ORFs and decouple

the relationship between CAI and translational efficiency. Finally, as

shown in Figure 3, in different human cell types, the relationship

between CAI and translational efficiency of endogenous genes is

significantly different, thus the comparability of CAI among

different cell types needs further study.

In conclusion, we calculated CAI for two kinds of pandemic RNA

viruses in the background of different human cell types. Although

previous studies related to CAI or other indexes utilized in the

translational efficiency estimation mostly stayed at the species level,

our studies refined the estimation of translation efficiency by CAI

calculation to the cell type level. We found that although CAI cannot

be used as the only indicator to postulate viral target cells alone, it

really provides some clues about cells’ susceptibility to viruses from

the aspect of codon adaptation. Additionally, we took CAI

calculations down to the cellular level for HIV-1 and SARS-CoV-2,

and considered alternative splicing in the construction of high-

expression gene sets in each cell type. This is beneficial to make the

calculation of CAI more reasonable. Next, we presented the CAI
FIGURE 15

The overall CAI value distribution of ORFs for the reference genomes
of seven different coronaviruses in all cell types/large groups from the
lung scRNA-seq dataset shown by box plot. Each box shows the CAI
value distribution of a specific ORF for a specific coronavirus species
in all cell types/large groups from the dataset.
FIGURE 16

The overall CAI value distribution of all ORFs for the reference
genomes of seven different coronaviruses in each cell type/large
group from the lung scRNA-seq dataset shown by box plot. Each box
shows the overall CAI value distribution of 6 shared essential genes for
a specific coronavirus species in a specific cell type/large group from
the dataset.
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patterns of these two viruses in various cells. In addition, we also

studied the changes of CAI before and after viral infection, and found

that in most datasets, the gene expression of cells after viral infection

will lead to the increase of SARS-CoV-2 ORFs' CAIs, which indicates

that the translational system may be more suitable for the virus

translational elongation after viral infection. Furthermore, both

viruses were found to have the highest CAI values in immune cells

(T cells), suggesting a co-evolutionary or adaptive relationship

between viruses and immune cells.
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