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Background: Little is known about the relationship of proximal urogenital microbiomes in
the bladder and the vagina and how this contributes to bladder health. In this study, we
use a microbial ecology and network framework to understand the dynamics of
interactions/co-occurrences of bacteria in the bladder and vagina in women with and
without urgency urinary incontinence (UUI).

Methods:We collected vaginal swabs and catheterized urine specimens from 20 women
with UUI (cases) and 30 women without UUI (controls). We sequenced the V4 region of the
bacterial 16S rRNA gene and evaluated using alpha and beta diversity metrics. We used
microbial network analysis to detect interactions in the microbiome and the betweenness
centrality measure to identify central bacteria in the microbial network. Bacteria exhibiting
maximum betweenness centrality are considered central to the microbe-wide networks
and likely maintain the overall microbial network structure.

Results: There were no significant differences in the vaginal or bladder microbiomes
between cases and controls using alpha and beta diversity. Silhouette metric analysis
identified two distinct microbiome clusters in both the bladder and vagina. One cluster
was dominated by Lactobacillus genus while the other was more diverse. Network-based
analyses demonstrated that vaginal and bladder microbial networks were different
between cases and controls. In the vagina, there were similar numbers of genera and
subgroup clusters in each network for cases and controls. However, cases tend to have
more unique bacterial co-occurrences. While Bacteroides and Lactobacillus were the
central bacteria with the highest betweenness centrality in controls, Aerococcus had the
highest centrality in cases and correlated with bacteria commonly associated with
bacterial vaginosis. In the bladder, cases have less than half as many network clusters
compared to controls. Lactobacillus was the central bacteria in both groups but
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associated with several known uropathogens in cases. The number of shared bacterial
genera between the bladder and the vagina differed between cases and controls, with
cases having larger overlap (43%) compared to controls (29%).

Conclusion: Our study shows overlaps in microbial communities of bladder and vagina,
with higher overlap in cases. We also identified differences in the bacteria that are central
to the overall community structure.
Keywords: urobiome, urinary microbiome, vaginal microbiome, urgency urinary incontinence, network analysis
INTRODUCTION

Urgency urinary incontinence (UUI), which is defined as
involuntary urinary leakage accompanied by or immediately
preceded by urgency (Haylen et al., 2010), affects up to 30% of
women with increasing risk with age (Coyne et al., 2012).
Women are twice as likely to be affected by UUI as men.
Many etiologies have been proposed for UUI ranging from
neurogenic to idiopathic (less understood) causes. The
underlying pathophysiologic factors that contribute to non-
neurogenic UUI are thought to range from abnormal sensory
function at the level of the urothelium or urethra (de Groat, 1997;
Yamaguchi et al., 2007) to involuntary myogenic (detrusor)
contractions (Abrams et al., 2002), altered brain function
(Griffiths et al., 2009; Nardos et al., 2014; Nardos et al., 2016),
and more recently, a shift in urinary bladder microbiome
(Brubaker et al., 2014; Pearce et al., 2014; Pearce et al., 2015;
Karstens et al., 2016). Other factors such as metabolic disorders
(Bunn et al., 2015), affective disorders (Vrijens et al., 2015) and
hormonal changes (Cody et al., 2012) have also been shown to be
associated with this condition. These pathophysiologic factors
are likely not mutually exclusive.

Recent advances in both culture and culture-independent
techniques have made it possible to evaluate the role of
microorganisms more thoroughly in health and disease. With
these breakthroughs came the discovery that microbes contribute
to human health more extensively than initially thought (Haiser
et al., 2013; Fulde and Hornef, 2014; Neuman et al., 2015). Recent
studies demonstrate that resident bacteria in the bladder may
have a role in healthy bladder function (Siddiqui et al., 2011;
Fouts et al., 2012; Wolfe et al., 2012; Khasriya et al., 2013; Lewis
et al., 2013; Hilt et al., 2014; Wolfe and Brubaker, 2015). An
alteration in the resident bladder bacterial community, on the
other hand, may be associated with bladder disorders such as
overactive bladder (OAB) with or without UUI (Brubaker et al.,
2014; Pearce et al., 2014; Pearce et al., 2015; Karstens et al., 2016;
Drake et al., 2017; Aragón et al., 2018) and interstitial cystitis
(Siddiqui et al., 2012).

It is generally understood that the gut is the main source of
urinary uropathogens by way of an intermediary, i.e., vagina. The
female urogenital tract is particularly amenable to this migration
theory given the anatomical characteristics and proximity of
these organs to each other. The vaginal microbiome is therefore
thought to play a critical role in contributing to bladder health in
addition to its well-established role in maintaining a healthy
gy | www.frontiersin.org 2
vaginal environment (Ravel et al., 2011; Greenbaum et al., 2019).
However, little is known about how these proximal ecosystems,
i.e., microbiomes in bladder and vagina, relate to each other to
affect bladder health or disease. In this study, we use a microbial
network framework to understand the shift in the dynamics of
interactions or co-occurrences of bacteria in the vagina and
urinary bladder in women with and without UUI. Such
application of network analysis methods allow us to
understand the larger microbial community structures of the
bladder and vagina and how they differ in the urogenital tract of
women with and without UUI.
MATERIALS AND METHODS

This observational case–control study was conducted at the
Oregon Health & Science University (OHSU) between 2016
and 2019. Study approval was obtained from the OHSU’s
Institutional Review Board (IRB 00010729) as part of a larger
effort to understand the role of urinary bladder microbiome in
overactive bladder syndrome in women. Women between the
ages of 45 and 85 were recruited both from the general
population in the Portland area and through the Pacific
Northwest Pelvic Floor Research Group, urogynecology clinical
providers and researchers from the OHSU, Kaiser Permanente
NW, and affiliated Portland-area hospitals. Participants were
prescreened over the phone and those who met inclusion criteria
completed their study visits at the OHSU’s Women’s Health
Research Unit (WHRU).

We recruited twenty women with UUI (cases) and thirty
women with normal bladder function (controls). The UUI group
included women with daily urge-predominant incontinence
confirmed on a three-day voiding diary, with urge-
predominant leakage as determined by a Patient Perception of
Intensity Urgency Scale (PPIUS) (Cartwright et al., 2010) score ≥3
(severe urgency that I could not postpone voiding) for >50% of total
incontinence episodes on diary. The control group included female
participants without a history of any UUI symptoms or frequent
(>once a week) stress incontinence symptoms based on screening
questionnaire and confirmed on three-day voiding diary.
Participants were excluded if they had urinary retention with a
baseline need for intermittent self-catheterization, known
neurological diseases that could affect bladder function (stroke,
multiple sclerosis, brain or spinal cord injury, myasthenia gravis),
current pregnancy or lactation, history of pelvic radiation, current
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pelvic or bladder malignancy, symptomatic urinary tract infection
detected on screening urinalysis and confirmed with culture
(growth of >105 colonies per ml), symptomatic pelvic organ
prolapse (sensation of vaginal bulge), prior or current diagnosis of
painful bladder syndrome, or a history of antibiotics in the previous
two months.

All participants provided written consent and completed a
demographic and health questionnaire and a three-day bladder
diary. Participants were asked to score their urinary urgency on
the bladder diary using the PPIUS. Participants also completed
the International Consultation on Incontinence Questionnaire
(ICIQ) (Avery et al., 2004), the Pelvic Floor Distress Inventory
Urogenital Distress Inventory (UDI) (Barber et al., 2005) and the
Overactive Bladder Questionnaire (OAB-q) (Coyne et al., 2002).
These validated questionnaires assess urinary incontinence
symptoms, impact of pelvic floor disorders on daily function,
quality of life, symptom bother, and health-related quality of life,
respectively. Finally, participants completed the Patient Global
Impression of Severity (PGI-S) (Yalcin and Bump, 2003), the
Patient Perception of Bladder Condition (PPBC) (Coyne et al.,
2006) and the Beck’s Anxiety Inventory (Fydrich et al., 1992).
During their study visit, urine was collected from the bladder
using an aseptic technique with a urethral catheter by a trained
and licensed practitioner. The total volume of urine was emptied,
and urine specimens were aliquoted into sterile 50 ml conical
tubes and stored at −20°C until further processing. Mid-vaginal
swabs were also collected by a trained and licensed practitioner
from the same participants on the same study visit. This was
done by inserting a sterile cotton-tipped swab into the vagina,
rotating the swab 360° five times, and letting the swab sit in mid
vagina for 20 s. All specimens were handled in a sterile biosafety
cabinet after collection.

Statistical Analyses
Differences in clinical and demographic characteristics between
UUI and controls were assessed with Student’s t-tests for normal
and continuous characteristics, Kruskal–Wallis’ rank sum test
for non-normal and continuous characteristics, and Fisher’s
exact test for categorical data. The Shapiro–Wilk test was used
to test for normality prior to testing. Clinical covariates that were
found to be statistically different between UUI cases and controls
were considered as covariates in downstream analyses. Data
management, descriptive statistics, visualizations, and analyses
were performed in R (version 3.6.1) (Team, 2017).

Molecular Methods
Microbial DNA from vaginal swabs was extracted by vortexing
swab heads in PowerBead tubes before centrifugation at 10,000g
for 30 s at room temperature following the DNeasy PowerSoil
DNA isolation kit (QIAGEN, Germany). Microbial DNA from
the urinary bladder was extracted from microbial pellets formed
from the centrifugation of 20–45 ml of urine at 10,000g for 30
min twice. DNA extraction was performed using the cultured
cells protocol supplied with the DNeasy Blood and Tissue Kit
(QIAGEN, Germany). The extracted DNA was quantified and
quality checked at A260/A280 nm (Nanodrop, Thermo Fisher
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Scientific, USA) prior to amplification by polymerase chain
reaction (PCR). No template controls and a mock microbial
dilution series were also extracted with each protocol and
subjected to amplification and sequencing.

Bacterial DNA was amplified by PCR using Golay barcoded
primers which target the V4 region of 16S rRNA genes (Caporaso
et al., 2012). Template DNA was amplified in triplicate using the
GoTaq Hot Start Polymerase kit (Promega, USA). One microliter
of template DNA and 1 ml of a unique barcoded reverse primer
were added to 48 ml of master mix containing 1× colorless reaction
buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.2 mM forward primer,
and 1.25 U of polymerase enzyme. The reaction volumes were
placed in a thermocycler and run through the following
conditions: 94°C for 3 min (initial denaturation), followed by 35
cycles of 94°C for 45 s (denaturation); 55°C, 40 s (annealing); 72°C,
1.5 min (extension); with a final extension at 72°C for 10 min.

Ten microliters of each product were used to verify
amplification by gel electrophoresis on a 2% agarose gel.
Replicates yielding visible bands at 382 bp were pooled
together and purified following the QIAquick PCR Purification
kits (QIAGEN, Germany) provided protocol. Purified products
were again quantified, and quality checked at A260/A280 nm
(Nanodrop, Thermo Fisher Scientific, USA). Products were
diluted to 10 ng/ml, and 5 ml of each sample were pooled
together for sequencing on the Illumina MiSeq sequencer
(Illumina, USA).

Sequence Processing
Illumina sequence reads were processed using DADA2 (version
1.4.0) (Callahan et al., 2016) to yield amplicon sequence variants
(ASVs), using default parameters unless otherwise noted. Briefly,
reads were trimmed 10 bases from the 5’ end for both forward
and reverse reads, and the 3’ ends were truncated to 240 and 160
bases, respectively. Chimeric sequences were identified and
removed by taking a consensus across samples using the
removeBimeraDenovo function. Taxonomy was assigned using
the RDP classifier (Wang et al., 2007) with the Silva database
(version 132) as implemented in the assignTaxonomy function.
For further manipulations, we used Phyloseq (version 1.28.0)
(McMurdie and Holmes, 2013) and several other R packages.
ASVs were agglomerated to the genus taxonomic rank for
downstream analyses. For diversity analyses, vaginal and bladder
microbiome sequence variants were rarefied without replacement
to 15,000 reads per sample and 2,500 reads per sample,
respectively. Performed separately for vaginal and urine samples,
genera that contributed greater than 5% of the total of at least one
sample were considered for further analysis. Identification and
removal of contaminant sequences was performed on urinary
bladder microbiome samples using the Decontam (version 1.4.0)
(Davis et al., 2018), using the frequency classification with a
threshold of 0.3. Decontam was also performed on vaginal
samples using the threshold of 0.5. Phylogenetic trees were
constructed by generating a neighbor-joining tree based on a
multiple sequence alignment as implemented with default
parameters in DECIPHER (version 2.14.0) (Wright, 2016) and
Phangorn (version 2.5.5) (Schliep, 2011).
March 2022 | Volume 12 | Article 759156
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Microbiome Analyses
Stacked bar plots based on sequence abundance were produced
for the vaginal and bladder microbiome samples using
Microshades (Dahl et al., 2021). Weighted UniFrac distance
was calculated between samples, and the updated Ward’s
minimum variance method was used for agglomerative
hierarchical clustering (Murtagh and Legendre, 2014) with
complete linkage using hclust “ward.D2”. The clustering
dendrogram was cut based on the silhouette clustering metric,
a measure assessing the similarity of within-cluster points with
other cluster points. The silhouette clustering metric was
calculated for potential clusters of 2 through 6, and the largest
value was used as the optimal number of clusters. A dendrogram
was used to visualize the hierarchical clustering relationships via
the Dendextend (version 1.13.4) (Galili, 2015).

Alpha and beta diversity were calculated for the UUI case and
control samples using Phyloseq (McMurdie and Holmes, 2013),
Vegan (version 2.5.6) (Oksanen et al., 2019), and Microbiome
(version 1.6.0) (Lahti and Shetty, 2017) R packages. Alpha
diversity was assessed with the observed number of taxa,
Pielou’s evenness index (Pielou et al., 2007), and inverse
Simpson index. Beta diversity between subject samples was
calculated using the Bray-Curtis, weighted UniFrac and
unweighted UniFrac (Lozupone and Knight, 2005) distance
measures using the distance function in the Phyloseq,
visualized using principal coordinates analysis (PCoA), and
assessed with PERMANOVA (Anderson, 2014) for significance
using the adonis function in the Vegan package.

Network Analyses
SparCC was used to construct microbial networks. SparCC
accounts for the compositional nature of 16S rRNA data by
performing a linear Pearson correlation on log-ratio transformed
data (Friedman et al., 2004). This transformation is beneficial
because it retains the true abundance values as a ratio, which are
independent of other taxa included in the data, and the
transformation can take any value rather than being constrained
to a fixed abundance. The SparCC method was performed as
implemented in the sparcc function with default parameters in
the SpiecEasi package (version 1.0.7) (Kurtz et al., 2015). Network
analyses were performed using the R packages tidygraph (version
1.2.0) (Pedersen, 2020), with the underlying functionality of igraph
(version 1.2.5) (Csardi and Nepusz, 2006), and visualized using the
R package ggraph (version 2.0.3) (Pedersen, 2021). Community
detection was performed using the InfoMap community detection
algorithm, which minimizes the expected description length of a
random walker along the network, as implemented in cluster
infomap in the R package igraph (Rosvall and Bergstrom, 2008).

A permutation analysis was used on all UUI case and control
vaginal microbiome data to determine a correlation threshold by
shuffling the sample labels for each genus in a pairwise
comparison prior to calculating SparCC correlations. A similar
permutation was performed separately on the bladder
microbiome data. This permutation analysis generates a null
distribution of correlations from which to identify a threshold of
correlations for downstream analyses. A permutation of 1,000
trials was performed and a threshold of the top 5% of the null
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
distribution was used to determine a correlation cut off for each
the vaginal microbiome (correlations >0.23) and bladder
microbiome data (correlations >0.22). Only positive
correlations were considered for the network analysis.
RESULTS

The study included twenty women with UUI and thirty women
without UUI (controls). Women in both groups were similar in
age, menopause status, estrogen use, number of vaginal
deliveries, and race (p >0.05) (Table 1). There was also no
significant difference in clinical history such as IBS, history of
pelvic surgery, diabetes, or current tobacco use. However,
women with UUI were more likely to have had a history of
recurrent UTIs compared to controls (p = 0.007). Women with
UUI were also significantly more likely to score higher on Beck’s
Anxiety Inventory (10.6 ± 12.0) compared to controls (2.6 ± 2.6)
(p <0.001) even though they did not report a higher incidence of
anxiety diagnosis in their medical history.

As expected, the UUI group had higher scores on clinical
symptom and symptom bother questionnaires related to
incontinence (UDI, OAB-q, ICIQ, p <0.001, Table 2). The
higher UDI-6, OAB-q symptom bother, and ICIQ scores for
the UUI cohort indicate the severity of symptom bother and
disability in this particular population. Similarly, the lower OAB-
q health-related quality of life scores for the UUI cohort indicates
a lower quality of life in the UUI population. Objective measures
of incontinence are captured by a three-day bladder diary which
showed that 60% of the UUI population had daily urge leaks and
15% had daily stress leaks while the control group did not have
any urge or stress leaks. There was no significant difference in
nocturia or daytime urinary frequency between the two groups.

The 16S rRNA amplicon sequencing resulted in a mean
sequencing read depth of 45,005 reads per sample (range
15,201–69,787) for vaginal samples and 38,941 reads per
sample (range 2,319–137,986) for urine samples. There were
no significant differences in the number of reads per sample
between the UUI and control groups (p = 0.7 vaginal samples, p =
0.2 urine samples). After processing and filtering as described in the
methods, the vaginal sequencing resulted in classification of 8 phyla,
12 classes, 18 orders, 31 families, and 66 genera. Urine sequencing
resulted in classification of 14 phyla, 21 classes, 43 orders, 70
families, and 131 genera.

Vaginal Microbiome
We identified two distinct clusters of vaginal microbiome
profiles (silhouette score 0.63, Figure 1A). One cluster was
dominated by the genus Lactobacillus, while the second cluster
included microbiomes that were dominated by Gardnerella,
Bifidobacterium, Escherichia or had no dominant bacteria and
contained a mixture of Anaerococcus, Prevotella, Escherichia,
Gardnerella, Bifidobacterium, or other genera. We tested the
relationship between these vaginal microbiome clusters and
demographic/clinical characteristics and found no association with
cohort status (UUI vs. control) (p = 1.0) or menopausal status (p =
1.0). However, the clustering was associated with vaginal product use,
March 2022 | Volume 12 | Article 759156
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with more participants in the Lactobacillus-dominated clusters
reporting use of vaginal products (p = 0.004). Vaginal products
were defined as any use of vaginal medication or suppository, douche,
feminine spray, spermicide, or personal lubricant in the week prior to
collection of vaginal microbiome samples. There was no difference in
either alpha diversity (Figure 1B) or beta diversity in the vaginal
microbiome of women with and without UUI (Supplemental
Figure 1 PERMANOVA p = 0.71, adjusted for age, BMI,
menopause status, and estrogen use). Of the 16 participants who
reported use of vaginal products, 13 reported vaginal estrogen use as
the vaginal product. Therefore, we excluded vaginal product from the
adjusted model and only included estrogen use.

For each group, we inferred a microbiome-wide interaction
network based on the bacterial genera in the vaginal microbiome
(Figure 2 andTable 3). Of note, interaction in this correlation-based
network does not indicate physical or biochemical interactions
among microbes. There was a similar number of genera in the
microbiome networks of both UUI and control groups (55 genera
versus 52 genera respectively) but more unique bacterial co-
occurrences (pairs of bacteria that co-occur) in the UUI group
compared to controls (343 associations versus 152 associations
respectively). The number of clusters in the vaginal network were
similar betweenUUI and controls, where theUUI network clustered
into 5 subgroups of bacteria and controls clustered into 6 subgroups.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
We further explored the presence of a central bacteria in each
of the vaginal networks using the betweenness centrality measure
(Table 4). Central bacteria have high betweenness centrality, i.e.,
in the path between most other bacterial networks, potentially
leveraging higher influence over network stability. Bacteroides
were the central bacteria in the vaginal microbiome-wide
network of control samples with the highest centrality measure
of 0.39, followed by Lactobacillus (betweenness centrality of
0.19). In the UUI group, Aeroccocus were the central genus in
the vaginal microbiome-wide network with a centrality measure
of 0.33, followed by Streptococcus (betweenness centrality of
0.22). Lactobacillus were not found to be in the top six most
central bacteria in the vaginal microbiome-wide network of UUI
subjects. We further explored the surrounding bacterial
associations to the central bacteria in the UUI group (Table 5).
These top associated bacteria include Actinomyces ,
Staphylococcus, Helcococcus, Streptobacillus, Prevotellaceae,
Gardnerella, and Bacteroides.

Bladder Microbiome
For the bladder microbiome, we identified two distinct clusters
using the silhouette metric which is similar to vaginal
microbiome (highest silhouette score of 0.50, Figure 3A). One
cluster had a diverse mix of bacteria, namely, Bacteroides,
TABLE 1 | Participant demographics and comorbidities.

UUI (N = 20) Control (N = 30) p-value

Age (years) 64.2 ± 10.5 57.9 ± 10.4 0.04
Body mass index (kg/m2) 29.25 [25.93, 32.8] 25.4 [23.2, 28.3] 0.005
Menopause status 0.32
Premenopausal 3 (15%) 9 (30%)
Postmenopausal 17 (85%) 21 (70%)

Any Estrogen use 9 (45%) 7 (23%) 0.22
Race 0.68
White 18 (90%) 27 (90%)
Non White 2 (10%) 3 (10%)

Vaginal delivery (Yes) 11 (55%) 17 (47%) 1.00
Number of vaginal deliveries 2.00 [1.50, 3.00] 2.00 [1.00, 3.00] 0.24
History of diabetes 4 (20%) 6 (7%) 0.14
Smoking (current) 1 (5%) 0 (0%) 0.40
Has history of recurrent UTI 5 (25%) 0 (0%) 0.007
History of Anxiety 4 (20%) 4 (13%) 0.27
Beck’s Anxiety Inventory Score 7.50 (2.5, 15.25) 2.0 (1.00, 3.00) 0.007
History of IBS 4 (20%) 2 (10%) 0.28
History of Pelvic Floor Surgery 7 (35%) 11 (37%) 1.00
March 2022 | Volume 12 | Article
Student’s t-test was performed on continuous, normally distributed data and displayed with mean and standard deviation. The Kruskal–Wallis test was performed on continuous, non-
normally distributed data and displayed with median and the interquartile range. The Fisher’s Exact test was performed on categorical data and counts reported as number of individuals
with corresponding demographic or condition.
TABLE 2 | Participant bladder symptoms.

UUI Control p-value

Urogenital distress inventory (UDI-6 Short Form) 5.5 [4.8, 9.0] 0.0 [0.0, 0.0] <0.001
Overactive Bladder Questionnaire (OAB-q) symptom bother 45.0 [40.0, 70.0] 6.7 [3.3, 15.0] <0.001
OAB-q health-related quality of life 66.9 [45.8, 78.9] 98.5 [95.8, 100.0] <0.001
International Consultation on Incontinence Questionnaire (ICIQ) 10.5 [8.0, 14.3] 3.0 [0.0, 3.0] <0.001
This table summarizes bladder symptoms, assessed by validated pelvic floor questionnaires. Statistics performed by Kruskal–Wallis, comparing UUI cases to controls and displayed with
the median and IQR. IQR, interquartile range.
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Escherichia, Blautia, Faecalibacterium, Lachnospiraceae,
Prevotellaceae, and others, while the other cluster was
primarily dominated by Lactobacillus or Gardnerella. We
tested for associations between the microbiome clusters and
clinical/demographic characteristics and found no relationship
between cohort status (UUI vs control, p = 0.76) or vaginal
product use (p = 0.76). However, menopausal status did have a
significant association with the clusters (p = 0.01), with the
diverse microbiome cluster being more associated with samples
from postmenopausal women. We did not find any significant
differences in alpha diversity (Figure 3B) or beta diversity in the
bladder microbiome of women with and without UUI
(Supplemental Figure 2, PERMANOVA p = 0.23, adjusted for
age, BMI, menopause status, and estrogen use).

Similar to the vaginal microbiome analysis, we inferred
microbiome-wide interaction network for each cohort group
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
(UUI and control) independently (Figure 4 and Table 6). The
basic structure of the bladder microbiome network showed five
clustered subgroups of bacteria for women with UUI and eight
clusters for controls. Visually and quantitatively using
modularity and connectance, we see that the control bladder
microbial network is more clustered into smaller microbial
groups. The UUI network had fewer genera in the connected
network (93 genera in UUI versus 135 genera in controls) and
fewer unique bacterial co-occurrences (624 associations in UUI
versus 763 associations in controls).

We explored key urinary bacteria in the UUI and control
bladder microbial networks using the betweenness centrality
measure. Unlike the vaginal microbiome, we found that
Lactobacillus genera were the central bacteria with the highest
centrality measure in both UUI and controls (Table 7). Because
Lactobacillus are central to both UUI and control networks, we
A

B

FIGURE 1 | (A) Clustering of vaginal microbiome is associated with use of vaginal products. Hierarchical clustering (top) was performed using the Ward’s minimum
variance method on weighted UniFrac distances between samples. Stacked bar plots (bottom) show relative abundance of vaginal microbiome of women with and
without UUI. Dotted lines outline clusters that were chosen based on the Silhouette metric. Black bars underneath annotate for clinical features being TRUE. Vaginal
product use was significantly associated with vaginal microbiome cluster (p = 0.004), menopausal status was not (p = 1.0, Fisher’s exact test). Cases are labeled
with yellow diamonds and controls are labeled as blue squares. VPROD, any vaginal product use; MENOP, post-menopausal. (B) Women with and without UUI do
not differ in vaginal microbiome diversity. Alpha diversity is visualized using box-and-whisker plots and measured using observed number of taxa (genera, p = 0.24),
inverse Simpson Index (p = 0.59), and Pielou evenness index (p= 0.46). A generalized linear model was used to adjust for age, BMI, and menopause-estrogen status.
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explored the microbial associations between the Lactobacillus
and other genera in each cohort. We found 22 unique genera in
UUI and 20 unique genera in the controls that associated with
Lactobacillus in their respective networks. Both networks
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
shared a total of six common genera that associated with
Lactobacillus–Campylobacter, Dialister, Gardnerella, Prevotellaceae_
NK3B31_group, Ureaplasma, and Varibaculum. Among the unique
associated genera inUUI, we found that at least a quarter of them give
rise to species known to be uropathogens associated with urinary tract
infections. These include Aerococcus, Corynebacterium, and
Escherichia/Shigella (Table 8).

Vaginal and Bladder Microbiomes: Is
There an Overlap?
Overall, more bacterial genera were identified from the bladder
(131) compared to the vagina (66). The number of shared
bacterial genera between the bladder and the vagina differed
between women with and without UUI. Women with UUI have
a larger number of shared bacterial genera (43%) between the
two adjacent ecosystems compared to controls (29%) (Figure 5
and Table 9). Among women with UUI, the top most abundant
vaginal bacterial genera that were also present in the bladder
include Lactobacillus, Bifidobacterium, Gardnerella, Prevotella,
Sneathia, Faecalibacterium, Varibaculum, Actinotignum, and
Aerococcus. Of these, only Gardnerella was more abundant in
the bladder compared to the vagina. Other overlapping genera
with higher median abundance in the bladder include
Bacteroides, Prevotellaceae_UCG-001, and Escherichia/Shigella.
Among controls, the most abundant vaginal bacterial genera that
were also present in the bladder include Lactobacillus, Gardnerella,
Bifidobacterium, Atopobium, Prevotella, Bacteroides, and
Streptococcus. Of these, only Bacteroides was more abundant in
the bladder compared to the vagina. Other top bladder genera with
FIGURE 2 | Network visualization of vaginal microbiomes. Each microbiome co-occurrence network, one for the UUI group (left) and one for the control group (right)
consists of several bacterial genera (circles, colored by communities of bacteria identified using the InfoMap algorithm and sized by betweenness centrality value) that
are connected to other bacterial genera by co-occurrence (edges/lines connecting circles, identified by SparCC correlation).
TABLE 3 | Summary of metrics for vaginal microbiome networks.

Interpretation UUI Control

Number of nodes Space of co-occurring bacteria to consider 55 52
Number of edges Number of co-occurrence relationships 343 152
Modularity Measure of community detection 0.45 0.57
Normalized connectance Complexity of system 0.23 0.11
M
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TABLE 4 | Betweenness centrality measured of key bacteria in the vaginal
microbiome network (defined by bacteria with a betweenness score >0.10).

Genus UUI Control

Bacteroides 0.14 0.39
Aerococcus 0.33 0.07
Streptococcus 0.22 0.07
Lactobacillus 0.00 0.19
Mannheimia 0.16 0.04
Prevotellaceae_UCG-001 0.16 0.01
Gardnerella 0.15 0.06
Anaerococcus 0.02 0.15
Fusobacterium 0.00 0.14
Staphylococcus 0.06 0.12
TABLE 5 | Top bacteria correlated with Aerococcus in the UUI vaginal network.

Genus Correlation

Actinomyces 0.46
Staphylococcus 0.41
Helcococcus 0.39
Streptobacillus 0.39
Prevotellaceae 0.36
Gardnerella 0.36
Bacteroides 0.24
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higher median abundance in the bladder compared to vagina
include Prevote l laceae_UCG-001 , Actinomyces , and
Faecalibacterium. Irrespective of overall abundance in the vagina
or bladder, the bacteria that has the highest overlap in median
abundance in both ecosystems in the UUI group was Gardrenella
(Vagina: 26.8, Bladder: 55.8) followed by Lactobacillus (Vagina: 69.6,
Bladder: 6.3) where as in the control group, the bacteria with the
highest overlap in median abundance were Lactobacillus (Vagina:
74.2, Bladder: 15.5) followed by Gardrenella (Vagina: 43.0,
Bladder: 3.1).
DISCUSSION

It is generally accepted that the vagina acts as an intermediary
between the gut and the bladder and may play a role in the
pathogenesis of bladder conditions such as UTI (Czaja et al.,
2009). It is also known that disruption of a normal microbiome
environment in the vagina is associated with colonization by
pathogenic organisms leading to disorders like bacterial
vaginosis (Srinivasan et al., 2010), sexually transmitted infections
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
(STIs) (van de Wijgert, 2017; Eastment and McClelland, 2018;
Ziklo et al., 2018), and genital herpes infection (Shannon et al.,
2017). It is however unclear if and how dysbiosis in the vagina
plays a role in more chronic bladder conditions such as UUI.

In this study, we provide a detailed characterization of the
differences in both bladder and vaginal microbiomes in a cohort
of well-characterized women with and without UUI. More
importantly, we go beyond traditional approaches to microbiome
analysis by leveraging network-based analysis to look at underlying
microbial community dynamics or interactions in these adjacent
ecosystems. Network analysis provides a mathematical tool to
understand complex systems such as identifying central bacteria
that contribute to stability and resilience of ecosystems and their
interactions with others in the network (Pielou et al., 2007).

In our study, women with UUI were similar to women
without UUI in all clinical and demographic variables except
for history of recurrent UTIs. Women with UUI were more likely
to have a history of recurrent UTI which is not surprising given
the known overlap in symptoms between UTI and UUI and the
frequent misdiagnosis of UTI as a result (Nik-Ahd et al., 2018).
There is also some evidence that overactive bladder may be
A

B

FIGURE 3 | (A) Clustering of bladder microbiome is associated with menopausal status. Hierarchical clustering was performed using the Ward’s minimum variance
method on weighted UniFrac distances between samples. Dotted lines outline clusters that were chosen based on the Silhouette metric. Black bars underneath
annotate for clinical features being true. Menopausal status was associated with bladder microbiome cluster (p = 0.01), but vaginal product use was not (p =1.0,
Fisher’s exact test). Cases are labeled with yellow diamonds and controls are labeled as blue squares. MENOP, post-menopausal. (B) Women with and without UUI
do not differ in bladder microbiome diversity. Alpha diversity is visualized using box-and-whisker plots and measured using observed number of taxa (genera, p =
0.92), inverse Simpson Index (p = 0.73), and Pielou evenness index (p= 0.70). A generalized linear model was used to adjust for age, BMI, and menopause-estrogen status.
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associated with chronic low-grade colonization by bacteria that
are commonly missed on routine cultures (Balachandran et al.,
2016). These observations are the impetus for investigators, us
included, to look at the role of bladder microbiomes in health
and disease (Karstens et al., 2016; Brubaker and Wolfe, 2017;
Drake et al., 2017; Aragón et al., 2018).

In our study, we did not see a significant difference in alpha or
beta diversity in bladder or vaginal microbiomes of women with
and without UUI. This is consistent with our own prior reporting
(Karstens et al., 2016) but differed from others who reported
increased diversity in UUI (Pearce et al., 2015; Thomas-White
et al., 2016). Using silhouette analysis, we showed that the
bladder and vaginal microbiomes formed two clusters of
bacteria. In the vagina, one cluster was dominated by
Lactobacillus and the other with mixed bacteria. Presence or
absence of UUI did not impact clustering. The only clinical factor
that was associated with this clustering was use of “any vaginal
product” the week before collection of the vaginal specimen, with
more vaginal product use noted in the Lactobacillus-dominated
group. This observation is important to note and highlights the
FIGURE 4 | Network visualization of bladder microbiomes. Each microbiome co-occurrence network, one for the UUI group (left) and one for the control group
(right) consists of several bacterial genera (circles, colored by communities of bacteria identified using the InfoMap algorithm and sized by betweenness centrality
value) that are connected to other bacterial genera by co-occurrence (edges/lines connecting circles, identified by SparCC correlation).
TABLE 6 | Summary of network metrics for bladder microbiome networks.

Interpretation UUI Control

Number of nodes Space of co-occurring bacteria to consider 93 135
Number of edges Number of co-occurrence relationships 624 763
Modularity Measure of community detection 0.46 0.60
Normalized connectance Complexity of system 0.15 0.09
Frontiers in Cellular and Infection Microbiology | www
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TABLE 7 | Betweenness centrality measures of key bacteria in the bladder
microbiome network (defined by bacteria with a betweenness score >0.10).

Genus UUI Control

Lactobacillus 0.14 0.20
Corynebacterium 0.01 0.15
Bifidobacterium 0.02 0.13
Akkermansia 0.00 0.13
TABLE 8 | Top bacteria correlated with Lactobacillus in the urinary network.

Genera associated in both groups

Genus Correlation
Campylobacter 0.43
Dialister 0.37
Gardnerella 0.28
Prevotellaceae_NK3B31_group 0.34
Ureaplasma 0.34
Varibaculum 0.31
Genera unique to UUI group
Genus Correlation
Actinotignum 0.42
Aerococcus 0.32
ASF356 0.39
Corynebacterium 0.33
Erysipelotrichaceae_UCG-003 0.37
Escherichia/Shigella 0.31
Flavonifractor 0.33
Intestinimonas 0.30
Jonquetella 0.42
Lachnospiraceae_NK4B4_group 0.35
Luteibacter 0.32
Marvinbryantia 0.31
Meiothermus 0.40
Oscillibacter 0.41
Paludibacter 0.30
Prevotella 0.30
Ruminococcaceae_NK4A214_group 0.31
Ruminococcaceae_UCG-009 0.24
Ruminococcaceae_UCG-013 0.32
Sneathia 0.30
Tumebacillus 0.38
Tyzzerella 0.24
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importance of environmental factors such as vaginal product use
(douching, lubrication, estrogen cream etc.) that influence
vaginal microbiome. This is consistent with the literature
highlighting the dynamic nature of vaginal microbiomes and
how these ecosystems can be perturbed by factors like
menstruation, vaginal products, vaginal infections, hormonal
status such as pregnancy, menopause, etc. (Srinivasan et al.,
2010; Gajer et al., 2012; DiGiulio et al., 2015). Interestingly, the
clustering in the vaginal microbiome was not associated with
estrogen use per se. The small size of our study (with an even
smaller number of women on estrogen therapy) does not allow
us to make any definitive conclusion about the association of
vaginal or systemic estrogen use and changes in vaginal or
bladder microbiomes. This certainly needs further investigation
given the promising evidence that vaginal estrogen improves
OAB symptoms in post-menopausal women (Cardozo et al.,
2004), reduces symptoms associated with genitourinary
syndrome of menopause including the risk of UTI (Rahn et al.,
2014), and that vaginal estrogen use may increase Lactobacillus
in the urine of post-menopausal women (Thomas-White et al.,
2020). This suggests that modulation of microbiomes is one
likely mechanism of action for vaginal estrogens.

Similar to the vagina, silhouette analysis in the bladder
microbiome identified two clusters. One cluster contains
bladder microbiomes that have a higher proportion of
Lactobacillus and Gardnerella, while the second cluster
contains microbiomes with a mixed population of bacteria.
This clustering in the bladder microbiome was associated with
menopausal status in which post-menopausal women were more
likely to have microbiomes without a dominant genus while
premenopausal women tended to have microbiomes that were
dominated by Lactobacillus or Gardnerella. This is consistent
with prior report that shows higher Lactobacillus in the urine of
premenopausal women compared to post-menopausal women
(Curtiss et al., 2018). In our study, these dominant clusters in the
bladder were not associated with presence or absence of UUI.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
This is in agreement with some prior work using similar-sized
cohorts (Pearce et al., 2014), but different from other studies that
found several clusters within UUI samples that were dominated
by single bacteria such as Lactobacillus and Gardnerella (Pearce
et al., 2015) and studies that identified bacterial community types
that were different between women with and without mixed
urinary incontinence (Komesu et al., 2018).

One of the unique aspects of this study was the use of network
analysis to understand microbial interactions in the bladder and
in the vagina. We identified two major microbiome interaction
networks in both the vaginal and bladder samples. In the vaginal
samples, we identified similar numbers of genera in each network
for women with and without UUI. They also have similar
numbers of clusters of subgroups in the microbiome-wide
networks. However, women with UUI tend to have more
unique bacterial associations or co-occurrences compared to
controls. In the bladder on the other hand, cases have less than
half as many network clusters compared to controls, suggesting
that loss of smaller and more specialized microbiome networks
may be a characteristic of UUI.

As part of our network analysis, we looked further to identify
central bacteria that are defined by the highest betweenness score
(centrality measure) and potentially play important roles in
stabilizing the whole community. In network analysis, a node
(which in our study represents a genus) that has maximum
centrality can be thought of as a keystone taxon which maintains
the network structure and potentially the function of the
ecosystem. This is irrespective of whether or not it is the most
abundant bacteria. In our study, we chose the threshold of 0.10
for our betweenness score because 90% of the values for both
microbiome networks were lower than this threshold. In the
vaginal microbiome network analysis, we found that Bacteroides
and Lactobacillus were the two top central genera in control
samples while Aerococcus was the central bacteria in women with
UUI. Bacteroides as a central bacterium in women with normal
bladder control is consistent with what we know about the role of
FIGURE 5 | The number of shared bacterial genera between vaginal and bladder microbiomes of women with UUI differ from women without UUI. Women without
UUI (controls) have more unique bacteria in the bladder microbiome.
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Bacteroides in maintaining health in the urogenital tract. For
example, delay in appearance or absence of Bacteroides has been
observed in the guts of infants born by cesarean section
compared to those delivered by the vaginal route, and this has
been proposed as one of the etiologies for the higher
predisposition of children born by cesarean section to
disorders related to poor immune system maturation
(Grönlund et al., 1999; Huurre et al., 2008). This seems to
indicate that Bacteroides in the maternal birth canal (vagina)
may have a key role for developing a healthy immune system that
may persist in adults. Lactobacillus, the second most central
vaginal bacteria in our control group, have been known to be a
characteristic of a healthy vagina (Ravel et al., 2011; Drell et al.,
2013). Our finding shows that beyond being the most abundant
bacteria in the healthy vagina, Lactobacillus are also the central
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
bacteria in the microbiome-wide network and thus may play a
key role in the stability and function of this ecosystem. In our
study, we did not perform a species-level analysis and thus are
unable to explain the relevance of our findings on known vaginal
community state types dominated by various species of
Lactobacillus, such as L. crispatus, L. gasseri, L. iners, bacterial
vaginosis-associated bacteria and L. jensenii.

In women with UUI, we found that the most central bacteria
in the vaginal microbiome network is Aerococcus. Some species
within this genus, such as A. urinae, are increasingly being
recognized for their pathologic role in urinary tract disorders
such as UTI, OAB, and UUI (Pearce et al., 2014; Kline and Lewis,
2016; Hilt et al., 2020). Among the top genera most associated
with Aerococcus were Actinomyces, Gardnerella, Prevotella, and
Bacteroides. Actinomyces species have been reported as
TABLE 9 | Bacteria shared across vaginal and bladder microbial communities in women with UUI and Controls, ranked by median abundance in the vaginal community.

UUI Controls
Bacteria Vaginal median Bladder median Vaginal median Bladder median

Firmicutes Firmicutes
Lactobacillus 69.56 6.27 Lactobacillus 74.24 15.46
Faecalibacterium 5.58 5.16 Streptococcus 4.04 1.49
Aerococcus 3.7 4.6 Veillonella 3.08 1.21
Agathobacter 2.49 3.56 Peptostreptococcus 2.18 0.88
Lachnospira 2.49 1.69 Agathobacter 1.5 2.91
Ruminiclostridium 2.22 6.62 Faecalibacterium 1.45 5.04
Subdoligranulum 2.2 3.06 Roseburia 1.28 1.84
Ruminococcus 2.14 2.48 Enterococcus 1.21 2.14
Anaerostipes 2.01 1.66 Ruminococcus 1.15 2.67
Dialister 1.77 1.88 Lachnospiraceae NK4A136 group 1.03 2.31
Lachnospiraceae NK4A136 group 1.31 2.57 Ruminiclostridium 1.02 3.48
Fusicatenibacter 1.23 3.18 Blautia 0.91 3.86
Roseburia 1.2 3.39 Dialister 0.85 1.33
Streptococcus 1.1 0.84 Lachnospira 0.85 1.81
Phascolarctobacterium 1.01 1.19 Ruminococcaceae UCG-002 0.81 1.56
Blautia 1 3.89 Staphylococcus 0.7 0.88
Butyrivibrio 0.9 1.04 Anaerostipes 0.61 1.58
Lachnospiraceae ND3007 group 0.83 0.97
Dorea 0.75 1.16
Ruminococcaceae UCG-013 0.66 1.26

Actinobacteria Actinobacteria
Bifidobacterium 64.35 0.86 Gardnerella 43.04 3.09
Gardnerella 26.82 55.84 Bifidobacterium 31.7 0.99
Varibaculum 4.98 1.29 Atopobium 13.1 1.33
Actinotignum 4.11 0.8 Actinomyces 1.49 5.2

Corynebacterium 0.89 0.71
Varibaculum 0.86 0.57

Bacteroidetes Bacteroidetes
Prevotella 16.19 1.57 Prevotella 10.09 2.48
Prevotellaceae Ga6A1 group 2.21 2.83 Bacteroides 5.32 9.1
Prevotellaceae UCG-001 1.66 13.28 Prevotellaceae NK3B31 group 1.77 1.04
Alistipes 0.78 1.57 Prevotellaceae UCG-001 1.31 8.52
Bacteroides 0.71 16.39 Alistipes 0.81 2.24

Proteobacteria Proteobacteria
Escherichia/Shigella 1.8 4.63 Escherichia/Shigella 1.51 5.08

Salmonella 1.11 2.32
Tenericutes Tenericutes
Ureaplasma 1.15 1 Ureaplasma 1.6 1.06

Epsilonbacteraeota Epsilonbacteraeota
Campylobacter 1.66 2.08 Campylobacter 1.4 1.87

Fusobacteria Verrucomicrobia
Sneathia 8.15 0.86 Akkermansia 2 2.9
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associated with genitourinary actinomycosis (particularly in the
setting of IUD use) and urinary tract actinomycosis (Huang and
Al-Essawi, 2013; Garcıá-Garcıá et al., 2017). Gardnerella and
Prevotella are well-known pathogens involved in bacterial
vaginosis (Randis and Ratner, 2019). These findings seem to
suggest that dysbiosis in the vagina characterized by changes in
microbiome-wide community structure may be associated with
urinary disorders like UUI.

In the bladder microbiome network analysis, Lactobacillus was
the central genera in both UUI and control groups. Both groups
shared Lactobacillus association with six common genera, but they
each had several unique genera that did not overlap. Interestingly,
many of the unique associations seen in women with UUI were
with known uropathogens associated with UTI. It is important to
note that in the bladder microbiome network analysis, what
differentiates women with and without UUI is not the type of
central bacteria (Lactobacillus for both) but rather its association
with other bacteria in the network. This emphasizes the role of
community network structures in health and disease and the need
to go beyond quantification of relative abundance or diversity
measures of microbiomes to understand dynamic ecosystems.

Looking at the similarities across the bladder and vaginal
microbiomes, our study shows that women with UUI have a
larger number of shared bacteria (43%) compared to women
without UUI (29%). Interestingly, we found that although the
two top bacteria that were most abundantly shared between these
two ecosystems were the same between UUI and control samples
(Lactobacillus and Gardnerella), Gardnerella was the most shared
in the UUI subjects (24% overlap vs. 8.3%) while Lactobacillus
dominated in the controls (17.3% overlap vs. 6.7%). Komesu
et al. showed an overlap of 60% of the bacterial taxonomic units
(genera) between the vagina and the bladder with the most
abundant being the genus Lactobacillus (2020). Their study used
younger participants (average age 53 compared to 61 in our
study) and did not distinguish between disease and non-disease
states. Others who performed species-level analysis comparing
bladder genome samples with publicly available vaginal strains
showed that there was an overlap of 23 species between the
vagina and the bladder (Thomas-White et al., 2018). However,
the majority of the samples in their study were from unrelated
individuals in a less well-defined clinical population. Our
observation that there is higher overlap in bacterial genera
between bladder and vagina in women with UUI compared to
controls and that the dominant bacteria involved in this overlap
differs between these two groups indicates the possibility for
more seeding of potentially pathogenic bacteria from the vagina
into the bladder in women with UUI compared to controls. How
this contributes to dysbiosis of the entire ecosystem is unclear.

The main limitation of our study is the small sample size that
made it difficult to identify all relevant clinical and demographic
factors that could influence microbiome community structure.
For example, use of various vaginal products could potentially
influence vaginal microbiome in different ways. Although there
were no women who reported symptoms of vaginal infection in
our study, we did not do objective screening for the presence or
absence of infection in asymptomatic participants. We also used
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amplicon sequencing of the V4 region of the 16S rRNA gene to
investigate the bladder and vaginal microbiomes. While this
method is widely used for microbiome studies, it has known
biases and limitations (Caporaso et al., 2012; Karstens et al.,
2018; Knight et al., 2018). With this approach, we were limited to
genus-level information, and could not robustly assess species-
level differences or interactions, which may be of importance for
understanding the associations to bladder health of the
urogenital microbiome. One strength of our study is the use of
a clinically well-characterized and demographically well-
matched population of UUI and control subjects and the use
of catheter-collected samples. Another, perhaps more important
strength of our study is the application of network analysis
methods to better understand the microbial community
structures and how they differ in the urogenital tract of women
with and without UUI. To our knowledge, this is the first time
this analysis method has been applied to understand
microbiome-wide networks in the urogenital tract of women
with and without UUI. This approach provides a powerful tool to
understanding the role of microbial communities as a whole in
bladder health and disease and how ecosystems may be
perturbed by environmental factors.

Conclusion
Our finding highlights the importance of using network analysis
techniques to understand microbial community dynamics or
interactions. The study also provides further evidence of overlap
in microbiomes between proximal ecosystems like the vagina
and bladder and how this may affect their role in health
and disease.
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Supplementary Figure 1 | Principal Coordinate Analysis (PCoA) for the vaginal
microbiome. (A) PCoA using Bray-Curtis distance; (B) PCoA using unweighted
UniFrac distance; (C) PCoA using weighted UniFrac distance.

Supplementary Figure 2 | Principal Coordinate Analysis (PCoA) for the urinary
microbiome. (A) PCoA using Bray-Curtis distance; (B) PCoA using unweighted
UniFrac distance; (C) PCoA using weighted UniFrac distance.
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